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In the last few years, gene networks have become one of most important tools to model biological processes. Among other utilities,
these networks visually show biological relationships between genes. However, due to the large amount of the currently generated
genetic data, their size has grown to the point of being unmanageable. To solve this problem, it is possible to use computational
approaches, such as heuristics-basedmethods, to analyze and optimize gene network’s structure by pruning irrelevant relationships.
In this paper we present a new method, called GeSOp, to optimize large gene network structures. The method is able to perform a
considerably prune of the irrelevant relationships comprising the input network. To do so, themethod is based on a greedy heuristic
to obtain themost relevant subnetwork.The performance of ourmethod was tested bymeans of two experiments on gene networks
obtained from different organisms. The first experiment shows how GeSOp is able not only to carry out a significant reduction in
the size of the network, but also to maintain the biological information ratio. In the second experiment, the ability to improve the
biological indicators of the network is checked. Hence, the results presented show that GeSOp is a reliable method to optimize and
improve the structure of large gene networks.

1. Background

One of the most important challenges in systems biology is
to understand how individual biological components behave
and interact in the context of large and complex systems
[1]. This knowledge provides the opportunity of controlling
and/or optimizing different parts of biological processes to
generate a specific effect in the whole system. Therefore, this
system-wide view may lead to new applications in areas such
as biotechnology and medicine [2]. In particular, the high
amount of data generated in the last years allows the inference
of relationships between DNA, RNA, proteins, and other
cellular components. The sum of these interactions leads
to various types of interaction networks (including protein-
protein interaction, metabolic, signalling, and transcription-
regulatory networks) called gene networks for the sake of
simplicity.

Gene networks are usually inferred from gene expression
data and have been widely used to model gene relationships

in a biological process [3]. In the last decade, many com-
putational approaches have been proposed for the reverse
engineering of gene networks [4]. However, the continuous
advances in high-throughput technologies enable carrying
out large-scale analyses on the DNA and RNA levels the
same as on the protein and metabolite level. As a result, the
sources of data from which the gene networks are inferred
have increased in size, complexity, and diversity [2]. Due to
this, new computational challenges have arisen. For exam-
ple, some methods have been redesigned to improve their
performance during large-scale dataset processing [5]. Other
research works have focused their efforts on integrating
different sources of data for a more accurate gene network
reconstruction, such as the work of [6], in which time data
sets from different perturbation experiments are simultane-
ously considered, or that in [7], where the proposed model
integrates big data of diverse types to increase both the power
and accuracy of networks inference. Different inference
algorithms are combined for reconstructing genome-scale
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and high-quality gene network from massive-scale RNA-seq
samples in [8]. Even other works, like [9], adapt known gene
network construction methods to highly parallel execution
using distributed high-throughput computing resources.

As a result of these new researches, inferred gene net-
works aremore complex and larger.This factmakes it difficult
to visually detect interesting connections between nodes,
even though analysis tools have been created recently to
apply both advanced statistics and innovative visualization
strategies to support efficient knowledge extraction from
gene networks [10]. Regarding the gene network structure,
some pieces of evidence, like those from the analysis of
metabolism and genetic regulatory networks, have proven
most biological networks to be sparse, following a scale-
free topology. That is, the nodal degree distribution of the
network is a power law distribution [11]. Scale-free networks
are highly nonuniform; that is, most of the nodes have only
a few links while a few nodes have a very large number of
links, which are called Hubs. Hubs in a network play a crucial
role in how the information is processed in the network since
they connect different highly interconnected group of nodes
(modules) that could represent different biological functions
[12]. Nowadays, the generation of gene networks with a scale-
free topology is harder due to the great size and complexity
of the networks obtained from the high quantity of data
available, so the optimization of gene network structures is
currently an important challenge.

In this paper, a new method for automatic optimiza-
tion of the topology of a large gene network is presented.
The method, called Gene Network Structure Optimization
(GeSOp), is a backward elimination procedure based on a
greedy heuristic method to perform a prune of the irrele-
vant relationships of the input network. Through this novel
method, large genetic networks can improve their topological
characteristics without losing their biological information.

1.1. Related Works. Explicit structure optimization methods
examine networks models and apply a scoring function to
assess the degree to which the resulting structure explains
the data, while penalizing the complexity of the model. For
this aim, interactions are added and/or removed until the
best score is reached. Therefore, heuristic search algorithms
are one of the most used techniques since exploring all
possible combinations of interactions is anNP-hard problem,
specially with very big and complex networks [2, 13]. Several
optimization techniques have been developed. However, they
are usually limited by the high dimensionality of the problem,
as well as computational power required for large networks
[14].

