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Abstract

Motivation: Biomedical machine reading comprehension (biomedical-MRC) aims to comprehend complex biomedical
narratives and assist healthcare professionals in retrieving information from them. The high performance of modern
neural network-based MRC systems depends on high-quality, large-scale, human-annotated training datasets. In the bio-
medical domain, a crucial challenge in creating such datasets is the requirement for domain knowledge, inducing the
scarcity of labeled data and the need for transfer learning from the labeled general-purpose (source) domain to the bio-
medical (target) domain. However, there is a discrepancy in marginal distributions between the general-purpose and bio-
medical domains due to the variances in topics. Therefore, direct-transferring of learned representations from a model
trained on a general-purpose domain to the biomedical domain can hurt the model’s performance.

Results: We present an adversarial learning-based domain adaptation framework for the biomedical machine read-
ing comprehension task (BioADAPT-MRC), a neural network-based method to address the discrepancies in the mar-
ginal distributions between the general and biomedical domain datasets. BioADAPT-MRC relaxes the need for gen-
erating pseudo labels for training a well-performing biomedical-MRC model. We extensively evaluate the
performance of BioADAPT-MRC by comparing it with the best existing methods on three widely used benchmark
biomedical-MRC datasets—BioASQ-7b, BioASQ-8b and BioASQ-9b. Our results suggest that without using any syn-
thetic or human-annotated data from the biomedical domain, BioADAPT-MRC can achieve state-of-the-art perform-
ance on these datasets.

Availability and implementation: BioADAPT-MRC is freely available as an open-source project at https://github.com/
mmahbub/BioADAPT-MRC.

Contact: mmahbub@vols.utk.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

During the consultation phase of primary patient care, for every two patients,

healthcare professionals raise at least one question (Del Fiol et al., 2014).

Even though they can successfully find answers to 78% of the pursued ques-

tions, they never pursue half of their questions because of time constraints

and the suspicion that helpful answers do not exist, notwithstanding the avail-

ability of ample evidence (Bastian et al., 2010; Del Fiol et al., 2014).

Additionally, searching existing resources for reliable, relevant and high-quality

information poses an inconvenience for the clinicians on account of time limita-

tion. This phenomenon elicits the dependency on general-information electronic
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resources that are simple to use, such as Google (Hider et al., 2009). Apart

from the healthcare professionals, there is also a growing public interest in

learning about their medical conditions online (Fox and Duggan, 2013).

Nevertheless, the criteria for ranking search results by general-purpose search

engines does not conform directly to the fundamentals of evidence-based medi-

cine and thus lacks rigor, reliability and quality (Hider et al., 2009).

While traditional information retrieval (IR) systems somewhat mitigate

this issue, it still requires 4 h for a healthcare-information professional to find

answers to queries related to complex biomedical resources (Russell-Rose and

Chamberlain, 2017). Compared to the IR systems that usually provide the

users (general population or healthcare professionals) a group of documents

to interpret and find the exact answers, biomedical machine reading compre-

hension (biomedical-MRC) systems can provide exact answers to user inqui-

ries, saving both time and effort.

Machine reading comprehension (MRC) is a challenging task in natural

language processing (NLP), aiming to teach and evaluate the machines to

understand user-defined questions, read and comprehend input contexts

(namely, context) and return answers from them. The datasets in the MRC

task consist of context–question–answer triplets where the question–answer

pairs are considered labels. With the development and availability of efficient

computing hardware resources, researchers have developed several state-of-

the-art (SOTA) neural network-based (NN-based) MRC systems capable of

achieving analogous or superior to human-level performance on several

benchmark MRC datasets (Devlin et al., 2019; Joshi et al., 2017; Rajpurkar

et al., 2016). However, this achievement is highly dependent on a large

amount of high-quality human-annotated datasets that are used to train these

systems (Rajpurkar et al., 2016). For domain-specific MRC tasks, especially

biomedical-MRC, building a high-quality labeled dataset, specifically, the

question–answer pairs residing in the dataset requires undeniable effort and

knowledge of subject matter experts. This requirement leads to smaller

biomedical-MRC datasets and, consequently, unreliably poor performance

on the MRC task itself (Pergola et al., 2021). Hence, developing an approach

that can effectively leverage unlabeled or small-scale labeled datasets in train-

ing the biomedical-MRC model is crucial for improving performance.

Researchers have addressed this issue by using transfer learning, a learn-

ing process to transfer knowledge from a source domain to a target domain

(Pan and Yang, 2010). In domain-specific MRC problems, such as

biomedical-MRC, the source domain is usually a general-purpose domain

where a large-scale human-annotated MRC dataset is available. The target

domain, in this case, is the biomedical domain. In this work, we focus on

transferring the knowledge from an MRC model trained on a labeled general-

purpose-domain dataset to the biomedical domain where only unlabeled con-

texts are available. Unlabeled contexts refer to only contexts in the MRC

dataset with no question–answer pairs.

Often, directly transferring the knowledge representations (learned by an

MRC model) from the source to the target domain can hurt the performance

of the model because of the distributional discrepancies between the data seen

at train and test time (Ganin and Lempitsky, 2015). Domain adaptation, a

sub-setting of transfer learning (Pan and Yang, 2010), aims at mitigating these

discrepancies through simultaneous generation of feature representations that

are discriminative from the viewpoint of the MRC task in the source domain

and indiscriminative from the perspective of the shift in the marginal distribu-

tions between the source and target domains (Ganin and Lempitsky, 2015).

We propose Adversarial learning-based Domain adAPTation framework

for Biomedical Machine Reading Comprehension (BioADAPT-MRC), a new

framework that uses adversarial learning to generate domain-invariant fea-

ture representations for better domain adaptation in biomedical-MRC mod-

els. In an adversarial learning framework, we train two adversaries (feature

generator and discriminator) alternately or jointly against one another to gen-

erate domain-invariant features. Domain-invariant features imply that the

feature representations extracted from the source- and the target-domain sam-

ples are closer in the embedding space.

While other recent domain adaptation approaches for the MRC task

focus on generating pseudo question–answer pairs to augment the training

data (Golub et al., 2017; Wang et al., 2019), we utilize only the unlabeled

contexts from the target domain. This property makes our framework more

suitable in cases where not only human-annotated dataset is scarce but also

the generation of synthetic question–answer pairs is computationally expen-

sive, and needs further validation from domain-experts (due to the sensitivity

to the correctness of the domain knowledge).

We validate our proposed framework on three widely used benchmark

datasets from the cornerstone challenge on biomedical question answering

and semantic indexing, BioASQ (Tsatsaronis et al., 2015), using their recom-

mended evaluation metrics. We empirically demonstrate that with the pres-

ence of no labeled data from the biomedical domain—synthetic or human-

annotated—our framework can achieve SOTA performance on these datasets.

We further evaluate the domain adaptation capability of our framework by

using clustering and dimensionality reduction techniques. Additionally, we

extend our framework to a semi-supervised setting and use varying ratios of

labeled target-domain data for evaluation. Last but not least, we perform a

thorough error analysis of our proposed framework to demonstrate its

strengths and weaknesses.

The primary contributions of the article are as follows: (i) we propose

BioADAPT-MRC, an adversarial learning-based domain adaptation frame-

work that incorporates a domain-similarity discriminator with an auxiliary

task layer and aims at reducing the domain shift between high-resource gen-

eral-purpose domain and low-resource biomedical domain. (ii) We leverage

the unlabeled contexts from the biomedical domain and thus relax the need

for synthetic or human-annotated labels for target-domain data. (iii) We fur-

ther extend the learning paradigm of BioADAPT-MRC to a semi-supervised

setting. We show that our framework can be successfully employed to im-

prove the performance of a pre-trained language model (PLM) in the presence

of varying ratios of labeled target-domain data. (iv) Through comprehensive

evaluations and analyses on several benchmark datasets, we demonstrate the

effectiveness of our proposed framework and its domain adaptation capabil-

ity for biomedical-MRC.

