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Abstract Autophagy is an evolutionarily conserved process where long-lived and damaged or-
ganelles are degraded. Autophagy has been widely associated with several ageing-process as
well in diseases such as neurodegeneration, cancer and fibrosis, and is now being utilised as
a target in these diseases. Idiopathic pulmonary fibrosis (IPF) is a progressive, interstitial lung
disease with limited treatment options available. It is characterised by abnormal extracellular
matrix (ECM) deposition by activated myofibroblasts. It is understood that repetitive micro-
injuries to aged-alveolar epithelium combined with genetic factors drive the disease. Several
groups have demonstrated that autophagy is altered in IPF although whether autophagy has a
protective effect or not is yet to be determined. Autophagy has also been shown to influence
many other processes including epithelial-mesenchymal transition (EMT) and endothelial-
mesenchymal transition (EndMT) which are known to be key in the pathogenesis of IPF. In this
review, we summarise the findings of evidence of altered autophagy in IPF lungs, as well as
examine its roles within lung fibrosis. Given these findings, together with the growing use of
autophagy manipulation in a clinical setting, this is an exciting area for further research in
the study of lung fibrosis.
Copyright ª 2021, Chongqing Medical University. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY license (http://creativecommons.org/licenses/by/
4.0/).
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Introduction

Pulmonary fibrosis

Pulmonary fibrosis (PF) is a chronic, interstitial fibrosing
lung disease where the thickening and scarring of lung tis-
sue results in increased lung stiffness and reduced gas
exchange.1e3 PF is characterised by aberrant extracellular
matrix (ECM) deposition which results in reduced respira-
tory compliance and ultimately death. It is thought that
micro-injuries to aged-lungs lead to an aberrant wound-
healing response.1,2,4 When the cause of PF cannot be
identified the disease is termed Idiopathic Pulmonary
Fibrosis (IPF).

Reported incidence of IPF vary globally, but generally
appear to be rising5; the global incidence is estimated to be
10.7 per 100,000 in males and 7.4 per 100,000 in females.6

The median survival for patients is only 2e3 years7 and
currently there are only two approved therapies for IPF;
these can only prolong life, so identifying new targets and
developing new treatments is crucial.2 Patients typically
are diagnosed over the age of 55 years old8 and more males
are diagnosed than females.9

The exact causes of IPF are unknown, however, several
risk factors for the disease have been identified including
environmental factors,10e13 smoking14e16, and microbial
infection.17e20 As described, IPF is an ageing-associated
disease and several ‘hallmarks of ageing’ have been iden-
tified.21e26 Autophagy has been found to be dysregulated
during ageing; as such, autophagy and ageing have been
studied in numerous diseases including IPF.27
Autophagy

Autophagy (macroautophagy) is a tightly regulated process
allowing the bulk or selective degradation of intracellular
components, including soluble proteins, aggregated pro-
teins, organelles, foreign bodies and macromolecular
complexes.28 It is an evolutionarily conserved process
occurring ubiquitously in all eukaryotic cells. Autophagy is a
dynamic process, capable of responding to stress subse-
quently limiting cellular damage.29 Broadly, autophagy in-
volves the formation of a double-membraned structure
which contains material to be degraded, the autophago-
some fuses with the lysosome, which in turn degrades the
engulfed material30 (Fig. 1). The formation of autophago-
somes is mainly regulated by autophagy-related (Atg)
Figure 1 A summary of the process of autophagy. A phagophore
some. It fuses with, the enzyme-containing, lysosome, which in tur
(2019).112
proteins, of which over 30 have now been identified in
yeast.31,32

The association between ageing and autophagy is well-
studied,33 and in many diseases such as cancer and neuro-
degeneration, decreased autophagy has also been linked to
ageing. Altered autophagy has been reported in several
other lung conditions such as asthma34 and COPD,35 but
these diseases show increased levels of autophagy. Recent
studies have shown that autophagy may play some roles in
fibrogenesis within tissue remodeling and repair. Some
studies have shown that autophagy can promote fibrosis,36

whilst others have shown reduced autophagy in diseases
associated with fibrosis.37,38 Similar findings have also been
observed in fibrotic tissue in other organs, such as the
kidneys, heart and liver.39e42

Gaining a greater understanding of the role of autophagy
in fibrosis in lung disease and elucidating the underlying
mechanisms involved will be crucial for developing better
treatment strategies. Currently, there are only two
approved drugs for the treatment of IPF. Current research
suggests that these may alter autophagy to exert their ef-
fect but their exact mechanisms are unknown. A better
understanding of the pathogenesis of this disease, as well
as the drugs which are currently approved, will give hope
for future therapies in lung fibrosis, as well as a number of
similar conditions.
Evidence of altered autophagy in fibrotic lungs

A number of studies have evaluated whether autophagy is
dysregulated in IPF, a summary of these findings are pre-
sented in Table 1. Autophagy was shown to be reduced,
Beclin-1 in the cytoplasm of ATII cells in normal regions of
IPF lungs had increased expression compared to epithelial
cells in other lesions. In the normal ATII cells, Beclin-1
expression was found to be high.37 Conversely, Beclin-1
was found to be decreased in IPF by IHC and primary
fibroblasts.43

Our lab recently reported increased levels of p62/
SQSTM1 in IPF lungs compared to control, as determined
by IHC. We found strong staining in epithelial cells of the
thickened alveoli septae in IPF cells; this was found at
sites of collagen deposition and fibroblast foci. In the
control tissue, there was only weak staining and little
collagen deposition.44 Other labs have also previously
evaluated the levels of p62/SQSTM1 and found it to be
increased. It was shown to be only expressed in the ATII
is formed, this matures into a double-membraned autophago-
n degrades sequestered material. Adapted from Hill and Wang



Table 1 Evidence of altered autophagy in IPF.

Protein Change Model Reference

p62 Increased (protein) in IPF vs. control. IHC of IPF vs. normal lung Hill et al (2019)44

Increased in IPF vs. control. IF of IPF vs. Control Patel et al (2012)38

� Only ATII cells express p62 in normal lung. In IPF lungs,
p62 was also expressed in ATII cells in ‘normal’ areas
without distortion.

� p62 was strongly expressed by metaplastic epithelial
cells (including cuboidal squamous and bronchiolar-
type cells)
These cells had some distortion. In areas of dense
fibrosis with remodeling, lower expression was
observed in honeycomb regions in sub-epithelial
fibroblasts.

