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Abstract

In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity
that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite
its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions
could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes
premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell
clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43) and N-cadherin (N-cad)
as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of
osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the
expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to
cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-
coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was
a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes.
Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa
staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell
communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts.
These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone
formation in vivo.
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Introduction

Bone remodeling is a complex lifelong process that requires

precise control of bone-resorbing osteoclasts and bone-forming

osteoblasts for the maintenance of aging bone and repair of bone

injuries. Osteoblasts are at the center of these processes by

controlling matrix production and mineralization, receiving and

processing mechanical and chemical signals to bone and most

likely directing osteoclast function. This level of coordination

demands sophisticated cell communication. Osteoblasts engage in

a variety of cell-cell interactions including communication via

soluble factors such as cytokines and growth factors as well as

direct cell-cell adhesion molecules such as those forming adherens

junctions and gap junctions [1,2].

Adherens junctions are intercellular structures that are formed

through hemophilic, calcium-dependent cell-cell adhesion via

cadherins. These molecules constitue a class of 30 single chain

integral membrane glycoproteins composed of a long N-terminal

extracellular domain, a single transmembrane domain, and a small

intracellular C-terminal tail [3]. The intracellular domain anchors

to the actin cytoskeleton via multiple protein complexes including

a- and b-catenin which control Wnt signaling [4]. Two cadherins

are predominantly expressed in osteoblasts, N-cadherin (N-cad)

and cadherin-11. Knockout models have indicated that the loss of

N-cad disrupts cell-cell adhesion more severely than the loss of

cadherin-11 in osteoblasts [5]. Cadherins also play essential roles

in fetal development of mesenchymal tissues including morpho-

genesis, osteogenesis and chondrocyte condensation [3,6,7].

Gap junctions are aqueous transmembrane channels that

connect the cytoplasm of two adjacent cells and allow the diffusion

of small molecules with a molecular mass of less than 1 kDa such

as small metabolites, ions, and intracellular signaling molecules
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(calcium, cAMP, and inositol triphosphate) to pass through [8].

Each gap junction pore is formed of connexins which oligomerize

to form hemichannels that tightly dock with hemichannels from

the adjacent cell [9,10]. The connexin superfamily includes more

than 20 genes, whose products have different molecular properties

that influence the permeability of each gap junction [9]. The main

connexin in osteoblasts, connexin 43 (cx43) is the most abundant

gap junction protein in the skeleton [11]. The role of cx43 in

osteoblast differentiation and mineralization has been demonstrat-

ed by in vitro experiments. The inhibition of cx43 gene expression

by antisense transfection or knockout-cx43 has consistently been

associated with loss of gap junctional coupling and reduced

osteoblast differentiation potential as assessed by downregulation

of alkaline phosphatase, osteocalcin, bone sialoprotein and

mineralization [12,13,14,15]. In contrast, overexpression of cx43

results in an enhancement of gap junctional intercellular

communication and expression of an osteogenic phenotype

[12,16,17].

The clearest demonstration of the essential role of cx43 in bone

formation has been observed in knockout mice lacking cx43 [15].

These animals exhibit profound defects in intramembranous and

endochondral ossification of the skeleton, leading to skull

abnormalities, brittle, misshapen ribs and delayed mineralization

[15,18]. They display many similarities with the phenotypes

reported from human oculodentodigital dysplasia (ODDD), an

autosomal dominant disease caused by any one of over 60

mutations in the gene GJA1 encoding Cx43 [19,20,21]. Recent

research also suggests a role in wound healing [22]. An improved

understanding of the regulation of gap junctions in bone could also

provide further insights into regulatory mechanisms of osteoblast

differentiation for further therapy in the treatment of bone loss

diseases such as osteoporosis and periodontitis [23,24,25,26].