2 Background and related work

In this article, we focus on the biomedical-MRC task using the adversarial

learning-based domain adaptation technique. Thus, our work is in the conflu-

ence of two main research areas: biomedical-MRC and domain adaptation

using adversarial learning.

Biomedical-MRC. In the biomedical-MRC task, the goal is to extract an

answer span, given a user-defined question and a biomedical context. In NN-

based biomedical-MRC systems, the question–context pairs are converted

from discrete textual form to continuous high-dimensional vector form using

word-embedding algorithms, such as word2vec (Mikolov et al., 2013), GloVe

(Pennington et al., 2014), FastText (Bojanowski et al., 2017) and

Bidirectional Encoder Representations from Transformers (BERT) (Devlin

et al., 2019), etc. Among numerous architectural varieties of these NN-based

MRC systems, the transformer-based PLMs, such as BERT, are the current

SOTA (Gu et al., 2021). The original BERT model is pre-trained on general-

purpose English corpora. Considering the semantic and syntactic uniqueness

of the biomedical text, researchers have developed different variants of BERT

models for the biomedical domain that are pre-trained on several biomedical

corpora, such as PMC full articles, PubMed abstracts and MIMIC datasets.

Some examples of such PLMs are BioBERT (Lee et al., 2020), PubMedBERT

(Gu et al., 2021) and BioElectra (Raj Kanakarajan et al., 2021), which report-

edly outperform the original BERT model in various biomedical NLP tasks.

These PLMs are used as trainable encoding modules (encoders) in down-

stream biomedical NLP tasks, such as biomedical named entity recognition

(NER) (Naseem et al., 2021), clinical-note classification (Agnikula Kshatriya

et al., 2021), MRC (Jeong et al., 2020), etc. Usually, to accomplish the down-

stream tasks, such as biomedical-MRC by transferring the knowledge from

the PLMs, researchers add a few task-specific layers, commonly feed-forward

neural network layers, at the end of the encoders (Hosein et al., 2019; Jeong

et al., 2020; Lee et al., 2020).

Transfer learning. Transfer learning is an approach to transfer knowledge

representations acquired from a widely explored domain/task (source), to a

new or less explored domain/task (target) (Pan and Yang, 2010). Adopting

the notations provided by Pan and Yang (2010), a domain D consists of a fea-

ture space X (different from the feature representation learned by the net-

work) and a marginal distribution of the learning samples X 2 X , p(X). In

NLP, the marginal distributions are different when the languages are the same

but the topics are different in the source and target domains (Bashath et al.,

2022). Considering a label space Y, for a given domain D, a task T can be

described as ðY;Fð:ÞÞ, where Fð:Þ is a predictor function learned from the

training data ðX 2 X ;Y 2 YÞ.
Data scarcity in the target domain is often an impediment to the model’s

performance while training for a target task. Transfer learning tackles this
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issue by aiming to improve generalizability on a target task using acquired

knowledge from a source domain Ds, a target domain Dt along with their re-

spective associated tasks T s and T t . For this work, we use transductive trans-

fer learning, which uses labeled source domain, unlabeled target domain,

identical source and target tasks and different source and target domains.

Depending on the similarity in the feature spaces, there are two cases of trans-

ductive transfer learning: (i) different feature spaces for the source and target

domains, e.g. cross-lingual transfer learning and (ii) identical feature spaces,

but different marginal probability distributions for the source- and target-

domain samples, e.g. transfer learning between two domains with the same

language but different topics (Bashath et al., 2022). In this article, we use the

latter case of transductive transfer learning to train the biomedical-MRC sys-

tem, otherwise known as domain adaptation (Pan and Yang, 2010).

Domain adaptation. Domain adaptation aims at increasing the generaliz-

ability of machine learning models when posed with unlabeled or very few

labeled data from the target domain by generating domain-invariant represen-

tation (Glorot et al., 2011). One can enforce the learning of domain-invariant

features in machine learning models by implementing the adversarial learning

framework (Ganin and Lempitsky, 2015; Tzeng et al., 2017). In the adversar-

ial setting, usually, a domain discriminator is incorporated into the MRC

framework where besides performing the MRC task, the goal is to attempt at

fooling the discriminator by generating domain-invariant features (Wang

et al., 2019). Researchers have successfully applied domain adaptation in

many tasks, such as sentiment classification (Glorot et al., 2011), speech rec-

ognition (Sun et al., 2017), neural machine translation (Thompson et al.,

2019), NER (Vu et al., 2020) and image segmentation (Guan et al., 2021).

However, compared to these tasks, the application of domain adaptation to

the MRC task poses one additional challenge apart from missing answers—

the missing questions in the target domain. Over recent years, researchers

have proposed various methods to generate synthetic question–answer pairs

from unlabeled contexts. For example, Wang et al. (2019) used NER and Bi-

LSTM, Golub et al. (2017) used conditional probability, IOB tagger and Bi-

LSTM and Yue et al. (2021) used seq2seq model with an attention mechanism

to generate pseudo question–answer pairs. A multi-task learning approach

has also been used for domain adaptation in MRC tasks (Nishida et al.,

2020).

Among these works in MRC and domain adaptation, the AdaMRC

model proposed by Wang et al. (2019) focuses on learning domain-invariant

features in an adversarial setting as ours. However, the main differences be-

tween BioADAPT-MRC and AdaMRC are as follows: (i) while AdaMRC

uses synthetically generated question–answer pairs to augment the target-

domain dataset, BioADAPT-MRC directly uses the unlabeled contexts and

thus relaxes the need for synthetic question–answer pairs. In later sections, we

show that although synthetic questions can improve the performance of MRC

tasks for various target domains, such as Wikipedia, web search log and news

(Wang et al., 2019), they can hurt the performance of the MRC task for the

biomedical domain. (ii) While AdaMRC uses the binary classification loss,

BioADAPT-MRC uses triplet loss to minimize the domain shift between the

source and target domains. Unlike binary classification loss, triplet loss con-

siders both similarity and dissimilarity between two samples for gradient up-

date and is known to be successful in deep metric learning where the aim is to

map semantically similar instances closer in the embedding space and vice

versa (Chen et al., 2018b; Kaya and Bilge, 2019; Kim et al., 2018). Moreover,

triplet loss makes BioADAPT-MRC directly applicable to domain adaptation

among more than two domains. While multiple prior works in computer vi-

sion have successfully used triplet loss for domain adaptation in numerous

applications (Laiz et al., 2019; Wen et al., 2018), to the best of our know-

ledge, ours is the first in the application of the MRC task in NLP. (iii) To im-

prove performance and stabilize the training process in the adversarial

domain adaptation framework, BioADAPT-MRC uses an auxiliary task

layer, similar to AC-GAN (Odena et al., 2017).

3 Materials and methods

In this section, we discuss our adversarial learning-based domain adaptation

framework for the biomedical-MRC task.

3.1 Problem definition
Given an unlabeled target domain Dt and a labeled source domain Ds along

with their respective learning tasks T t and T s, we assume that T t ¼ T s and

Dt 6¼ Ds because of pðXt 2 XÞ 6¼ pðXs 2 XÞ, where pð:Þ is the marginal prob-

ability distribution, Xt and Xs are learning samples from the target and source

domains, respectively. Thus, while the tasks are identical, the domains are dif-

ferent due to different marginal probability distributions in their data.