� Staining was also demonstrated in sub-epithelial
fibroblasts.

IHC IPF vs. normal lung Araya et al (2013)37

Ubiquitin � No expression detected in normal lungs.
� ATII cells of ‘normal’ areas of IPF lungs have some
staining.

� In areas of fibrosis, ubiquitin staining correlated with
p62 staining in both ATII cells and fibroblasts.

� In honeycomb regions, epithelial and fibroblasts
expressed ubiquitinated proteins.

IHC IPF vs. normal lung Araya et al (2013)37

Autophagosomes (visualised by EM): reduced compared
to both control and COPD patients.

Electron microscopy Patel et al (2012)38

LC3 Dot-like staining of LC3 (resembles autophagosomes)
found in ATII cells cytoplasm in the ‘normal’ regions of
IPF lung without distortion. However, not in ATII cells of
normal lung (confirmed by co-staining for Prosurfactant
Protein C). No further staining observed, irrespective of
the degree of the fibrosis.

Human IPF tissue Araya et al (2013)37

LC3B reduced in IPF compared to adjacent normal
tissue.

Human IPF tissue Wang et al (2018)47

LC3-II reduced in IPF vs. transplant patients without IPF. Whole lung homogenate Patel et al (2012)38

Beclin-1 Highly diffuse cytoplasmic staining in normal and IPF
lung. Cytoplasm of ATII cells in normal areas of IPF lungs
had higher expression than epithelial cells in other
lesions.

IHC IPF vs. normal lung Araya et al (2013)37

Decreased in IPF. IHC human tissue and
primary fibroblasts

Ricci et al (2013)43

Atg4b � Not detectable in healthy tissue.
� In IPF lungs, mainly localised to ATII cells typically
overlapping FF and hyperplastic epithelial cells, non-
ciliated columnar cells and bronchiolar epithelial cells.

� Some staining in a few interstitial inflammatory cells
was observed.

� No staining in fibroblasts.

Human IPF tissue Cabrera et al (2015)48

p-S6 Upregulated in IPF tissue. IPF lung tissue compared
to healthy lung tissue

Gui et al (2015)49

pAMPK Increased in IPF vs. control. Immunoblot
IPF lungs

Patel et al (2012)38

1596 C. Hill, Y. Wang
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cells of normal lung. In IPF lungs, the expression of p62/
SQSTM1 was higher in ATII cells in ‘normal’ regions, strong
expression was detected in metaplastic epithelial cells.
Some staining was observed in sub-epithelial fibroblasts.37

Similar findings found p62 of whole lung homogenate, in
addition to immunofluorescent (IF) microscopy of p62/
aggregate together with electron microscopy to deter-
mine the presence of autophagosomes.38 Ubiquitin
expression was not detected in normal lungs,37 ATII cells
in normal regions of IPF lungs had low levels of ubiq-
uitin.37 In fibrotic regions, ubiquitin staining correlated
with p62 staining in ATII cells and fibroblasts. Ubiquitin
was observed in both epithelial cells and fibroblasts in
honeycomb regions.37 Our lab also utilised a publicly
available microarray dataset45 to evaluate the mRNA
levels of SQSTM1 (p62) in IPF alveolar epithelial cells
compared to control, to confirm our findings were as a
result of active autophagy. We found that SQSTM1 (p62)
levels were reduced, whilst protein p62 (SQSTM1), eval-
uated by IHC increased, given that p62 (SQSTM1) is mainly
regulated by autophagy,46 suggesting autophagy activity
was reduced in IPF epithelial cells.44

LC3 staining was observed only in ATII cells cytoplasm in
normal areas of IPF lung with no distortion; but not in the
normal lung. No further staining was observed in any other
cell types.37 Similar results were demonstrated in IHC of IPF
lung tissue which shows reduced LC3B compared to adja-
cent normal tissue.47 LC3-II expression in IPF whole lung
homogenate was decreased compared to control lung tis-
sue.38 Further, p-AMPK was shown to be increased in IPF
compared to control by immunoblot.38

Protein expression of Atg4b was shown to be increased in
IPF compared to healthy lung tissue. Staining was mainly
observed in ATII cells and no staining was observed in fi-
broblasts.48 Phosphorylated-S6 (p-S6) which can be used to
determine activation of mTOR and was found p-S6 to be
increased in IPF. BLM-treated mice demonstrated elevated
p-S6 compared to control. Similarly, IHC of IPF lung tissue
showed elevated p-S6.49
Figure 2 Summary of the role of autophagy in lung fibrosis. Each
which have been implicated with autophagy and lung fibrosis.
In general, in human IPF samples it appears autophagy is
reduced. However, many of the studies lack extensive se-
rial sectioning to help identify the localisation of autophagy
markers. Although, extensive evaluation of several auto-
phagy markers in IPF did conclude that autophagy is
reduced in IPF. One study did also include attempts to
determine the localisation of staining,37 however, there
were no H&E or Trichrome stains, which would be partic-
ularly helpful in not only determining the localisation of
autophagy markers but also identifying their proximity to
features of IPF, such as fibroblast foci.
Autophagy regulates the pulmonary fibrosis
process via different signaling

The role of autophagy in IPF is complex (Fig. 2), with some
studies suggesting autophagy has an anti-fibrotic role (Table
2) and other studies finding a pro-fibrotic role for autophagy
(Table 3). Determining whether autophagy has a protective
effect in IPF, and further elucidating the signaling mecha-
nisms which underpin its role in disease progression could
be instrumental in the development of new drug targets.

Bleomycin (BLM) is widely used in animal models of IPF;
clinically it is an anticancer drug which causes DNA strand
breaks directly and is also known to cause fibrosis.47,50

Annexin A2 (ANXA2) has been identified as a direct target of
BLM. ANXA2E139A mutation in A549 cells prevents BLM
binding and activates transcription factor EB (TFEB), a
master regulator of the autophagy-lysosomal pathway,
causing significant induction of autophagy. IPF patients had
lower TFEB and LC3B levels than controls, whilst activation
of TFEB increases autophagic-flux after BLM treatment,
inhibiting apoptosis and proliferation of epithelial cells,
thus reducing fibrosis.47 Further to this study, the over-
expression of TFEB reduced lysosomal dysfunctional,
increasing autophagy flux in alveolar macrophages thereby
preventing fibrosis. It also reduced levels of inflammatory
cytokines. Autophagy inhibition, together with TFEB
colour indicates the different processes and their mediators,



Table 2 Anti-fibrotic roles of autophagy in IPF.