One procedure for the regeneration of bone is the application of

an enamel matrix derivative (EMD) which has been used clinically

for the treatment of various types of bony defects located at

periodontitis diseased teeth [27,28]. EMD is extracted from

developing porcine teeth, the major component of which are

amelogenins, a family of hydrophobic proteins that account for

more than 90% of the total protein content [29]. The remaining

components of EMD include enamelins, such as proline-rich

enamelin, sheathlin, tuftelin, amelotin and apin [30]. The direct

effects of EMD on bone regeneration have primarily been

evaluated in periodontal intrabony and class II furcation defects

[31,32,33,34]. However, findings from in vitro and in vivo

experiments indicate that EMD may also influence healing/

regeneration of non-tooth related bone defects. In vitro studies with

human, rat and mouse osteoblasts showed increased proliferation

and/or differentiation in the presence of EMD [30,35,36,37,38].

In vivo treatment of perforated rat femurs with EMD significantly

increased newly formed bone in 7 days when compared to

untreated perforated femurs [39].

Despite the widespread use of EMD, the underlying cellular

mechanisms remain unclear and an understanding of its biological

interactions could identify new strategies for tissue engineering.

Previous in vitro research showed that EMD promoted osteoblast

clustering at early time points [40]. The aim of the present study

was to evaluate the influence of cell clustering on vital osteoblast

cell-cell communication and adhesion molecules, cx43 and N-cad.

Materials and Methods

Surface Coating with EMD
EMD was prepared according to Institut Straumann AG

standard operating protocols. 30 mg of EMD was dissolved in

3 ml of 4uC sterile 0.1% acetic acid. For experiments, stock EMD

was diluted 1006 in 0.1 M carbonate buffer at 4uC giving a

working solution of 100 mg/ml. 1 ml of EMD solution was poured

onto each 24 well culture dishes and incubated overnight at 4uC.

Following incubation, dishes were rinsed with 1 ml phosphate

buffered saline (PBS) twice at 4uC. Uncoated 24 well culture dishes

were used as a control.

Osteoblast Isolation and Differentiation
Human bone chips were cultured from an explants model [41]

under sterile conditions at the University of Bern Dental Clinic

under a protocol approved by the Ethics Committee, University of

Bern. Primary human osteoblasts were removed from the tissue

culture plastic using trypsin solution (Invitrogen, Basel, Switzer-

land). Osteoblasts used for experimental seeding were from

passages 4–6. During cell seeding, a-MEM medium was

supplemented with 50 mg/ml ascorbic acid and 2 mM b-

glycerophosphate to promote osteoblast differentiation. Primary

osteoblasts were seeded at a density of 10,000 cells in 24 well

culture plates for all experiments. For experiments lasting longer

than 5 days, medium was replaced twice weekly.

Immunofluorescence
Osteogenic cells were plated at a density of 10,000 cells in 24

well culture plates. At multiple time points ranging from 1 to 14

days cells were fixed in 4% buffered formalin, followed by three

5 min washes in PBS. Cells were permealized with Triton X-100

for 5 minutes, followed by staining with antibodies against

connexin 43 (sc-9059) or N-cadherin (sc-7939) (Santa Cruz

Biotechnologies Inc., Heidelberg, Germany) antibodies, followed

by a goat anti-rabbit IgG conjugated to texas red at a dilution of

1:200 in 0.5% PBS/bovine serum albumin (Invitrogen). The

dilution of each antibody was titrated to determine the optimal

concentration. Prior to viewing, samples were mounted with

Vectashield containing DAPI nuclear staining (Vector). Images

were captured using an Olympus BX-51 (Center Valley,

Pennsylvania) microscope with a ProgRes CT3 digital camera

(Jenoptik Laser, Optik, Systeme GmbH, Jena, Germany).