In this work, Dt is the biomedical domain where only unlabeled biomed-

ical contexts are available, and Ds is the general-purpose domain where large-

scale labeled data are available. As mentioned in Section 2, despite having the

same language, differences in the topics between two domains cause the

domains to be different because of the dissimilarities in pð:Þ. In this work, we

consider that the general-purpose and the biomedical domains have different

topics. Thus, we assume that pðXtÞ 6¼ pðXsÞ.
The task for both domains is extractive MRC. Given a question Q ¼

fq1; q2; . . . ; qng and a context C ¼ fc1; c2; . . . ; cmg, extractive MRC predicts

the start and end positions astart and aend, respectively, of the answer span A ¼
fcigaend

astart in C such that there exists one and only one answer span consisting of

continuous tokens in the context. Here, qi denotes the ith token in the ques-

tion, ci denotes the ith token in the context and n, m, respectively, denote the

number of tokens in Q and C.

3.2 BioADAPT-MRC
Given the labeled and unlabeled inputs, respectively, from the source and tar-

get domains, our proposed framework BioADAPT-MRC aims at achieving

the following two objectives: (i) predicting the answer spans from the pro-

vided contexts and (ii) addressing the discrepancies in the marginal distribu-

tions between the inputs in the source and target domains by generating

domain-invariant features. Figure 1 demonstrates the three primary compo-

nents of the BioADAPT-MRC framework:

• Feature extractor accepts a text sequence and encodes it into a

high-dimensional continuous vector representation.
• MRC-module accepts the encoded representation from either the

source domain (training time) or the target domain (test time), then

predicts the start and end positions of the answer span A in C.
• Domain-similarity discriminator accepts the encoded representa-

tions from the source and target domains and learns to distinguish

between them.

3.2.1 Feature extractor

Given an input sample from either domain, the feature extractor MFð:Þ maps

it to a common feature space F:

fi ¼MFðXiÞ;Xi 2 Ds [ Dt : (1)

Here, fi is the extracted feature for the ith input sample Xi from either Ds or

Dt. We utilize the encoder of the PLM BioELECTRA (Raj Kanakarajan et al.,

2021) as the feature extractor. We choose BioELECTRA for the following

reason: while biomedical domain-specific BERT models, such as BioBERT,

SciBERT outperform the original BERT models in several biomedical NLP

tasks (Alsentzer et al., 2019), BioELECTRA has the best performance scores

on the Biomedical Language Understanding and Reasoning Benchmark (Gu

et al., 2021).

As mentioned in Section 2, the features in this task are trainable, high-

dimensional word embeddings extracted from the question–context pairs. To

generate these word embeddings, the BioELECTRA model utilizes the

transformer-based architecture from one of the BERT-variants, ELECTRA. The

ELECTRA model has 12 layers, 768 hidden size, 3072 feed-forward network

(FFN) inner hidden size and 12 attention heads per layer (Clark et al., 2020).

The pre-training corpora for BioELECTRA are 3.2 million PubMed Central full-

text articles and 22 million PubMed abstracts, and the pre-training task is the

replaced token prediction task. BioELECTRA has a vocabulary of size 30 522.

The maximum number of tokens per input can be 512, where the embedding di-

mension of each token is 768. For each pair, the final tokenized input of the

BioELECTRA model is f½CLS�;Q; ½SEP�;C; ½SEP�g. Here, Q and C are, respect-

ively, the tokens from the question and the context, ½CLS� is a special token that

can be considered to have an accumulated representation of the input sequence

(Devlin et al., 2019) and used for classification tasks, ½SEP� is another special

token that separates two consecutive sequences. Note that, since the samples in

the target domain are unlabeled, in place of the question tokens Q, we use a
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special token ½MASK� to maintain consistency in the structure of the tokenized

samples.

3.2.2 MRC-module

As the MRC-module MQð:Þ, we add a simple fully connected layer with hid-

den size H¼ 768 on top of the feature extractor MFð:Þ and use the softmax ac-

tivation function to generate probability distributions for start and end token

positions following Equation (2).

pstart
l ¼ expðW

start �hlÞ
Pnseq

k¼1 expWstart �hk
; pend

l ¼ expðW
end �hlÞ

Pnseq

k¼1 expWend �hk
: (2)

Here, pstart
l and pend

l are the probabilities of the lth token to be predicted as

start and end, respectively, hl 2 R
H is the hidden representation vector of the

lth token, Wstart 2 R
H and Wend 2 R

H are two trainable weight matrices, nseq

is the input sequence length. We use the cross-entropy loss LQ on the pre-

dicted answer positions as the objective function for the MQ. Since for each

answer span prediction, we get two predicted outputs for the start and end

positions, we average the total cross-entropy loss as shown in Equation (3).

LQ ¼ �
1

2
ðlogpstart

ystart þ logpend
yend Þ: (3)

Here, the golden answer’s start and end token positions are represented by

ystart and yend, respectively. During test phase, the predicted answer span is

selected based on the positions of the highest probabilities from pstart
k2½1;nseq � and

pend
k2½1;nseq �.

3.2.3 Domain-similarity discriminator

The domain-similarity discriminator Dð:Þ addresses the domain variance be-

tween two domains (caused by the discrepancies in the marginal probability

distributions), as follows: in the adversarial setting, Dð:Þ learns to distinguish

between the feature representations of the source- and target-domain samples

generated by the feature extractor. Dð:Þ then penalizes the feature extractor

for producing domain-variant feature representations and thus promotes the

generation of domain-invariant features. Dð:Þ uses cosine distance between

the feature representations of the input samples to distinguish between the

domains. We consider that two samples are closer in the embedding space

and thus have a greater chance to be in the same domain if their feature repre-

sentations have a smaller cosine distance between them and vice versa. The in-

put of Dð:Þ is a triplet ðf t
k; f

s
i ; f

s
j Þ, where f t

k; f s
i and f s

j are, respectively, the

feature representations of the kth sample Xt
k from the target domain and ith

sample Xs
i and jth sample Xs

j from the source domain extracted by MFð:Þ. The

triplet is then split into two distinct pairs, consisting of ðf s
i ; f

t
kÞ and ðf s

i ; f
s
j Þ. As

indicated in Figure 1, upon receiving each triplet, D accomplishes two tasks:

(i) measures the similarity between ðf s
i ; f

s
j Þ and dissimilarity between ðf s

i ; f
t
kÞ

and (ii) performs MRC task similar to MQ for the source sample Xs
i .

For the first task, we introduce a Siamese network (Bromley et al., 1993) De

with a single transformer encoder layer. De acts as a function that helps estimate

the similarity and dissimilarity between the received pairs. Considering the suc-

cess of the BERT models in many NLP tasks, for the Siamese network, we adopt

the same architecture as any encoder layer in the BERTBase model, which has 12

attention heads, 768 embedding dimensions, 3072 FFN inner hidden size with

10% dropout rate and ‘GeLU’ activation function. We encode the input pairs

ðf s
i ; f

t
kÞ and ðf s

i ; f
s
j Þ, using the same encoder network De. Considering the role of

the special token ½CLS� as explained in Section 3.2.1, to let Dð:Þ differentiate

whether the pairs are from the same domain or not, we extract the ½CLS� token

representations from De for f t
k; f

s
i ; and f s

j . We then use these ½CLS� token repre-

sentations to calculate the domain similarity and dissimilarity via triplet loss

function (Weinberger et al., 2005) and use it as the learning objective of the dis-

criminator Dð:Þ as shown in Equation (4).