Anti-fibrotic roles of autophagy in lung fibrosis Reference

Autophagy inhibition can induce EMT in ATII cells via the p62/SQSTM1-NFkB-Snail2 pathway.
However this does not appear to drive fibrosis, instead secreted factors from autophagy-
inhibited ATII cells promote fibrogenesis and this can be attenuated by depletion of Snail2.

Hill et al.44

Reduced levels of autophagy may be responsible for increased senescence and myofibroblast
differentiation. Autophagy inhibition induces myofibroblast differentiation.

Araya et al (2013)37

IPF lung tissue shows reduced autophagy. In vitro, TGF-b inhibits autophagy in lung fibroblasts
via mTORC1. Inducing autophagy in fibroblasts by rapamycin decreases a-SMA and
fibronectin expression.

Patel et al (2012)38

ANXA2 direct binding target of BLM, binding stops TFEB induced autophagic flux and this can
induce pulmonary fibrosis.

Wang et al (2018a)47

Atg4b-deficient mice can exacerbate BLM induced fibrosis. It was associated with an increase
in neutrophil infiltration and changes in pro-inflammatory cytokines. Increased epithelial
apoptosis. By 28 days post-BLM, extensive fibrosis as observed in Atg4b-deficient mice.

Cabrera et al (2015)48

STAT2 and JAK3 induced in IPF. Phosphorylation of both induces EMT in ATII cells and FMT in
fibroblasts. Inhibition of STAT2 and JAK3 simultaneously resulted in an increase in
autophagy, reduced fibroblast migration and senescence.

Milara et al (2018)64

Inhibition of VimIFs reduces the invasiveness of fibroblasts and can protect against murine-BLM
induced fibrosis. Treatment with VimIF inhibitor increased autophagy and invasiveness of
fibroblasts was reduced in the murine model, 3D organoids and IPF-derived pulmospheres.

Surolia et al (2019)72

Activation of autophagy in MRC5 cells, via PI3K/AKT/mTOR, protects from TGF-b induced
fibrosis.

He et al (2020a)51

Autophagy inhibited after LPS challenge in mouse lung fibroblasts together with PI3K-Akt-
mTOR pathway activation. LPS promotes lung fibroblast proliferation by autophagy
inhibition via the PI3K-Akt-mTOR pathway.

Xie et al (2019)92

PQ induced PI3K/Akt/mTOR and Hh via miR-193a, together with an inhibition of autophagy;
this increases fibrosis.

Liu et al (2019)86

S1PL increased in IPF. TGF-b can increase its expression. Overexpression of S1PL reduces TGF-
b- and S1PL-induced differentiation via expression of LC3 and Beclin1.

Shuang Huang et al (2015)56

eEF2K increased in fibroblasts. eEF2K controls ECM deposition via p38 MAPK. Inhibition of
eEF2K suppresses autophagy in fibroblasts treated with TGF-b.

Wang et al (2018b).57

Impaired autophagy was observed in BLM-treated mice, IL-17A Ab-treated mice had increased
autophagy, resolved fibrosis.

Mi et al (2011)70

In vitro, knockdown of ATG7 in endothelial cells (ECs) promotes endothelialemesenchymal
transition (EndMT). It also promotes TGF-b signaling and pro-fibrotic genes. ATG7 EC-
specific knockout mice demonstrates increased susceptibility to BLM-induced fibrosis.

Singh et al (2015)73

Overexpression of TFEB reduces lysosomal dysfunctional, increasing autophagy flux in alveolar
macrophages, preventing fibrosis.

He et al (2020b)51

Autophagy is inhibited by SiNPs in ATII cells. Rapamycin treatment in mice induces autophagy
and protects AECs from apoptosis to reduce SiNP-induced fibrosis.

Zhao et al (2019)53

Lc3B KO mice are more susceptible to BLM-induced fibrosis, epithelial cell apoptosis and
elevated ER stress.

Kesireddy et al (2019)55

Leptin augments TGF-b1-induced EMT; this is mediated by inhibition of autophagy via the PI3K/
Akt/mTOR pathway.

Gui et al (2018)69

Fibrosis related to reduced miR-449a expression. Overexpression of miR-449a reduces lung
fibrosis by upregulating autophagy. Bcl2 found to be a target of miR-449a.

Han et al (2016)83

Reduced levels of miR-326 have also been reported in SiO2-murine models. Increased
expression of miR-326 in SiO2-induced fibrosis, increases autophagy in fibroblasts and
reduced fibrosis by downregulating both polypyrimidine tract-binding protein (PTBP1) and
tumour necrosis factor superfamily 14 (TNFSF14).

Xu et al (2019)84

Activated Akt can induce collagen production in the BLM-murine model. A transgenic mouse Dakhlallah et al (2019)89

1598 C. Hill, Y. Wang



Table 2 (continued )

Anti-fibrotic roles of autophagy in lung fibrosis Reference

model that constitutively expresses the active form of Akt (myristoylated AKT), also
demonstrated reduced autophagy.

FoxO3a, a direct target of Akt, has low expression in IPF fibroblasts. Reduced autophagy, via
FoxO3a, contributes to fibrogenesis.

Im et al (2015)79

Histone deacetylase 6 (HDAC6) expression is reduced in IPF lungs. Inhibition of HDAC6 (with
Tubastatin), reduces TGF-b induced collagen expression; via reduced p-Akt, autophagy and
regulation of HIF-1a-VEGF. HDAC6 inhibition by Tubastatin reduces fibrosis via TGF-b-PI3K-
Akt.

Saito et al (2017)90

Reduced levels of autophagy induction in IPF fibroblasts compared to young- and age-matched-
normal fibroblasts. Aged IPF fibroblasts exhibit reduced starvation-induced autophagy,
regulated via mTOR. IPF fibroblasts display mTOR activation, which contributes to apoptosis
resistance. Inhibition of mTOR stimulates starvation-induced autophagy in young and old,
but not IPF fibroblasts.

Romero et al (2016)77

BLM-treatment in mice displays activation of TGF-b and AKT/mTOR pathways. Younger-mice
exposed to BLM exhibited more LC3 punctate. TGF-b1 inhibits autophagy and mitochondrial
recycling in fibroblasts during FMT.