Real Time RT-PCR
Total RNA was isolated using TRIZOL reagent and RNAeasy

Mini kit (QIAGEN, Basel, Switzerland) at time points 1, 2, 3, 5, 7,

10 and 14 days. Primer and probe sequences for genes encoding

cx43 (Hs00748445_s1), N-cad (Hs00983056_m1), Runx2

(Hs00231692_m1), collagen1a1 (COL1A1, Hs01028970_m1),

osteocalcin (OC, Hs01587814_g1), bone sialoprotein (BSP,

Hs00173720_m1) and GAPDH (Hs03929097_g1) were purchased

as pre-designed gene expression assays (Applied Biosystems,

Rotkreus, Switzerland). Real-time RT-PCR was performed using

20 ml final reaction volume of TaqManH’s One step Master Mix

kit (Applied Biosystems). RNA quantification was performed using

a Nanodrop 2000c (Thermo Scientific, Waltham, MA, USA) and

100 ng of total RNA was used per sample well. The DDCt method

was used to calculate gene expression levels normalized to

GAPDH values.

Western Blot Analysis
Samples extracted using RIPA buffer were separated by SDS-

PAGE and blotted to nitrocellulose membrane as previously

described (Brellier et al. 2011). After a blocking step in 1% milk,

membranes were incubated with rabbit polyclonal antibodies for

cx43 and N-cad. They were then incubated for 1 h with anti-

rabbit IgG coupled to horseradish peroxidase. Blots were

EMD Upregulates Connexin 43 and N-cadherin
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developed using ECL reagent (GE Healthcare, Otelfingen,

Switzerland) and exposed to Fuji Medical X-ray Film (Fujifilm

Europe GmbH, Dusseldorf, Germany).

Alkaline Phosphatase activity
Alkaline Phosphatase activity was monitored using fast violet B

salt kit (procedure No. 85, Sigma Aldrich). Briefly, 1 fast violet B

salt capsule was dissolved in 48 ml of distilled water and 2 ml of

naphtol AS-MX phosphate alkaline solution. Osteoblasts were

fixed by immersing in a citrate-buffered acetone solution (2 parts

citrate, 3 parts acetone) for 30 s and rinsed in deionized water for

45 s. Samples were then placed in alkaline phosphatase stain for

30 min protected from light. Following 2 min of rinsing in

deionized water, slides were treated with Mayer’s hematoxylin

solution for 10 min. Light microscopic recording was performed

using a ProgResH C5 digital camera connected to a Zeiss Axioplan

microscope (Carl Zeiss, Göttingen, Germany). All images were

captured using pre-determined light intensity at the same

magnification. Image pro plus thresholding software was used to

generate percent stained values for each field of view.

Osteocalcin Staining
To determine extracellular osteocalcin deposition, osteoblasts

were seeded at a density of 10,000 cells in 24 well culture plates. At

time points ranging from 5 to 14 days cells were fixed in 4%

buffered formalin, followed by three 5 min washes in PBS. Cells

were stained with osteocalcin (sc-7449, Santa Cruz Biotechnology,

Santa Cruz, CA) antibody, followed by a goat anti-rabbit IgG

conjugated to texas red at a dilution of 1:200 in 0.5% PBS/Bovine

Serum Albumin (Invitrogen). Images were captured using an

Olympus BX-51 (Center Valley, Pennsylvania) microscope with a

ProgRes CT3 digital camera.

Von Kossa Staining
Von Kossa staining was performed to determine the presence of

mineralization. Osteoblasts were seeded at a density of 10,000 cells

per 24-well plate pre-coated with and without EMD. At time

points 5, 10 and 14 days, cells were fixed in 4% PFA for 15 min

and stained with 2% aqueous silver nitrate for 30 minutes under

bright sunlight. Light microscopic recording was performed using

a ProgResH C5 digital camera connected to a Zeiss Axioplan

microscope (Carl Zeiss). All images were captured using pre-

determined light intensity at the same magnification. Image pro

plus thresholding software was used to generate percent stained

values for each field of view. The size of bone nodules was

measured as previously described [40].