LD;triplet ¼ maxfdðf s;½CLS�
i ; f

s;½CLS�
j Þ � dðf s;½CLS�

i ; f
t;½CLS�
k Þ þ a; 0g : (4)

Here, f
s;½CLS�
i ; f

s;½CLS�
j ; f

t;½CLS�
k are, respectively, the ½CLS� token representations

of ith and jth samples from the source domain and the kth sample from the

target domain where i 6¼ j; dð:Þ ¼ 1:0� CosSimð:Þ is the cosine distance

where CosSimð:Þ is the cosine similarity, a is the non-negative margin repre-

senting the minimum difference between dðf s;½CLS�
i ; f

s;½CLS�
j Þ and

dðf s;½CLS�
i ; f

t;½CLS�
k Þ that is required for the triplet loss to be zero. To optimize

Dð:Þ; LD;triplet aims at minimizing dð:Þ between the samples from the source

domain and maximizing dð:Þ between the samples from the source and target

domains. Using triplet loss, our discriminator efficiently employs both similar

and dissimilar information extracted by the feature extractor component of

the model.

While using triplet loss in the adversarial setting, we also consider that the

triplet loss might make representations from the source-domain dissimilar.

Therefore, as an additional experiment, we try optimizing the discriminator

by minimizing a distance-based loss, which is equivalent to just minimizing

the distance dð:Þ between the source- and the target-domain sample represen-

tations in the adversarial setting. We demonstrate the comparison between

these two approaches in Section 4.5.1.

Adversarial learning for domain adaptation is known to be unstable (Rios

et al., 2018; Wulfmeier et al., 2017). To stabilize the training process, we use

the concept of AC-GAN (Odena et al., 2017). AC-GAN uses an auxiliary task

layer on top of the discriminator and appears to stabilize the adversarial

learning procedure and improve the performance (Odena et al., 2017).

Following this concept, for the second task of Dð:Þ, we introduce an

MRC-module Dq similar to MQ on top of De as an auxiliary task layer. Dq

enforces that the discriminator does not lose task-specific information while

learning to encode domain-variant features. Later in Sections 4.4 and 4.5.2,

we demonstrate the effectiveness of the auxiliary layer by performing an abla-

tion study and a stability analysis. The input of Dq is the output of De for f s
i

and the output is the probability distributions for the start and end token posi-

tions of the answer span, similar to ðpstart
i ; pend

j Þ. Thus, the loss function LD;aux

Fig. 1. BioADAPT-MRC: an BioADAPT-MRC task. The framework has three main components: (i) feature extractor MF, (ii) MRC-module MQ and (iii) domain-similarity

discriminator D
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for Dq is the same as LQ. The final loss function LD for Dð:Þ is shown in

Equation (5).

LD ¼ LD;triplet þ LD;aux: (5)

3.2.4 Cost function

To eliminate domain shift by learning domain-invariant features, we integrate

MFð:Þ; MQð:Þ, and Dð:Þ into adversarial learning framework, where we up-

date MF and MQ to maximize LD and minimize LQ while updating D to min-

imize LD. Thus, the cost function Ltotal of the BioADAPT-MRC framework

consists of LQ and LD as shown in Equation (6) and is optimized end-to-end:

Ltotal ¼ LQ � kLD: (6)

Here, k is a regularization parameter to balance LQ and LD. Unlike the ori-

ginal adversarial learning framework proposed in GAN, where the adversa-

ries are updated alternately (Goodfellow et al., 2014), we perform joint

optimization for all three components of our model using the gradient-

reversal layer (Ganin and Lempitsky, 2015), as suggested by Chen et al.

(2018a).

4 Results and discussion

We perform an extensive study to evaluate the proposed framework and com-

pare with the SOTA biomedical-MRC methods on a collection of publicly avail-

able and widely used benchmark biomedical-MRC datasets.

4.1 Dataset
To demonstrate the effectiveness of our framework, we evaluate BioADAPT-

MRC and compare it with the SOTA methods on three biomedical-MRC

datasets from the BioASQ annual challenge (Tsatsaronis et al., 2015). The

BioASQ competition has been organized since 2013 and consists of two large-

scale biomedical NLP tasks, one of which is question answering (task B).

Among four types of questions in task B, the factoid questions resemble the

extractive biomedical-MRC task. As such, we utilize only the factoid MRC

data from the BioASQ challenges held in 2019 (BioASQ-7b), 2020 (BioASQ-

8b) and 2021 (BioASQ-9b) as the target-domain datasets to verify our model.

These datasets were created from the search engine for biomedical literature,

PubMed, with the help of domain-experts. Note that, for training, our frame-

work requires only unlabeled contexts in the target domain. As such, we only

consider the contexts in the BioASQ-7b, 8b and 9b training sets and disregard

the question–answer pairs. The details on the availability of the training data

and the pre-processing steps are provided in the Supplementary Section S1. At

test time, we use the golden enriched test sets—BioASQ-7b, 8b and 9b—from

the BioASQ challenges.

Similar to the previous studies (Jeong et al., 2020; Yoon et al., 2020), as

the source-domain dataset, we use SQuAD-1.1 (Rajpurkar et al., 2016),

which was developed from Wikipedia articles by crowd-workers. Table 1

shows the basic statistical information of all datasets used in the experiments.

As shown, the number of training data samples in the source domain is notice-

ably higher than that of the target domain. The details on experimental setup

and training configurations are provided in the Supplementary Section S2.

4.2 Metrics
For evaluation, we use three metrics used in the MRC task in the official

BioASQ challenge: strict accuracy (SAcc), lenient accuracy (LAcc) and mean

reciprocal rank (MRR). The BioASQ challenge requires the participant sys-

tems to predict the five best-matched answer spans extracted from the

context(s) in a decreasing order based on confidence score. In the test set, for

each question, the biomedical experts in the BioASQ team provided one gold-

en answer extracted from the context. Both golden answers and predicted an-

swer spans are used to calculate the SAcc, LAcc and MRR scores, as shown in

Equation (7). SAcc shows the models’ capability to find exact answer loca-

tion, LAcc determines the models’ understanding of predicted answers’ range

and MRR reflects the quality of the predicted answer spans (Tsatsaronis

et al., 2015):

SAcc ¼ c1

ntest
; LAcc ¼ c5

ntest
; MRR ¼ 1

ntest

Xntest

i¼1

1

rðiÞ : (7)

Here, c1 is the number of questions correctly answered by the predicted answer

span with the highest confidence score, c5 is the number of questions answered

correctly by any of the five predicted answer spans, ntest is the number of ques-

tions in the test set and r(i) is the rank of the golden answer among all five pre-

dicted answer spans for the ith question. If the golden answer does not belong to

the five predicted answer spans, we consider 1
rðiÞ ¼ 0. We implement these metrics

by leveraging the publicly available tools provided by the official BioASQ chal-

lenge at https://github.com/BioASQ/Evaluation-Measures.

4.3 Method comparison
We compare the test-time performance of BioADAPT-MRC on BioASQ-7b

and 8b with six best-performing models selected based on related published

articles: Google (Hosein et al., 2019), BioBERT (Yoon et al., 2020), UNCC

(Telukuntla et al., 2019), Umass (Kommaraju et al., 2020), KU-DMIS-2020

(Jeong et al., 2020) and BioQAExternalFeatures (Xu et al., 2021). For

BioASQ-9b, we pick the best-performing system Ir_sys2 from the BioASQ-9b

leaderboard (available at: http://participants-area.bioasq.org/results/9b/

phaseB/).