Sosulski et al (2015)91

LPS-induced autophagy-inhibition in lung fibroblasts, concomitantly with PI3K-Akt-mTOR
activation; by reducing thymocyte differentiation antigen-1 (Thy-1) expression and
increase in integrin b3 (Itgb3) expression.

Wan et al (2019)93

Elevated autophagy results in fibroblast senescence and inhibition of FMT via mTOR complex 2
(mTORC2).

Bernard et al (2020)94

Ang-(1e7) reduces smoking-induced fibrosis by activating autophagy and reducing NOX4-
dependent ROS.

Pan et al (2018)54

In the BLM-induced murine model of fibrosis activated toll-like receptor 4 (TLR4) improved
fibrosis and lung function, Inhibition of TLR4 abolished them. Increased autophagy,
reversed the effect of TLR4 leading to reduced fibrosis; whereas autophagy inhibition
reverses the anti-fibrotic roles of TLR4.

Yang et al (2012b)52

IL17A was shown to inhibit the phosphorylation of B-cell CLL/lymphoma 2 (BCL2). IL17A
regulates the phosphorylation of BCL2 via the IL17A-PI3K-GSK3B-BCL2 signaling pathway.

Liu et al (2013a)71

In primary lung fibroblasts, TGF-b induced autophagy both ECM accumulation and UPR were
attenuated with Baf-A1 (autophagy inhibitor).

Ghavami et al (2018)102

IL-37 reduced in IPF patients. IL-37 shown to reduce fibrosis by attenuating TGF-b1 signaling
and inducing autophagy.

Kim et al (2019)98

In the BLM-mouse model, autophagy activation reduces Ang II-induced activation of NLPR3 by
reducing ROS and mitochondrial dysfunction. Autophagy reduces fibrosis via NLRP
activation, which is induced by Ang II-mediated ROS.

Meng et al (2019)99

Rapamycin-treated IPF fibroblasts modified starvation-induced autophagy and apoptosis.
mTORC may contribute to the resistance of cell death.

Romero et al (2016)77

IPF-derived fibroblasts are resistant to type I collagen matrix-induced cell death. IPF
fibroblasts have low levels of autophagic activity on polymerised collagen; aberrant PTEN-
Akt signaling allows IPF fibroblasts to maintain their phenotype on collagen by suppressing
autophagy.

Nho et al (2014)78

FoxO3a was found to mediate Akt resulting in autophagy suppression. Autophagy inhibition
enhanced IPF fibroblast viability. Inhibition of miR-96 resulted in an increase in FOXO3a
mRNA and protein levels, attenuating IPF fibroblasts proliferation and promoting cell death.

Nho et al (2014)78

Im et al (2015)79

TOLLIP protects bronchial epithelial cells from BLM-induced apoptosis by reducing mtROS and
upregulating autophagy.

Li et al (2020)80

Autophagy in pulmonary fibrosis 1599
knockdown was able to reverse these changes.51 These
results suggest the importance of autophagy activation as a
potential therapeutic target in IPF, specifically TFEB and
the potential roles in lysosomal dysfunction.
In the BLM-induced murine model of fibrosis, activated
toll-like receptor 4 (TLR4), is important in the regulation
of innate immunity, improved fibrosis and lung function.
Increased autophagy induced by rapamycin reversed the



Table 3 Pro-fibrosis role of autophagy in lung fibrosis.

Pro-fibrostic roles of autophagy in lung fibrosis Reference

SiO2-induced macrophage autophagy promoted proliferation and migration of
fibroblasts.

Liu et al (2016, 2017)82,111

Autophagy upregulated in SiO2 induced lung fibrosis. In lung fibroblasts, SiO2

downregulated circRNA-012091 and induced up-regulation of downstream PPP1R13B.
PPP1R13B regulates migration and proliferation of fibroblasts via ER stress and
autophagy.

Cheng et al (2019)65

Serum starved fibroblasts with autophagy induced increased myofibroblast markers. Bernard et al (2014)88

Inducing autophagy by deletion of Golgin A2 (GOLGA2), induced lung fibrosis. Park et al (2018)97

Azithromycin has enhanced effects on lung fibroblasts from idiopathic pulmonary fibrosis
(IPF) patients compared to controls, mediated by autophagy.

Krempaska et al (2020)76

Alveolar macrophages from Park2�/� mice demonstrated increased apoptosis compared
to BLM-injured WT mice

Larson-Casey et al (2016)81

1600 C. Hill, Y. Wang
effects of TLR4, leading to reduced fibrosis; whereas
autophagy inhibitor, 3-methyladenine (3-MA), exacer-
bated the fibrotic effects of TLR4, resulting in increased
fibrosis and increased animal death.52 TLR4 is critical for
mediating immunity and is key for attenuation of fibrosis
and could be utilised in treatment; suggesting immunos-
timulants which utilise autophagy rather than immuno-
suppressants which suppress autophagy could be
utilised.52

Dysfunctional autophagy and subsequent apoptosis in
ATII cells have been demonstrated to have a role in silica
nanoparticle (SiNP)-induced fibrosis. Autophagy is inhibited
by SiNPs in ATII cells, through the impairment of lysosomal
degradation through alterations in lysosomal acidification.
Rapamycin treatment in mice induces autophagy and pro-
tects ATII cells from apoptosis, reducing SiNP-induced
fibrosis.53 In smoking-induced lung fibrosis, Angiotensin
(1e7) reduced smoking-induced fibrosis by activating
autophagy and reducing NOX4-dependent ROS. Autophagy
inhibitors, 3-MA and Baf-A1, were able to attenuate the
protective effects of Ang-(1e7)54. Further, LC3B KO mice
were shown to have increased susceptibility to BLM-
induced fibrosis; this also resulted in epithelial cell
apoptosis and increased ER stress.55