Some research works use evolutionary techniques. To
reduce the large search spaces, elitist selectionmethod is often
used in genetic algorithms, ensuring that the algorithm does
not waste time in the rediscovery of previously discarded
partial solutions. For example, in [15], a randomBoolean net-
work is evolved to look for an accurate model based only on
experimental data, without taking into account prior biolog-
ical knowledge. Other research works use other methods to
improve the algorithm’s performance, like [16] that proposes
a multiagent genetic algorithm to reconstruct large-scale

gene regulatory networks. This algorithm is based on fuzzy
cognitive maps and includes efficient search operators to
reduce the search space.

The optimization algorithms that are based on one
objective function, for example, error minimization, can
lead to over-fitting and many false positive connections in
large networks inference. For example, in [17], the inference
problem of𝑁 genes is decomposed into𝑁×(𝑁−1) different
regression problems, in which the expression level of a target
gene is predicted from the expression level of a potential
regulation gene by using the sum of squared residuals and
the Pearson correlation coefficient. To reduce the over-fitting
phenomena, some works use multiple objective functions
and/or add prior biological knowledge to infer an accurate
network model. For example, authors in [18] import some a
priori regulatory information about extracted gene networks
from existing publications or biological web sites with the
aim of enhancing veracity of the network. The proposal
presented in [19] was the first one to incorporate functional
association databases. They create undirected, confidence-
weighted likelihood matrix by means of pairwise confidence
scores from those databases and use it to infer gene networks,
improving their accuracy.

Other works focus their efforts on looking for scale-free
properties. For example, in [20], a new proposal is presented
which takes the scale-free topology into account as prior
information to prune the search space during the inference
process. This way, the search space traversed by the method
integrates the exploration of all predictors sets combinations,
like when having a small number of combinations, when
performing a floating search, or when the number of com-
binations becomes excessive.

This process is guided by scale-free prior information. In
[21], informative prior based on scale-free property is also
used to improve inference accuracy. In particular, during
a Bayesian-based inference process, prior knowledge about
scale-free properties is used to evaluate the relative impor-
tance of nodes from the linkage characteristics of the entire
network.

As can be observed, most research works in literature
integrate different network structure optimization strategies
within the inference process. Therefore, these optimization
efforts depend on concrete input data and the network
generation tasks. In this sense, to the best of our knowledge,
the new method proposed in this paper is the first one that
is independent of the network inference process. As a result,
this method is able to optimize any input gene network.

2. Materials and Methods

In this section, the methods and the different materials
used in this paper are presented. Firstly, the GeSOp method
to optimize large gene network structures is exhaustively
described. Secondly, the gene network generation method
applied in the experimentation will be presented, along with
the input datasets and biological databases used.

2.1. Gene Network Structure Optimization. GeSOp is a novel
method for large gene networks topology optimization.
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Figure 1: GeSOpmethod is composed of two different steps: 1. application of a greedy algorithm to prune the original network and 2. detection
of Hubs in the resulting network and their enrichment by adding new interactions.
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Figure 2: Representation of step 1, in which an input network is pruned using the maximum path algorithm.

The method uses undirected influence networks since they
represent the highest level of abstraction in the gene networks
as was discussed in [3]. Due to this, our method can be
applied for a larger number of networks since almost any gene
network can be transformed into a nondirected influence
network.

Themain goal of theGeSOp is to transform the input gene
network into a simpler and more efficient network in terms
of information transfer, keeping the biological meaningful-
ness [2]. For this aim, a new backward removal procedure
composed of two different steps has been developed. Initially,
GeSOp uses a greedy-based heuristic strategy to prune the
original network and select the most biologically relevant
interactions. Then, the method looks for the most connected
nodes (Hubs) in the resultant network and proceeds by
adding relevant interactions which were pruned on the
previous step. A description of the general schema of the
method, along with a toy example, is shown in Figure 1.

A complete description of the two steps and a pseudocode
of the method are detailed below.

Step1: Greedy Maximum Relevance Path. The first step of
GeSOp uses a greedy-based heuristic algorithm to perform a
prune of the input network, taking into accountmost relevant
interactions from a biological point of view (see Figure 2). To
do so, a modification of Kruskal’s algorithm for the shortest
path problem in graphs has been developed [22].

In particular, ourmethod does not select the shortest path
between nodes. On the contrary, it selects the longest path
according to the weight of edges. Therefore, the relationships
with the highest level of significance are selected with respect
to the weight of the edges for later network reconstruction.

As a result, the pruned network generated contains the
same number of genes (nodes) as the original network but
it keeps only most relevant relationships. Hence, it implies
a large reduction in terms of the number of edges, while
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Adding relevant edges to the hubs 
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Figure 3: An example of the second step of our method, in which the Hubs of the pruned network are identified and relevant edges are added
to them. Note that the relationships are added if their weight exceeds the 𝑇ℎ𝛽; in this example, 𝑇ℎ𝛽 ≥ 0.7.

still depending on the degree of connectivity of the original
network, as is shown in Figure 2.