We also consider a hypothetical system that we would get for BioASQ-9b

if that system would achieve the highest SAcc, LAcc and MRR scores on the

leaderboard in all five batches of this test set. Note that, in reality, no individ-

ual system in the competition achieved the highest scores for all three metrics

in all the batches (see Supplementary Section S3 and Supplementary Table

S11 for details).

In addition to these models, we also compare the performance of

BioADAPT-MRC with AdaMRC (Wang et al., 2019), a SOTA domain adap-

tation method for the MRC task. We provide brief descriptions of these afore-

mentioned models in Supplementary Section S3.

4.4 Experimental results
Table 2 shows the comparison of BioADAPT-MRC with the SOTA

biomedical-MRC methods on BioASQ-7b, 8b and 9b. As shown, BioADAPT-

MRC improves on both LAcc and MRR when tested on all three BioASQ test

sets and achieves the best performance. We also notice that while our model

achieves the highest SAcc score for BioASQ-9b, it achieves the second-best

SAcc scores for BioASQ-7b and 8b. The higher SAcc and LAcc scores imply

that our model is able to correctly extract complete answers from the given

contexts more frequently than the previous methods. The higher MRR scores,

on the other hand, reflect our model’s ability to extract complete answers

with higher probability than the previous methods. In contrast to the previous

works, our method uses no label information (question–answer pairs) during

the training process and has still been able to achieve good performance,

implying the effectiveness of our proposed framework.

As explained in Section 3, in the framework, we propose a domain-

similarity discriminator with an auxiliary task layer that aims at promoting

the generation of domain-invariant features in the feature extractor and thus

improving the performance of the model. To show the effectiveness of the dis-

criminator and the auxiliary task layer, we perform an ablation study and re-

port the experimental results in Table 3. For a fair comparison, we perform

all experiments under the same hyper-parameter settings. The baseline model

shown in Table 3 consists of only the feature extractor and the MRC-module

and was trained on the labeled source-domain dataset, SQuAD. For the

remaining two models, we use the labeled SQuAD and the unlabeled BioASQ

training datasets simultaneously. The addition of the discriminator enables

the feature extractor in the baseline model to use the unlabeled BioASQ train-

ing datasets for generating domain-invariant feature representations. This is

achieved by using the dissimilarity measurements between the feature repre-

sentations of the SQuAD and BioASQ training data. As shown, after adding

Table 1. Statistics of the datasets used in the experiments

Dataset Training set Training set Target to source Test set

name (raw) (pre-processed) ratio in training set

SQuAD-1.1 87 599 87 599 — —

BioASQ-7b 779 5537 �1:16 162

BioASQ-8b 941 10 147 �1:9 151

BioASQ-9b 1092 13 178 �1:7 163
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only the discriminator without the auxiliary task layer, the performance of

the model improves from the baseline, suggesting the influence of the discrim-

inator. We explain this influence on the feature extractor more elaborately

later in Section 4.5.6. For the final experiment in the ablation study (Table 3),

we use our whole model consisting of the domain-similarity discriminator

with the auxiliary task layer and notice an even further performance improve-

ment. The auxiliary task layer, in this study, constrains the changes in the

task-relevant features in the domain-similarity discriminator during training.

Thus, the improvement in model performance after incorporating the auxil-

iary task layer suggests that with the task layer, the domain-similarity discrim-

inator can better promote the generation of domain-invariant features that

are simultaneously discriminative from the viewpoint of the MRC task in the

source domain. Moreover, as explained in Section 3.2.3, we further demon-

strate the stabilizing capability of the auxiliary task layer in Section 4.5.2.

4.5 Analysis
In this section, we analyze different components of the proposed framework.

We also study the domain adaptation capability and the strengths and weak-

nesses of the BioADAPT-MRC model.

4.5.1 Triplet versus distance-based loss

BioADPT-MRC uses triplet loss to optimize the discriminator. As explained

in Section 3.2.3, we also consider using distance-based loss in place of triplet

loss.

Table 4 shows the results of the contrastive experiments of loss func-

tions—triplet loss and distance-based loss. As shown in Table 4, the model

with triplet loss outperforms the one with the distance-based loss with higher

mean SAcc, LAcc, MRR and lower standard deviation.

To further analyze this performance gap, we examine the trend of dis-

tance between source-domain training sample pairs and between source- and

target-domain training sample pairs per epoch across 50 training epochs

(Fig. 2).

Note that both experiments in Figure 2 are performed under the same

seed. As shown in Figure 2, when we use distance-based loss, the cosine dis-

tance between either source-domain training sample pairs or source- and

target-domain training sample pairs tends to be higher than when we use the

triplet loss. It may happen because in the adversarial framework, while

distance-based loss focuses only on minimizing the distance between the

source- and target-domain training samples without considering the distance

between the source samples, triplet loss focuses on balancing both (Chen

et al., 2017; Wang et al., 2017). As a result, triplet loss can minimize the do-

main shift to a greater extent than the distance-based loss and thus enable our

framework to achieve higher performance.

Table 2. Performance of BioADAPT-MRC compared with the best scores on BioASQ-7b, BioASQ-8b and BioASQ-9b test sets

Model BioASQ-7b BioASQ-8b BioASQ-9b

SAcc LAcc MRR SAcc LAcc MRR SAcc LAcc MRR

Google (Hosein et al., 2019) 0.4201 0.5822 0.4798 — — — — — —

BioBERT (Yoon et al., 2020) 0.4367 0.6274 0.5115 — — — — — —

UNCC (Telukuntla et al., 2019) 0.3554 0.4922 0.4063 — — — — — —

Umass (Kommaraju et al., 2020) — — — 0.3133 0.4798 0.3780 — — —

KU-DMIS-2020 (Jeong et al., 2020) 0.4510 0.6245 0.5163 0.3819 0.5719 0.4593 — — —

BioQAExternalFeatures (Xu et al., 2021)* 0.4444 0.6419 0.5165 0.3937 0.6098 0.4688 — — —

BioASQ-9b Challenge—Best system (Ir_sys2) — — — — — — 0.5031 0.6626 0.5667

BioASQ-9b Challenge—Hypothetical system — — — — — — 0.5399 0.7300 0.6017

AdaMRC (Wang et al., 2019) 0.4321 0.6235 0.5136 0.3510 0.5828 0.4455 0.5337 0.7117 0.6001

BioADAPT-MRC 0.4506 0.6420 0.5289 0.3841 0.6225 0.4749 0.5399 0.7423 0.6187

Note: The best and the second-best scores are respectively highlighted in bold and italic.

‘—’ indicates that the corresponding source did not report the scores. *denotes previously best-performing method for BioASQ-7B and BioASQ-8B.

Table 3. Test scores for ablation experiments of BioADAPT-MRC

Model BioASQ-7b BioASQ-8b BioASQ-9b

SAcc LAcc MRR SAcc LAcc MRR SAcc LAcc MRR

Baseline 0.4136 0.6296 0.5056 0.3642 0.5960 0.4602 0.5092 0.7362 0.6010

BioADAPT-MRC (no auxiliary layer) 0.4259 0.6296 0.5146 0.3775 0.6026 0.4679 0.5276 0.7485 0.6142

BioADAPT-MRC 0.4506 0.6420 0.5289 0.3841 0.6225 0.4749 0.5399 0.7423 0.6187

Note: The best and the second-best scores are respectively highlighted in bold and italic.

Table 4. Average test scores with standard deviations (across three

different seeds) for the contrastive experiments of discriminator

loss functions—triplet loss and distance-based loss

Discriminator

loss

BioASQ-9b

SAcc LAcc MRR

Distance-based 0.5256 6 0.0202 0.7219 6 0.0104 0.6038 6 0.0105

Triplet 0.5358 6 0.0029 0.7321 6 0.0077 0.6140 6 0.0035

Note: The best scores are highlighted in bold.