Sphingosine-1-phosphate (S1P) signaling is important in
the pathogenesis of IPF. Expression of S1P lyase (S1PL) is
upregulated in both fibrotic tissue and primary lung fibro-
blasts compared to controls, as well as in BLM-treated
mice. TGF-b was found to increase the expression of S1P,
through the binding and activation of Smad3 transcription
factor to the Sgpl1 promoter. In vitro, over-expression of
S1PL reduced TGF-b- and S1P-induced fibroblast differen-
tiation via LC3 and Beclin. S1PL-/þ BLM-treated mice dis-
played increased fibrosis. Further elucidation of the
mechanisms underlying these processes could be beneficial
in the development of drug treatment; either by targeting
S1P directly or via interactions with components in auto-
phagy signaling.56 Elongation factor-2 kinase (eEF2K)
negatively regulates protein synthesis and has been shown
to modulate fibroblast-myofibroblast transition (FMT).
eEF2K inhibition augments TGF-b-induced FMT and resis-
tance to apoptosis. Further, inhibiting eEF2K induces FMT,
reducing myofibroblast autophagy through p38 MAPK
signaling.57
Epithelial-mesenchymal transition and
endothelialemesenchymal transition

Epithelial-mesenchymal transition (EMT) has been identi-
fied as a key process in the pathogenesis of IPF.2,4,44,58 EMT
is a reversible, biological process where epithelial lose cell
polarity, adherens and tight junctions in favour of a
mesenchymal phenotype. It has been implicated in cancer,
development, and fibrosis, and can cause an increase in the
migratory and invasive ability of cells.59e61 Autophagy and
EMT have a complicated relationship that appears to be
both context- and tissue-dependent. A number of recent
studies have begun to elucidate underlying mechanisms
that drive autophagy-driven EMT. Recent studies also sug-
gest that the role of EMT may go beyond a direct pheno-
typic conversion, instead cells undergoing EMT may secrete
factors that can induce fibrosis without directly contrib-
uting to the pool of fibroblasts themselves.58,62,63

The roles of autophagy and EMT in lung fibrosis have
been reported by some groups. Janus Kinase 2 (JAK2) and
signal transducer and activator of transcription 3 (STAT3)
are both activated in IPF and phosphorylation of both in-
duces EMT in ATII cells and fibroblast-myofibroblast (FMT) in
the lung. Inhibition of both reduces fibroblast migration,
attenuates fibroblast senescence, and increases auto-
phagy.64 Protein phosphatase 1 regulatory subunit 13B
(PPP1R13B) is a member of the apoptosis-stimulating pro-
teins of the p53 (ASPP) family. In lung fibroblasts, SiO2

downregulated circRNA-012091 and induced upregulation
of downstream PPP1R13B. It is thought that PPP1R13B
regulates circ-012,091 to promote both migration and pro-
liferation of fibroblasts by ER stress and autophagy.65

TGF-b1-induced EMT in IPF is controversial, with some
studies demonstrating that TGF-b can induce characteris-
tics of EMT in some alveolar epithelial cell lines (such as
A549 cells, which harbor a KRAS mutation).66e68 Whilst
other studies in primary ATII cells found that TGF-b was
unable to induce EMT.58 Leptin, a protein product of the
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obesity gene, augments TGF-b1-induced EMT. These effects
were mediated by inhibition of autophagy via the PI3K/Akt/
mTOR pathway.69

IL17A is increased in IPF; it has been shown to induce
EMT and is responsible for the secretion of the synthesis and
secretion of collagen in a TGF-b1-dependent manner.
Impaired autophagy was observed in BLM-treated mice,
whilst IL-17A Ab-treated mice had increased autophagy.70

IL-17A was shown to inhibit phosphorylation of B-cell CLL/
lymphoma 2 (BCL2), a protein involved in the regulation of
apoptosis, in lung epithelial cells, subsequently preventing
the degradation of BCL2. As a result, autophagy was
reduced due to increased interaction of BCL2 and BECN1.
IL-17A regulates the phosphorylation of BCL2 via the IL17A-
PI3K-GSK3B-BCL2 signaling pathway.71 IL-17A was shown to
inhibit phosphorylation of BCL2, a protein involved in the
regulation of apoptosis in lung cells, subsequently pre-
venting the degradation of BCL2; as a result, autophagy was
reduced due to increased interaction of BCL2 and BECN1.71

Increased invasion is a characteristic of IPF fibroblasts
and vimentin can regulate this through the increased as-
sembly of vimentin intermediate filaments (VimIFs). VimIFs
have been linked with proteins involved in the regulation of
autophagy. In IPF fibroblasts, VimIFs form a complex with
Beclin1 which inhibits autophagy. Withaferin A, a plant-
based alkaloid that binds to vimentin at Cys328, which is
crucial for remodeling in cells, can inhibit VimIF assembly.
Treating IPF fibroblasts with Withaferin A can diminish the
interaction between Beclin1 and VimIFs. It also protects the
lungs from fibrosis via increased autophagy in murine-BLM
models.72

Endothelial-mesenchymal transition (EndMT) may be
important in the pathogenesis of IPF. A recent study
demonstrated that loss of autophagy gene ATG7 could
induce EndMT in vitro. There was a loss of endothelial cell
(EC) architecture, as well as an increase in mesenchymal
markers accompanied by a loss in endothelial markers.
In vivo EC-specific knockout of Atg7 in mice augmented
fibrosis and collagen accumulation.73 These findings suggest
that inhibition of autophagy induces EndMT and autophagy
could be a potential target in fibrosis.

In a similar manner to the findings presented by Singh
et al, 73 we recently reported,44 in IPF that autophagy inhi-
bition was able to induce EMT in alveolar epithelial cells. We
demonstrated that both chemical inhibition (with autophagy
inhibitors bafilomycin or hydroxychloroquine), or genetic
inhibition (RNAi against ATG5), was sufficient to induce EMT
in ATII and A549 cells. These results were confirmed by a
number of biochemical assays, as well as invasion and
migration assays.44 We determined that EMT in ATII cells was
via the p62-NF-kB-Snail2 pathway, in a similar manner to
previously reported in malignancy.74 However, these
autophagy-inhibited alveolar cells did not produce signifi-
cant amounts of collagens; suggesting that although they
had undergone EMT they had not converted to myofibro-
blasts, which are key drivers in the pathogenesis of IPF. We
instead found that secreted factors from these cells medi-
ated fibrogenesis. Further, using conditioned media from
ATII cells which had the inhibition of both ATG5 and SNAI2
(Snail2), was sufficient to attenuate a-SMA in IPF fibroblasts
cells; suggesting this process was driven by Snail2 (SNAI2).44
Apoptosis

Autophagy and apoptosis are closely related processes;
autophagy can prevent cells from undergoing apoptosis.75