Statistical analysis
All samples from immunofluorescence, real-time PCR, alkaline

phosphatase staining and von Kossa staining were assayed in

triplicate with 3 independent experiments performed. Data were

displayed by mean +/2 SE and analyzed for statistical significance

using 2-way ANOVA with Bonferri test (p,0.05) using Graphpad

Software v. 4 (Graphpad Software, La Jolla, CA, USA).

Figure 1. EMD promotes clustering of primary human osteoblasts on EMD-coated samples. On control and EMD coated samples, cells
were evenly distributed as shown with DAPI staining at 4 hours post seeding (A–B). However after 24 hours, clustering of cells was apparent after
24 hours on EMD coated samples (D) when compared to control samples (C). (bar = 500 mm).
doi:10.1371/journal.pone.0023375.g001
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Results

Cell clustering, cx43 and N-cad expression
In order to visualize early formation of cell clusters, nuclear

staining was employed. Primary osteoblasts attached well on both

surfaces at 4 hours (Fig. 1A–B), however cells seeded on samples

pre-coated with EMD began to form cell clusters after 24 hours

(Fig. 1D) when compared to control (Fig. 1C).

Following cell clustering on EMD-coated samples, cells were

immunolabeled for expression of cx43 and N-cad. Cells seeded on

EMD-coated samples demonstrated elevated levels of cx43 and N-

cad expression when compared to control samples (Fig. 2). At early

time points (2–3 days), expression of cx43 and N-cad was found

throughout the cytoplasm as well as on the cell-membranes on

EMD-coated samples (not shown). Low levels were observed in

control samples. After 5 days, virtually all cells expressed high

levels of cx43 and N-cad on their cell membranes in EMD-coated

samples. Elevated expression of cx43 was maintained up to 14

days post seeding at which point control samples also demon-

strated high levels.

Primary osteoblasts were also assessed for cx43 and N-cad gene

expression at time points ranging from 2 to 10 days (Fig. 3).

mRNA levels showed significant increases on EMD-coated

surfaces at 2, 3 and 5 days post-seeding when compared to

uncoated samples (Fig. 3A, 3B). At 7 and 10 days, higher (but no

longer significantly different) expression of cx43 and N-cad was

observed on EMD-coated samples when compared to control.

Western blot analysis revealed similar patterns. At early time

points following cell clustering, elevated expression of cx43 and N-

cad were observed at 2, 3, 5 and 7 days post seeding on EMD-

coated samples when compared to control (Fig. 3C). Differences in

protein levels diminished as control samples reached cell

confluence.

Alkaline phosphatase activity
Osteoblasts seeded on EMD-coated samples showed signifi-

cantly more alkaline phosphatase activity when compared to

control samples (Fig. 4). 5 days post seeding, cells seeded on EMD

surfaces displayed intense ALP staining (Fig. 4A). Interestingly,

ALP staining was localized to cell clusters formed on EMD-coated

samples. After 10 days, EMD coated samples showed complete

ALP staining throughout their surfaces. Quantification of

threshold staining showed significantly higher ALP activity on

EMD-coated samples at 5, 7 and 10 days post seeding with

Figure 2. EMD promotes expression of connexin 43 and N-cadherin in cell clusters. At time point 5 days post seeding, primary human
osteoblasts were stained for connexin 43 or N-cadherin (red), and nuclei (blue). Expression of connexin 43 and N-cadherin significantly increased on
cell membranes of EMD coated samples. (bar = 50 mm).
doi:10.1371/journal.pone.0023375.g002
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elevated levels observed at all time points (Fig. 4B). mRNA

expression of ALP activity was also significantly increased at 3, 5

and 7 days post seeding when compared to control samples

(Fig. 4C).