Fig. 2. Per-epoch cosine distance between source-domain training sample pairs and

source- and target-domain training sample pairs across 50 epochs
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4.5.2 Stability analysis

We examine the stability of BioADAPT-MRC and perform an error analysis

of its performance by repeating the experiments for three different random

seeds (10, 42 and 2018). Table 5 shows the test scores averaged across three

seeds with standard deviations for BioASQ-7b, 8b and 9b. We also report the

average scores with standard deviations for our baseline, the BioADAPT-

MRC model with no auxiliary layer, and a SOTA method AdaMRC to com-

pare model stability. As shown in Table 5, BioADAPT-MRC outperforms the

other models with lower standard deviations, indicating higher stability of

our framework. Moreover, the scores from the BioADAPT-MRC models with

and without the auxiliary layer indicate that the auxiliary task layer helps in-

crease both performance and overall model stability.

4.5.3 Masked versus synthetic questions

Recall that, BioADAPT-MRC uses a special token ½MASK� in place of the

question tokens Q for the unlabeled target-domain training samples. The

½MASK� tokens are used to inform the encoder model that the question tokens

are missing and maintain consistency in the structure of the tokenized sam-

ples. Another approach to address the issue of missing questions in the target-

domain training samples is to use synthetic questions (Wang et al., 2019). In

Table 6, we present the results of the contrastive experiments of these two

approaches—masked and synthetic questions. Inspired by the success of the

AdaMRC question-generator in various target domains, such as news,

Wikipedia and web search log, we use it to generate the synthetic questions.

Table 6 shows the average test scores for BioASQ-9b with standard devia-

tions across three seeds. We find that although the synthetic questions can

noticeably improve performance over the baseline (see results for ‘Baseline’ in

Table 5), BioADAPT-MRC with synthetic questions is unable to achieve bet-

ter performance than with masked questions. It may happen because the bio-

medical domain differs from other domains, such as news or Wikipedia, in

many linguistic dimensions, such as syntax, lexicon and semantics (Lee et al.,

2020; Verspoor et al., 2009). As a result, while the question-generator can

generate meaningful questions for domains, such as web, news and movie

reviews (Wang et al., 2019), it mostly generates incoherent questions for the

biomedical domain (as shown in Supplementary Fig. S4), which can eventual-

ly hurt the performance of the model. Moreover, synthetic-question gener-

ation also requires additional computational time—generating questions from

around 10 000 contexts using a trained question-generator took �3 h with

our computational resources (see configurations in Supplementary Section

S2). Given the findings, we think that generating synthetic questions for the

biomedical domain requires more attention and consider it as a future study.

4.5.4 Semi-supervised setting

As an additional experiment, we evaluate the BioADAPT-MRC framework

under a semi-supervised setting, where we combine labeled and unlabeled

target-domain training data. We perform four experiments where the ratios

of labeled target-domain training samples are 0%, 10%, 50% and 80% of

the total target-domain training data. Note that we choose the labeled target-

domain data by random sampling. Supplementary Table S5 shows the test

scores on BioASQ-9b when trained with varying ratios of labeled target-

domain data. As shown, with increased ratio of labeled samples in the target-

domain training data, the performance scores also increase, which is

expected. These results suggest that our proposed framework is also effective

in a semi-supervised setting.

Note that although multiple labeled datasets in various sub-domains of

biomedical-MRC (such as scientific literature and clinical notes) have been

made available in the past few years (Pampari et al., 2018; Tsatsaronis et al.,

2015), there is still a severe scarcity of labeled data in some other sub-

domains that are linguistically different (e.g. consumer health biomedical-

MRC) (Jin et al., 2023; Nguyen, 2019).

4.5.5 Results on emrQA

We further validate our framework on another type of biomedical-MRC data-

set, emrQA (Pampari et al., 2018), built using unstructured textual electronic

health records (EHRs) with questions reflecting the inquiries made by clini-

cians about patients’ EHRs. The dataset contains five subsets, three of which

Table 5. Average test scores with standard deviations across experiments with three random seeds (10, 42 and 2018) for initialization, to

measure and compare the stability of BioADAPT-MRC

Model BioASQ-7b

SAcc LAcc MRR

AdaMRC 0.4300 6 0.0029 0.6152 6 0.0116 0.5083 6 0.0076

Baseline 0.4156 6 0.0127 0.6173 6 0.0101 0.5038 6 0.0033

BioADAPT-MRC (no auxiliary layer) 0.4177 6 0.0058 0.6193 6 0.0105 0.5038 6 0.0076

BioADAPT-MRC 0.4465 6 0.0029 0.6379 6 0.0029 0.5237 6 0.0037

Model BioASQ-8b

SAcc LAcc MRR

AdaMRC 0.3422 6 0.0083 0.5960 6 0.0143 0.4425 6 0.0031

Baseline 0.3554 6 0.0125 0.5960 6 0.0162 0.4547 6 0.0152

BioADAPT-MRC (no auxiliary layer) 0.3664 6 0.0113 0.5982 6 0.0031 0.4618 6 0.0080

BioADAPT-MRC 0.3797 6 0.0031 0.6137 6 0.0083 0.4750 6 0.0024

Model BioASQ-9b

SAcc LAcc MRR

AdaMRC 0.5276 6 0.0050 0.7239 6 0.0100 0.6068 6 0.0062

Baseline 0.5174 6 0.0058 0.7198 6 0.0126 0.6018 6 0.0011

BioADAPT-MRC (no auxiliary layer) 0.5337 6 0.0050 0.7280 6 0.0153 0.6127 6 0.0012

BioADAPT-MRC 0.5358 6 0.0029 0.7321 6 0.0077 0.6140 6 0.0035

Note: The best and the second-best scores are respectively highlighted in bold and italic.

Table 6. Average test scores with standard deviations (across three

different seeds) for experiments using synthetic questions and

masked questions in the target-domain training dataset

Questions BioASQ-9b

SAcc LAcc MRR

Synthetic 0.5337 6 0.0087 0.7198 6 0.0126 0.6069 6 0.0059

Masked 0.5358 6 0.0029 0.7321 6 0.0077 0.6140 6 0.0035

Note: The best and the second-best scores are respectively highlighted in

bold and italic.
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are extractive MRC datasets—heart disease risk, relations and medications.

For our experiments, we use the heart disease risk dataset as the target-

domain dataset. We randomly sample 10% of the dataset as the test set. To

measure the performance, we use the widely used metrics for the extractive

MRC task: Exact Match (EM) and F1-score (Baradaran et al., 2020). We

compare the test scores with our baseline and the AdaMRC model.

Supplementary Table S6 shows that BioADAPT-MRC improves the perform-

ance scores over baseline (9.67% in EM and 10.86% in F1) and AdaMRC

(2.08% in EM and 2.16% in F1). This experiment validates that BioADAPT-

MRC can be applied to different types of biomedical-MRC datasets.

We want to emphasize the fact that researchers have identified the un-

structured clinical notes as inherently noisy and long with long-term textual

dependencies (Cohen et al., 2013; Mahbub et al., 2022; Pampari et al., 2018).

We suspect that these phenomena may lead to an overall low EM and F1

score (Joshi et al., 2017). Hence, we think that achieving higher scores in an

MRC task on EHRs requires additional and rigorous data pre-processing and

leave it as a future work.