Several studies have found links between apoptosis and
autophagy in pulmonary fibrosis. Understanding the links
between these processes could be harnessed to target new
treatments. Azithromycin attenuated fibrosis and enhanced
early apoptosis in IPF fibroblasts compared to control fi-
broblasts. Azithromycin also impaired autophagic flux in IPF
fibroblasts. Azithromycin has both anti-fibrotic and pro-
apoptotic effects on primary fibroblasts which may be
mediated by autophagy.76 Another study found by treating
IPF fibroblasts with rapamycin modified starvation-induced
autophagy as well as apoptosis; it is thought that the acti-
vation of mTORC may contribute to the resistance of cell
death in IPF fibroblasts.77

IPF-derived fibroblasts are resistant to type I collagen
matrix-induced cell death. IPF fibroblasts have low levels of
autophagic activity on polymerised collagen; aberrant
PTEN-Akt signaling allows IPF fibroblasts to maintain their
phenotype on the collagen by suppressing autophagy. In-
hibition of autophagy in IPF fibroblasts over-expressing
PTEN or dominant negative Akt increases IPF fibroblast
cell death. In IPF lung tissue LC3-II is low, whilst mTOR
levels are high within the fibroblastic foci. These findings
suggest dysregulated autophagy may be important in pre-
serving IPF fibroblasts phenotype in a collagen-rich envi-
ronment.78 FoxO3a was found to mediate Akt resulting in
autophagy suppression. FoxO3a is involved in the tran-
scriptional activity of autophagy and is a direct target of
Akt.79 The inhibition of autophagy enhanced viability in IPF
fibroblasts compared to control; low FoxO3 reduces auto-
phagic activity by the transcriptional suppression of LC3B in
IPF fibroblasts on collagen.79 MicroRNA-96 (miR-96) binds to
the 30-UTR region of FOXO3a mRNA and inhibits its function.
MiR-96 levels are increased in IPF fibroblasts whilst FOXO3a
levels are reduced in IPF fibroblasts when cultured on
collagen. Inhibition of miR-96 resulted in an increase in
FOXO3a mRNA and protein levels, attenuating IPF fibro-
blasts proliferation and promoting cell death.78

Mitophagy has been implicated in IPF, it may exert its
effects by modulating apoptosis. ER stress modulates
mitochondrial function in ATII cells via the down regulation
of PINK1 leading to an increase in apoptotic mitochondrial
responses.24 In IPF, Toll interacting protein (TOLLIP) pro-
tects bronchial epithelial cells from BLM-induced apoptosis
and these effects are mediated by reducing mtROS and up-
regulating autophagy80; TOLLIP was significantly reduced in
IPF lungs compared to control.80 Akt1-mediated mitophagy
has also been shown to contribute to macrophage apoptosis
resistance in alveolar cells.81 Mitophagy is increased in
alveolar macrophages. Mitophagy can be induced by ROS;
Akt1 increases mitochondrial ROS. Akt1 mediates mito-
chondrial ROS in turn inducing autophagy in IPF alveolar
cells. Macrophages were found to be resistant to apoptosis.
Alveolar macrophages from Park2�/� mice demonstrated
increased apoptosis compared to BLM-injured WT mice.81

SiO2-induced macrophage autophagy which was associated
with augmented expression of monocyte chemotactic pro-
tein-1-induced protein 1 (MCPIP1). Autophagy promoted
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apoptosis. Autophagy was induced in macrophages
following silica exposure. SiO2 induced MCPIP1 expression in
macrophages which acted via p53 to mediate autophagy.
Autophagy was both responsible for the activation of
macrophages and critical for macrophage apoptosis in
response to silica; macrophage autophagy was mediated by
MCPIP1. Silicosis patients were found to have increased
autophagy, apoptosis and activation in macrophages.82

MicroRNAs

Altered levels of microRNAs have been shown to contribute
to the pathogenesis of lung fibrosis, however, recent
studies have also linked this to autophagy. Silica induced-
fibrosis in the murine model and TGF-b treated fibroblasts
both show miR-449a to be reduced. Overexpressing miR-
449a reduced lung fibrosis both in vitro and in vivo by
upregulating autophagy, and Bcl2 was determined to be the
autophagy-related target of miR-449a.83 Reduced levels of
miR-326 have also been reported in both silica induced-
fibrosis murine models and in several in vitro studies (lung
epithelial cells and fibroblasts). Increased expression of
miR-326, led to increased autophagy in fibroblasts and
reduced fibrosis by downregulating both polypyrimidine
tract-binding protein (PTBP1) and tumor necrosis factor
superfamily 14 (TNFSF14).84

PI3K-Akt-mTOR pathway

In BLM-induced fibrosis, autophagy was shown to be acti-
vated; LC3 expression was increased by day 28, whilst p62/
SQSTM1 was reduced. BLM-treated Atg4b deficient mice
displayed exacerbated fibrosis and cellular apoptosis.48

This suggests Atg4b may have a protective mechanism d an
upregulation of Atg4b in old fibroblasts which is involved in
the lipidation of LC3, may have a role in the reduction of
fibrosis.77,85 BLM-treated mice also exhibited increased
expression of p-S6, a downstream effector of mTOR. IPF
lung tissue also showed increased staining of p-S6 suggest-
ing mTOR activation. In vitro studies, demonstrated that
fibroblasts treated with TGF-b increased mTOR expression.
Conditional knockdown of Tsc1 (which regulates mTOR) in
AECs in BLM mice, augments fibrosis, which was attenuated
with rapamycin treatment. This could then be reversed by
autophagy inhibitor chloroquine.49 Long term paraquat (PQ)
treatment increased levels of ROS, resulting in increased
mTOR activity, which led to autophagy inhibition and finally
augmented fibrosis suggesting that PQ-induced fibrosis
reduced the activity of miR-193a.86

TGF-b is fundamental in the pathogenesis of IPF, and
PI3K/AKT/mTOR are downstream of this. TGF-b also has
roles in the regulation of autophagy. However, the exact
mechanisms of this in IPF are not fully understood. A recent
study demonstrated PI3K/AKT/mTOR pathway activation
upon TGF-b treatment of fibroblasts. Treatment with a
natural flavonoid isoliquiritigenin (ISL) inhibited both
pathway activation and phosphorylation of these. It also
activated autophagy and decreased a number of fibrotic
markers, suggesting that PI3K/AKT/mTOR may be key in
regulating autophagy and fibrosis.87 TGF-b has been previ-
ously shown to inhibit autophagy in primary lung cells, via
mTORC1. In this study, inhibition of autophagy by siRNA
caused an increase in a-SMA.38 Conversely, other studies
have shown that fibroblasts with serum starvation induced-
autophagy demonstrated induction of several myofibroblast
markers including a -SMA.88