Quantification of osteoblast differentiation
Primary osteoblasts were assessed for OC immunostaining and

gene expression of Runx2, COL1A1, OC and BSP at time points

ranging from 3 to 14 days (Fig. 5). At 5 days, uncoated samples

showed lower OC staining (Fig. 5A). When surfaces were

precoated with EMD, osteocalcin staining was observed with

extracellular deposition primarily within osteoblast clusters. At 14

days, control surfaces showed patterns of extracellular deposition

that were more evenly dispersed across the entire surface. EMD

coated surfaces displayed staining patterns localized to discrete

nodules (Fig. 5A). Analysis of Runx2 gene expression showed no

significant increase in mRNA levels at any time point, with or

without EMD (Fig. 5B). By contrast, an initial significant increase

in COL1A1 mRNA levels on EMD-coated surfaces was observed

at 3, 5 and 7 days post seeding with elevated (but not significantly

different) levels observed at 10 and 14 days (Fig. 5C). With respect

to OC and BSP, up to a 3 fold increase in mRNA levels on EMD-

coated surfaces at time points 5, 7, 10 and 14 days post seeding

when compared to uncoated surfaces were observed (Fig. 5D, 5E).

Interestingly, these increases in OC and BSP coincide with

elevated expression of N-cad and Cx43 on EMD-coated samples.

Von Kossa staining
In order to determine whether early cell clustering may be

indicative of early mineralized nodule formation, von Kossa

staining was employed at time points 5, 7, 10 and 14 days (Fig. 6).

Low levels of staining were observed on uncoated samples at both

5 and 10 days (Fig. 6A). On EMD-coated samples, the von Kossa

staining surface area was increased especially in cell cluster regions

(Fig. 6A). At 14 days post seeding, small nodules were formed on

control surfaces whereas large coalescing clusters were observed on

EMD-coated samples. Image analysis demonstrated significantly

increased von Kossa staining (Fig. 6B) and nodule size (Fig. 6C) at

all time points on EMD-coated samples.

Discussion

In the past 15 years, a plethora of research has sought to advance

our understanding of the functions of enamel matrix proteins (EMPs)

have beyond amelogenesis. EMD has been previously shown to

influence osteoblast differentiation using a wide range of cell models

(MG-63, MC3T3-E1, Kusa/A 1, 2T9 cells, rat calvarial osteoblasts)

[37,40,42,43,44]. EMD increased ALP activity [42,45], mineral

nodule formation [46] as well as markers for osteoblast differentiation

such as BSP and OC [40,43]. An unexpected observation in our

previous study was the formation of cell clusters on EMD-coated

surfaces after a period of 24 hours [40]. This phenomenon resembles

mesenchymal condensation, which is a pivotal stage in the

Figure 3. EMD increases osteoblast mRNA and protein levels of connexin 43 and N-cadherin. After 2, 3, 5, 7 and 10 days post seeding,
mRNA was extracted and realtime PCR was performed using specific primers for connexin 43 (A) and N-cadherin (B). When samples were pre-coated
with EMD, up to 4 fold increases in gene expression were observed for connexin 43 at 2, 3 and 5 days post seeding (A). 3 fold increases in gene
expression of N-cadherin were also observed (B). Additional samples were extracted for western blot analysis (C). Elevated levels of both connexin 43
and N-cadherin were observed at 2, 3, 5 and 7 days post seeding. * denotes significant difference between EMD treated sample and respective
control sample (p,0.05). Data shown is the average value from 3 independent experiments (3 replicates per experiment) 6 SE.
doi:10.1371/journal.pone.0023375.g003
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development of skeletal and other mesenchymal tissues. Condensa-

tion is the result of an active movement of previously dispersed cells

that cluster together, differentiate and start to build tissues such as

cartilage, bone, muscle, tendon, kidney and lung [7].