4.5.6 Domain adaptation

We show the influence of the domain-similarity discriminator by plotting

(Supplementary Fig. S7) all samples from the BioASQ-9b test set and a set of

random samples from the SQuAD training set. We pick random samples from

the SQuAD training set to match the number of samples in the BioASQ-9b

test set. As explained in Section 3.2.1, we use the feature representation of the

½CLS� token as an accumulated representation of the whole input sequence.

Each feature representation of the ½CLS� token has a dimension of 768. To re-

duce these dimensions into two for visualization, we use multidimensional

scaling (MDS) (Kruskal, 1964). We use MDS because it reduces the dimen-

sions by preserving the dissimilarities between two data points in the original

high-dimensional space. Since we use cosine distance in the discriminator to

measure the dissimilarity between two domains, as the dissimilarity measure

in the MDS, we use the pairwise cosine distance. The feature representations

of the ½CLS� token on the left plot and the right plot in Supplementary Figure

S7 are generated by the feature extractors from the baseline model and the

BioADAPT-MRC model, respectively. For a fair comparison, the selection of

random SQuAD training samples is the same for the baseline and BioADAPT-

MRC models. As shown, the features generated by the baseline model create

two separate clusters for SQuAD and BioASQ-9b. The features generated by

the BioADAPT-MRC model, on the other hand, form two overlapping clus-

ters implying the reduced dissimilarities between the source and target

domains. Interestingly, we notice that the data points from the BioASQ are

closer to its cluster than those from the SQuAD. It may be because, unlike

SQuAD, the data in the BioASQ originate from one single domain, and thus

the feature representations are more similar to one another.

To further analyze the quality of the clusters before and after introducing

the domain-similarity discriminator to the framework and thus to quantify

the effect of domain adaptation, we perform DBSCAN clustering (Ester et al.,

1996). We perform clustering on the MDS components of the features for the

½CLS� tokens for the samples in the BioASQ test sets and the random samples

from the SQuAD training set. Considering the bias of random sampling, for

each BioASQ test set, we select five sets of random samples from the SQuAD

training set and report the mean accuracy and silhouette scores with standard

deviation in Supplementary Table S9 and Figure 3. We use the DBSCAN clus-

tering because it views clusters as high-density regions where the distance be-

tween the samples is measured by a distance metric, providing flexibility in

shapes and numbers of clusters. We describe the selected hyperparameters for

the DBSCAN algorithm implementation in Supplementary Section S8.

Supplementary Table S9 and Figure 3 show that DBSCAN can identify

two clusters with high accuracy when the features of the samples are extracted

from the baseline model. The accuracy goes down when the features of the

same samples are extracted from the BioADAPT-MRC model as they form a

single cluster. Moreover, we analyze the silhouette scores to understand the

separation distance between clusters. The range of silhouette score is ½�1; 1�.
A score of one indicates that the clusters are highly dense and clearly distin-

guishable from each other whereas �1 refers to incorrect clustering. A score

of zero or near zero indicates indistinguishable or overlapping clusters. As

shown in Supplementary Table S9 and Figure 3, in this case, the high silhou-

ette scores (closer to one) for the baseline model reflect that the feature repre-

sentations of the samples from the same domain are very similar to its own

cluster compared to the other one. On contrary, the low silhouette scores

(closer to zero) for the BioADAPT-MRC model indicate that the feature

representations of the samples from both domains are very similar to one an-

other. These results show the effectiveness of the domain-similarity discrimin-

ator in the BioADAPT-MRC framework. Considering the variability of the

predicted answers in an MRC task, we present a motivating example to dem-

onstrate how the word importance may impact the answer predictions and

thus the performance of the biomedical-MRC task (see Supplementary

Section S10). The example shows the effectiveness of BioADAPT-MRC over

the baseline model for the given sample.

4.5.7 Error analysis

We analyze the strengths and weaknesses of our approach by performing 2-

fold error analysis. We focus on two aspects of the MRC dataset—types of

questions and answers. Through this error analysis, we aim to answer the fol-

lowing questions: (i) what types of questions can be answered after domain

adaptation that could not be answered before? (ii) What types of answers can

be identified by the proposed approach after domain adaptation? (iii) What

Fig. 3. Mean accuracy scores (left) and mean silhouette scores (right) with standard

deviations for DBSCAN clustering on BioASQ test sets and SQuAD

Fig. 4. Error analysis of BioADAPT-MRC, in comparison with the baseline model,

depending on the types of questions in the BioASQ test sets

Fig. 5. Error analysis of BioADAPT-MRC, in comparison with the baseline model,

depending on the types of answers in the BioASQ test sets
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types of items does the model struggle with, even with the domain adaptation

component?

We use the SAcc score to perform the error analysis since the ultimate

goal for any MRC system is to predict correct answer spans with the highest

probability, reflected in the SAcc score. We categorize the test sets based on

the following types of questions: which, what, how, where, when and name

(an example question for name –‘Name a CFL2 mutation which is associated

with nemaline myopathy?’). We find that the most prevalent question types in

the test sets are what (43%) and which (44%) (embedded in Fig. 4). We also

find that after adding the domain adaptation module, the SAcc score increases

by 52%, 20%, 17% and 4% for question types—when, name, what and

which, respectively (Fig. 4). It indicates that the domain adaptation module

can help increase the model’s capability to answer these types of questions

with higher probability. For question types how and where, we do not notice

further improvement, even with the domain adaptation module.

To analyze the types of answers that can be identified after introducing

the domain adaptation module, we categorize the test sets based on the named

entities in the answers. We use NER algorithms from the widely used spaCy

library (Honnibal and Montani, 2017).

Figure 5 shows that the answers in the test sets mainly consist of entities,

such as GENE (23%), DISEASE (18%), CHEMICAL (16%), CELL/

TISSUE (8%) and CARDINAL/DATE/PERCENT (7%). As shown in

Figure 5, after adding the domain adaptation module, the model has been

able to identify the CHEMICAL, CELL/TISSUE entities with the highest

SAcc scores (improvement by 13% from the baseline). We also notice an im-

provement in the SAcc scores for GENE and DISEASE entities. However, we

notice no improvement in the SAcc scores for CARDINAL/DATE/

PERCENT, PERSON, DNA/RNA, ORGANISM, ORGAN and PROTEIN

entities even after adding the domain adaptation module. Given the results,

we would like to emphasize that in both of the aforementioned analyses, for

some categories, we do not have a large enough sample set to draw a definite

conclusion about the effectiveness of the domain adaptation module and

hence requires further future investigation.

To provide further evidence about what the model learned, we present

eight example question–answer pairs demonstrating the strengths and weak-

nesses of the BioADAPT-MRC model over the baseline model (Fig. 6).

We randomly select two examples from each of the following four catego-

ries: (i) mispredicted by baseline, correctly predicted by BioADAPT-MRC, (ii)

incompletely predicted by baseline, correctly predicted by BioADAPT-MRC,

(iii) correctly predicted by both baseline and BioADAPT-MRC and (iv)

mispredicted by both baseline and BioADAPT-MRC. In Examples 1–8, the

answer spans respectively contain GENE, CARDINAL, DISEASE, CELL,

CHEMICAL, CARDINAL, ORGAN and DISEASE entities. As shown in

Examples 1–6, BioADAPT-MRC model can identify the answer span better

than the baseline model with higher probability score. However, the probabil-

ity scores (i.e. the prediction capability) can be further improved. Moreover,

Examples 7 and 8 provide additional motivation for future investigation of

the reason behind the misprediction of the model.

The results from the overall error analysis indicate that while the

BioADAPT-MRC model does well under various scenarios, there is still sig-

nificant room for potential improvement.