In macrophages, macrophage colony-stimulating factor
(M-CSF-receptor) activates the PI3K-AKT pathway in mac-
rophages. Activated Akt can induce collagen production in
the BLM-murine model. A transgenic mouse model that
constitutively expresses the active form of Akt (myristoy-
lated AKT), also demonstrated reduced autophagy.89

FoxO3a, a direct target of Akt, has low expression in IPF
fibroblasts and in turn, reduces LC3B expression. Whereas
healthy fibroblasts displayed high FoxO3a and LC3B
expression. FoxO3a binds to the promoter region of LC3B,
transcriptionally activating it. Autophagy inhibition in
control fibroblasts increased collagen matrix induced cell
death whilst in IPF fibroblasts it resulted in increased
viability. When FoxO3 expression is low it reduces auto-
phagic activity, subsequently suppressing LC3B in IPF fi-
broblasts; this suggests that reduces autophagy, via FoxO3a
contributes to fibrogenesis.79

Histone deacetylase 6 (HDAC6) expression is reduced in
IPF lungs. Inhibition of HDAC6 (with Tubastatin), reduces
TGF-b induced collagen expression through reduced p-Akt,
autophagy and regulation of HIF-1a-VEGF. Although the
study only evaluated autophagy with LC3 levels, so further
investigation into this with other markers would be bene-
ficial. WT mice treated with Tubastatin are less susceptible
to BLM-fibrosis whereas HDAC6 KO mice are not. Suggesting
HDAC6 inhibition by Tubastatin reduces fibrosis via TGF-b-
PI3K-Akt, independent of HCAD6.90

Given that IPF is an ageing-associated disease and
dysfunctional autophagy is often observed with ageing,
understanding the mechanisms linking these processes is
key. In fibroblasts, ageing has been associated with reduced
levels of autophagy induction in IPF fibroblasts compared to
young- and age-matched-normal fibroblasts. Aged IPF fi-
broblasts have reduced starvation-induced autophagy and
this is regulated via mTOR. IPF fibroblasts demonstrate
persistent mTOR activation, which has been shown to
contribute to apoptosis resistance. Inhibition of mTOR can
attenuate the effects of starvation-induced autophagy in
both old- and IPF-fibroblasts.77 Murine models of fibrosis
suggest that susceptibility to fibrosis in ageing correlates
with reduced autophagy. BLM-treatment in mice resulted in
activation of TGF-b and AKT/mTOR pathways. Younger
mice (2 months vs. 14 and 22 months) exposed to BLM
exhibited more LC3 punctate. TGF-b1 inhibits autophagy
and mitochondrial recycling in fibroblasts during FMT.
These findings suggest that reduced autophagy may be key
in the pathogenesis of age-related lung conditions.91

Similarly, autophagy was inhibited in mouse lung fibro-
blasts after lipopolysaccharide (LPS) challenge and was
accompanied by PI3K-Akt-mTOR pathway activation. Treat-
ment with pathway (mTOR or PI3K-Akt) inhibitors could
reverse this effect. Further, autophagy inhibition could
promote fibroblast proliferation and mTOR inhibition (by
rapamycin) could reverse this.92 A further study demon-
strated LPS-induced autophagy inhibition in lung fibroblasts,
together with PI3K-Akt-mTOR activation via a reduction in
thymocyte differentiation antigen-1 (Thy-1) expression and
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an increase in integrin b3 (Itgb3) expression. LPS reduces
binding of Thy-1 to Itgb3. Findings were demonstrated in
MRC5 cells and in a mouse model of LPS-induced pulmonary
fibrosis.93 These findings further confirmed the importance
of both the PI3K-Akt-mTOR pathway and autophagy in the
pathogenesis in IPF, but also give insight into potential novel
therapeutic targets in these pathways.

Both autophagy and senescence contribute to fibro-
genesis. A recent study has shown that persistent
upregulation of autophagy results in fibroblast senescence
and inhibition of FMT via mTOR complex 2 (mTORC2). Fi-
broblasts with serum starvation-induced autophagy dis-
played an increase in senescence; senescence and FMT
were shown to be mutually exclusive. Inhibition of senes-
cence increased myofibroblast differentiation. mTORC2
activation controls the expression of senescence markers
and myofibroblast markers via signaling pathways inde-
pendent of mTORC1.94

Pro-inflammatory mediators

A mechanism that may augment fibrosis in the lung, is pro-
inflammatory mediators secreted by macrophages. These
macrophages may exacerbate fibrosis further by activating
autophagy. Pulmonary exposure to silica particles can lead
to the development of silicosis. This is characterised by
inflammation, fibrosis and reduced lung function.95 Recent
studies have shown SiO2 induced macrophage activation
and apoptosis, as well as levels of autophagy by BCL2
binding component 3 (BBC3). These effects were blocked
by autophagy inhibition (3-MA) and enhanced by autophagy
induction with rapamycin. Conditioned media (CM) from
macrophages treated with SiO2 led to increased prolifera-
tion and migration of fibroblasts. These findings were
confirmed in a Bbc3 knockout mouse model, which exhibi-
ted reduced levels of both autophagy and fibrosis.96 Simi-
larly, SiO2-induced macrophage autophagy, together with
an increase in monocyte chemotactic protein-1-induced-
protein 1 (MCPIP1), promoted apoptosis. Macrophages
promoted proliferation and migration of fibroblast via
MCPIP1/p53 pathway.82 Another study has shown that
deletion of GOLGA2, which encodes for a cis-Golgi protein,
can induce autophagy and this results in fibrosis together
with an increase in alveolar macrophages.97