In this study, the formation of early cell clusters significantly

increased cell-cell contact proteins cx43 and N-cad. In previous

studies, the upregulation of N-cad mRNA levels has consistently

been associated with early nodule formation and mineralization

Figure 4. EMD increases alkaline phosphatase activity in osteoblast clusters. At time points 1, 3, 5, 7 and 10 days, osteoblasts were fixed
and stained for alkaline phosphatase. A) EMD significantly increased alkaline phosphatase activity in clustered regions 5 days post seeding. After 10
days, complete staining was observed on samples coated with EMD when compared to control samples. (bar = 1000 mm) B) 10 fields of view per
sample were captured and percentage area of staining calculated. Data represent means 6 SE (results from 3 independent experiments). Significant
increases in alkaline phosphatase activity were observed on EMD treated samples at 5, 7 and 10 days post seeding. C) mRNA was extracted and
realtime PCR was performed using specific primers for alkaline phosphatase. Samples pre-coated with EMD showed significant mRNA levels 3, 5 and 7
days post seeding when compared to control groups (p,0.05). Data represent means 6 SE (results from 3 independent experiments).
doi:10.1371/journal.pone.0023375.g004
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Figure 5. EMD increases extracellular matrix deposition of osteocalcin and osteoblast differentiation markers. At 5 and 14 days post
seeding, human primary osteoblasts were labeled with specific antibodies to osteocalcin. Osteoblasts seeded on EMD-coated samples
secreted higher levels of osteocalcin into the extracellular matrix when compared to control samples at 5 and 14 days (A) (bar = 200 mm).
EMD-coated samples also increased mRNA levels of osteoblast differentiation markers (B–E). After 3, 5, 7, 10 and 14 days post seeding, mRNA
was extracted and realtime PCR was performed using specific primers for Runx2, COL1A1, osteocalcin and bone sialoprotein. Levels of Runx2
were not significantly altered between EMD-coated and control samples (B). When samples were pre-coated with EMD, up to 3 fold increases
in gene expression were observed for C) COL1A1, D) osteocalcin and E) bone sialoprotein (p,0.05). * denotes significant difference between
EMD treated sample and respective control sample. Data shown is the average value from 3 independent experiments (3 replicates per
experiment) 6 SE.
doi:10.1371/journal.pone.0023375.g005
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suggesting a role in bone formation [47,48]. This phenomenon

likely pertains to the signaling complexes associated with

cadherins. Type 1 cadherins play an essential role in the structural

organization and function of cells by linking cadherins through a-

and b-catenin to the actin cytoskeleton [4,49,50]. N-cad also

activates Wnt signaling which has been the focus of major

investigation in recent years for osteoblast differentiation [5,51].

An interesting observation in this study was the upregulation of

the gap junction protein cx43 at similar time points as N-cad. The

role of gap junctions in cell differentiation has also been

extensively studied. In a variety of cell culture systems, cx43

induced osteoblast differentiation and mineralization [12,14,15,

52]. Interestingly, connexins retain an extremely short half-life of a

few hours probably to respond to physiological requirements [21].

In this study, we found a quick increase in cx43 and N-cad

expression as early as 24 hours post seeding on EMD-coated

samples. Cx43 expression was maintained for up to 14 days.

However, increases seemed to precede the expression of osteoblast

differentiation markers such as ALP, OC and matrix mineraliza-

tion. Gap junctional intercellular signaling could certainly explain

Figure 6. EMD significantly increases mineral deposition as assessed through von Kossa staining. At time points 5, 7, 10 and 14 days,
primary human osteoblasts were fixed and stained with silver nitrate to determine patterns of mineralization. A) EMD significantly increased
mineralization in clustered regions 5 days post seeding. At 10 and 14 days post seeding, areas of mineralization for EMD-coated samples were
enlarged when compared to control samples (A) (bar = 1000 mm). 10 fields of view per sample were captured and percentage area of staining was
quantified (B). At all time points, EMD significantly increased von Kossa staining. Furthermore, significant increases in nodule size were also observed
at all time points (C). Data represent means 6 SE (results from 3 independent experiments).
doi:10.1371/journal.pone.0023375.g006
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these observations. Molecules transported through gap junctions,