5 Conclusion

Biomedical-MRC is a crucial and emerging task in the biomedical domain

pertaining to NLP. Biomedical-MRC aims at perceiving complex contexts

from the biomedical domain and helping medical professionals to extract

information from them. Most MRC methods rely on a high volume of

human-annotated data for near or similar to human-level performance.

However, acquiring a labeled MRC dataset in the biomedical domain is ex-

pensive in terms of domain expertise, time and effort, creating the need for

transfer learning from a source domain to a target domain. Due to variance

between two domains, directly transferring an MRC model to the target

domain often negatively affects its performance. We propose a framework

for biomedical-MRC, BioADAPT-MRC, addressing the issue of domain

shift by using a domain adaptation technique in an adversarial learning set-

ting. We use a labeled MRC dataset from a general-purpose domain

(source domain) along with unlabeled contexts from the biomedical do-

main (target domain) as our training data. We introduce a domain-

similarity discriminator, aiming to reduce the domain shift between the

general-purpose domain and biomedical domain to help boost the per-

formance of the biomedical-MRC model. We validate our proposed frame-

work on three widely used benchmark datasets from the biomedical

question answering and semantic indexing challenge, BioASQ. We com-

prehensively demonstrate that without any label information in the target

domain during training, the BioADAPT-MRC framework can achieve

SOTA performance on these datasets. We perform an extensive quantita-

tive study on the domain adaptation capability using dimensionality reduc-

tion and clustering techniques and show that our framework can learn

domain-invariant feature representations. Additionally, we extend our

framework to a semi-supervised setting and demonstrate that our frame-

work can be efficiently applied even with varying ratios of labeled data.

We perform a 2-fold error analysis to investigate the shortcomings of our

framework and provide motivation for further future investigation and

improvement.

We conclude that BioADAPT-MRC may be beneficial in healthcare sys-

tems as a tool to efficiently retrieve information from complex narratives and

thus save valuable time and effort of the healthcare professionals.

The following are some future research directions that can originate from

this work: (i) developing a synthetic question–answer generator specializing in

the biomedical domain. (ii) Focusing on rigorous data pre-processing for the

MRC task on unstructured clinical notes. (iii) Performing further investigation

on the cases where BioADAPT-MRC struggles to improve over the baseline

model. (iv) Applying BioADPT-MRC to other NLP applications in the biomed-

ical domain that suffer from labeled-data-scarcity issues. Such applications are

biomedical NER, clinical negation detection, etc. (v) Analyzing the robustness

of the domain-invariant feature representations learned by the BioADAPT-

MRC model against meticulously crafted adversarial attack scenarios that may

leverage syntactic and lexical knowledge-base from the dataset.

Acknowledgements

We thank the anonymous reviewers for their insightful comments and

suggestions.

Author contributions

Conception, design, implementations, analysis, data pre-processing, interpret-

ation, result analysis and original draft: M.M. Review and editing: M.M.,

S.S., E.B. and G.D.P. Supervision: E.B. and G.D.P.

Fig. 6. Example question–answer pairs from the test sets demonstrating the strengths and weaknesses of the BioADAPT-MRC model over the baseline model. The green and

red colors show correctly and incorrectly predicted answers, respectively (A color version of this figure appears in the online version of this article.)

BioADAPT-MRC 4377



Funding

This work was supported by Department of Veterans Affairs, VHA Office of

Mental Health and Suicide Prevention. This work has been authored by UT-

Battelle, LLC under Contract No. [DE- AC05-00OR22725] with the US

Department of Energy.

This research used resources of the Knowledge Discovery Infrastructure at

the Oak Ridge National Laboratory, which is supported by the Office of

Science of the US Department of Energy under Contract No. [DE-AC05-

00OR22725]; and the Department of Veterans Affairs Office of Information

Technology Inter-Agency Agreement with the Department of Energy under

IAA No. [VA118-16-M-1062].

Conflict of interest: The authors declare that there is no conflict of interest.

Disclaimer

The views and opinions expressed in this manuscript are those of the authors

and do not necessarily represent those of the Department of Veterans Affairs,

Department of Energy, or the United States Government. The funders had no

role in study design, data collection and analysis, decision to publish, or prep-

aration of the manuscript.

Data availability

The data underlying this article are available in the BioASQ challenge web-

site, at http://participants-area.bioasq.org/datasets/, and in the emrQA

GitHub repository, at https://github.com/panushri25/emrQA#download-

dataset.

References

Agnikula Kshatriya,B.S. et al. (2021) Identification of asthma control factor in

clinical notes using a hybrid deep learning model. BMC Med. Inform. Decis.

Mak., 21, 1–10.

Alsentzer,E. et al. (2019) Publicly available clinical BERT embeddings. In:

Proceedings of the 2nd Clinical Natural Language Processing Workshop,

Minneapolis, Minnesota, USA, Association for Computational Linguistics,

pp. 72–78.

Baradaran,R. et al. (2020) A survey on machine reading comprehension sys-

tems. Natural Language Engineering, First View, pp. 1–50.

Bashath,S. et al. (2022) A data-centric review of deep transfer learning with

applications to text data. Inf. Sci., 585, 498–528.

Bastian,H. et al. (2010) Seventy-five trials and eleven systematic reviews a day:

how will we ever keep up? PLoS Med., 7, e1000326.

Bojanowski,P. et al. (2017) Enriching word vectors with subword informa-

tion. TACL, 5, 135–146.

Bromley,J. et al. (1993) Signature verification using a “siamese” time delay

neural network. In: Advances in Neural Information Processing Systems.

Vol. 6.

Chen,W. et al. (2017) Beyond triplet loss: a deep quadruplet network for per-

son re-identification. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, pp. 403–412.

Chen,X. et al. (2018a) Adversarial deep averaging networks for cross-lingual

sentiment classification. TACL, 6, 557–570.

Chen,Y. et al. (2018b) DarkRank: accelerating deep metric learning via cross

sample similarities transfer. In: Proceedings of the AAAI Conference on

Artificial Intelligence. Vol. 32.

Clark,K. et al. (2020) ELECTRA: pre-training text encoders as discriminators

rather than generators. In: 8th International Conference on Learning

Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.

Cohen,R. et al. (2013) Redundancy in electronic health record corpora: ana-

lysis, impact on text mining performance and mitigation strategies. BMC

Bioinformatics, 14, 10–15.

Del Fiol,G. et al. (2014) Clinical questions raised by clinicians at the point of

care: a systematic review. JAMA Intern. Med., 174, 710–718.

Devlin,J. et al. (2019) BERT: pre-training of deep bidirectional transformers

for language understanding. In: Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers),

Minneapolis, Minnesota, USA, Association for Computational Linguistics,

pp. 4171–4186.

Ester,M. et al. (1996) A density-based algorithm for discovering clusters in

large spatial databases with noise. KDD, 96, 226–231.

Fox,S. and Duggan,M. (2013) Health online 2013. Health, 2013, 1–55.

Ganin,Y. and Lempitsky,V. (2015) Unsupervised domain adaptation by back-

propagation. In: International Conference on Machine Learning, Lille,

France. PMLR, pp. 1180–1189.

Glorot,X. et al. (2011) Domain adaptation for large-scale sentiment classifica-

tion: a deep learning approach. In: Proceedings of the 28 th International

Conference on Machine Learning, Bellevue, WA, USA, 2011.

Golub,D. et al. (2017) Two-stage synthesis networks for transfer learning in

machine comprehension. In: Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing, pp. 835–844.

Association for Computational Linguistics, Copenhagen, Denmark.

Goodfellow,I. et al. (2014) Generative adversarial nets. In: Advances in

Neural Information Processing Systems, Montréal, Canada. Vol. 27.
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