Pro-inflammatory cytokine IL-37 is reduced in IPF
compared to healthy controls, this is confirmed in AECs
and macrophages, as well as lungs of mice exposed to
BLM. IL-37 reduces the expression of fibrotic mediators as
well as inhibiting cell death induced by oxidative cell
death. Further, IL-37 can inhibit fibroblast proliferation
through the inhibition of TGF-b1 signaling. IL-37 enhanced
both ATG7 and Beclin-1 expression in lung fibroblasts, and
also attenuated lung inflammation and fibrosis by acti-
vating autophagy in BLM-treated mice.98 Lung fibrosis is
exacerbated by Angiotensin (Ang) II via NLR family pyrin
domain containing 3 (NLRP3) pathways. In the BLM-mouse
model, autophagy activation was shown to reduce Ang II-
induced activation of NLPR3 by reducing ROS and subse-
quent mitochondrial dysfunction. Autophagy reduces
fibrosis via NLRP activation, which is induced by Ang II-
mediated ROS.99

Unfolded protein response

Increasing attention has been given to the processes of
unfolded protein response (UPR) and autophagy. Both of
these biological processes are hallmarks of ageing and have
been identified in the pathogenesis of IPF. UPR is initiated
when misfolded or unfolded proteins are in abundance; in
turn signaling from the ER to the nucleus maintaining
homeostasis.100

TGF-b induced NADPH oxidase 4 (NOX4) expression and
myofibroblast differentiation, could both be attenuated
by azithromycin (AZM) treatment of lung fibroblasts. AZM-
induced NOX4 reduction could be restored with a protea-
some inhibitor. AZM inhibited autophagy, and this was
associated with ubiquitination of NOX4 by increased STUB1
(STIP1 homology and U-box containing protein 1) levels, an
E3 ubiquitin ligase. AZM also resulted in enhanced UPR
which was linked with an increase in proteasome activity.
BLM-induced fibrosis was reduced in severity by AZM,
whilst NOX4 protein levels were reduced and proteasome
activation was increased. These suggest AZM may be a
possible therapy for fibrosis, by suppressing NOX4 and
promoting proteasomal degradation leading to inhibition
of TGF-b-induced fibrogenesis.101 A further study exam-
ining the anti-fibrotic effects of AZM confirmed it reduced
expression of pro-fibrotic genes after TGF-b in both con-
trol and IPF fibroblasts. AZM was shown to have increased
anti-fibrotic effects on a number of fibrotic and pro-
apoptotic markers in IPF fibroblasts compared to con-
trols, it is thought that impaired lysosomal function may
contribute to these effects. Given these findings, there
may be potential for the use of AZM as an anti-fibrotic
treatments in IPF.76

Another study demonstrated in primary fibroblasts, that
TGF-b initiated both autophagy, and UPR and ECM accu-
mulation. This could be attenuated upon Baf-A1 treat-
ment.102 Conversely, TGF-b has been previously shown to
inhibit autophagy in fibroblasts and autophagy inhibition
increased a-SMA expression.38 The differences between
these studies could be as a result of the different time
points used for TGF-b treatment (48 h 38 or 120 h 102), or
that the treatment with Baf-A1 had some off-target ef-
fects, further studies using genetic knockdown would help
validate their findings.

Mitophagy

Mitophagy is a selective form of autophagy that targets
dysfunctional mitochondria for degradation by autophago-
somes.103 This is an important process for maintaining
cellular homeostasis. Mitophagy can be induced by mito-
chondrial oxidative stress.81 A number of lung conditions,
including IPF, have reported dysfunctional mitophagy. In a
similar manner to (macro) autophagy, mitophagy has been
described to have dual-roles, with some recent studies
suggesting reduced mitophagy can augment fibrosis. ROS is
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in the pathogenesis of IPF and it is thought ROS generated
from mitochondria may promote fibrosis.104 Further to this,
it has been shown that TGF-b not only promotes ROS pro-
duction105 but that latent TGF-b can be activated with
oxidative stress.106

Akt1 can induce macrophage mtROS and also mitophagy;
it also increased TGF-b1 expression. Mitophagy inhibition in
Akt1-overexpressing macrophages can reverse the increase
in TGF-b expression and fibroblast differentiation. Mice
harboring conditional deletion of Akt1 in macrophages had
increased mitophagy and macrophage apoptosis and were
protected from fibrosis.81 Park2�/� mice exhibited reduced
mitophagy and increased FMT mediated by the activation of
the platelet-derived growth factor receptor (PDGFR)-P13K-
Akt pathway upon BLM-treatment.107

A recent study demonstrated a role for phosphoglyc-
erate mutase family member 5 (PGAM5) in the pathogenesis
of IPF. PGAM5 knockout mice treated with BLM displayed
significantly reduced fibrogenesis in the lung compared
with control. In vitro studies further confirmed its role,
showing PGAM5 knockout in alveolar cells had reduced
structural damage to pulmonary architecture and inflam-
matory changes. They further showed that PGAM5 impaired
mitochondrial integrity (mitochondrial membrane poten-
tial, and mitochondrial depolarization, structural imaging)
independent of mtROS-production (which is increased on
BLM treatment). Loss of PGAM5 induced mitophagy, and
this improved mitochondrial homeostasis.108

PINK1 acts as a molecular sensor of damaged organelles
during mitophagy functioning as a serine/threonine kinase
containing a mitochondrial targeting sequence.109 The role
of PINK1 in IPF is controversial. IPF patients have been
demonstrated to have an accumulation of damaged mito-
chondria, and these have been associated with low PINK1
expression.24 Conversely, another study found increased
PINK1 expression to be associated with the accumulation of
damaged mitochondria.110 Studies in vitro and in vivo
demonstrated that knockdown of PINK1 resulted in
dysfunctional mitochondria in ATII cells and defective
mitophagy.24 Further, TGF-b1 induced dysfunction of mito-
chondria and increased PINK1 expression, these changes
were reversed by ROS scavenging.110 Together these findings
suggest that PINK1 may be a potential target for new
treatments, as PINK1 has been shown to reduce epithelial
cell death110 and subsequently could improve fibrosis.
Conclusion

Autophagy has been widely implicated in a number of dis-
eases and its impact on fibrosis is still being explored.
Several studies have determined that autophagy is dysre-
gulated in IPF lungs and this suggests that it could be an
important area for further investigation. The effects of
autophagy misfunction are wide-reaching; broadly it seems
that autophagy may have a protective effect although
further investigation is certainly required as it seems to be
context-dependent. Given that the manipulation of auto-
phagy has already been utilised for the treatment of can-
cers, this could be an exciting prospect in the treatment of
fibrosis.
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