such as cAMP are known to play critical roles in the regulation of

OC [53] and BSP gene expression [54] in osteoblasts. Further-

more, intracellular calcium fluctuations signal the activation of

genes in different cell types [55]. There exist many examples on

the dependence of cell coupling for the normal function of highly

differentiated tissues is not exclusive to bone. Restoration of gap

junctional communication in thyroid cells increases thyroglobulin

expression [56]. Steroidogenic response of bovine and human

adrenal fasciculo-reticularis cells to corticotrophin was dependent

on junctional intercellular communication [57] and muscle cell

contraction in response to alpha1-adrenergic stimulation was

dependent on cell coupling [58]. Results from the present study

further support the view that gap junctional communication is

important for cell differentiation.

The ability for osteoblasts to respond to biomaterials such as

EMD shows further promise for tissue engineering applications in

periodontal and alveolar defects. An interesting aspect which

remains unsolved is the ability for EMD to promote cell cluster

formation. The possibility exists that EMD may contain

chemokinetic proteins or may stimulate cells to produce

chemotactic factors that attract other cells. In this regard, EMD

is thought to contain bone morphogenetic proteins (BMPs) [59,60]

and transforming growth factor b [61,62]. BMPs have been the

focus of intense investigation for clinical application and studies

have demonstrated a role for BMPs in the formation of many

organs and patterning of the skeleton by inducing the formation of

mesenchymal condensations [63,64].

In the present study, it was observed that Runx2 mRNA levels

remained unchanged. Other authors have also investigated the

influence of EMD on gene expression of Runx2 and have not

observed any significant differences [40,42,43,45]. It has previ-

ously been reported by Komori et al. that Runx2 is necessary for

early osteoblast differentiation however at later time points,

inhibits immature osteoblasts from differentiating into mature

osteoblasts and osteocytes [65]. Given that the primary cells

isolated in the present study were isolated from alveolar bone, it is

likely that these cells were comprised primary of pre-osteoblasts

and/or osteoblasts which had already differentiated past the

mesenchymal stem cell phenotype and no longer require Runx2

gene expression.

More recent research has focused on the roles of different

proteins found in EMD. Mumulidu et al. used high performance

liquid chromatography to fractionate EMD into three major

components: a 20 kDa, 12+9 kDa and 5 kDa fractions [66].

Amelogenin (20 kDa), the major component in EMD is an

adhesion molecule that was initially thought to be responsible for

the effects observed in EMD [67]. Further analysis has revealed

that the 5 kDa component of EMD also contains many bioactive

molecules [66]. More recently, Johnson et al. observed that each of

the 3 fractions stimulates different cellular mechanisms [68]. These

findings suggested roles for multiple proteins in the attachment,

proliferation and differentiation of osteoblasts by EMD.

To clarify the roles of individual proteins on cellular mecha-

nisms, the use of recombinant EMPs have been studied. Amelo-

genin, the main component of EMD, increases cell adhesion [67],

proliferation [69] and differentiation [70,71]. It also binds to

heparan sulfate and BMP2 [72] and uses the b-catenin and Wnt

pathways [73]. Recent research with recombinant ameloblastin, a

second protein found in EMD, concluded that not only

amelogenin has growth factor-like activity [74,75]. Still, the

combination of proteins and growth factors present in EMD seems

to improve the in vitro outcomes over individual recombinant

proteins.

In conclusion, the observations from this study indicate that

upregulation of cell-cell contact proteins at early stages in

osteoblasts seeded on EMD-coated samples might be a mechanism

for accelerating bone formation. Gap junctional intercellular

communication constitutes a fundamental mechanism of differen-

tiated cells and communication through channels which directs the

control and regulation of gene expression and provides a means to

respond cooperatively to a stimulus. Furthermore, the clinical

evidence of EMD supports the hypothesis that gap junctional

communication provides a means for a group of fully differentiated

cells to perform a function coordinately not only in bone, but also

in other tissues.
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