Step2: Addition of Missing Relationships. As is mentioned in
Section 1, Hubs have been reported to have special properties
regarding their neighbouring nodes in a gene network. Due
to this, in this second step, a topological analysis of the
pruned network is performed in order to identify network’s
Hubs. For this aim, Hubs are selected as those nodes whose
connection degree exceeds average network connectivity [12].
A toy example is depicted in Figure 3, where the node “3” is
identified as a Hub on the left network.

After the Hubs identification, a threshold (𝑇ℎ𝛽) is set to
determine which relationships of those removed in step 1
should be added to the Hubs. The threshold 𝑇ℎ𝛽 is an input
parameter of GeSOp algorithm (see Algorithm 1) and it is
determined by the user. In this sense, the user may select the
threshold which better fits the problem studied. Thus, a new
relationship is added to the final network if exceeding 𝑇ℎ𝛽.
The process is represented in Figure 3, where two pruned
relationships are added to the Hub node in the network on
the right.

The final network is generated after each Hub of the
pruned networks is processed.

A general pseudocode of the complete method described
in this paper is presented in Algorithm 1.

Finally, the complexity of GeSOp combines the com-
plexity of the Step1 (Θ(𝐸 log(𝑉))) and the Step2 (Θ(𝑉(𝐸2)))
resulting in and average case complexity of

Θ(𝐸 log (𝑉)) + Θ (𝑉 (𝐸2)) , (1)

where V and E represent the number of genes and relation-
ships of the input network, respectively.

2.2. Input Datasets. In this section, experimental datasets
used for the generation of input gene network used to test
GeSOp implementation are shown. In particular, we have
selected two different datasets from two different organisms
with different features.

Saccharomyces cerevisiae Cell Cycle Dataset. The first dataset
used was the one presented by Spellman et al. [23], in relation
to the well-knownYeast Cell Cycle.Thismicroarray describes

input: Input Network, 𝐺 fl ⟨𝑉, 𝐸⟩
V: genes, E: relationships

input: Relevant Threshold, 𝑇ℎ𝛽
output: Final network, 𝐺𝛽 fl ⟨𝑉, 𝐸𝜖⟩
, where 𝐸𝜖 ∈ 𝐸
/∗Step1: maximum path graph∗/
𝐺𝛽 ←maximumPathAlgorithm(𝐺);
/∗Step2: adding missing edges to Hubs nodes∗/
𝑖 ← 0;
for V𝑖 ∈ 𝑉 do

if 𝑖𝑠𝐻𝑢𝑏(V𝑖) then
𝑗 ← 0;
for 𝑒𝑗 ∈ 𝐸 do

if 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑒𝑗, V𝑖) ∧ 𝑒𝑗.𝑤𝑒𝑖𝑔ℎ𝑡 ≥ 𝑇ℎ𝛽 then
𝐺𝛽 ← 𝑎𝑑𝑑𝐸𝑑𝑔𝑒(𝑒𝑖);

end
𝑗 ← 𝑗 + 1

end
end
𝑖 ← 𝑖 + 1

end
Return 𝐺𝛽;

Algorithm 1: A general pseudocode of the proposed method. The
algorithm is divided into two different steps.

the expression level of 5521 genes in samples from yeast
cultures, which were synchronized by three independent
methods: 𝛼 factor arrest, elutriation, and arrest of a cdc15
temperature-sensitive mutant. Particularly, we focus on data
generated by cdc15 experiments.

Homo sapiens Single Nucleotide Polymorphism (SNP) Dataset.
In order to prove the usefulness of our proposed method,
the Homo sapiens SNP, presented in the work of Hodo et al.
[24], has been also selected.This datasetwas obtained to study
associations of interleukin 28B with carcinoma recurrence in
patients with chronic hepatitis C, and it contains information
about 54616 genes of Homo sapiens.

2.3. GeneNetworks GenerationMethods. In the following, the
methods used to extract gene networks from the two datasets
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Figure 4: An example of the generation of the input networks. Note that the relationships are added if their weight exceeds the 𝑇ℎ𝛼.

presented above are described. In total, three networks
were generated for each dataset. Gene networks based on
information theory are one of the most widely used types
in literature [2] since they are able to identify coexpression
relationships among genes. In this sense, we have selected
this kind of networks since they are computationally simple
and allow the fitting of large datasets. In particular, three
standard measures from information theory to generate
coexpression gene networks have been used: Spearman’s
correlation algorithm, Kendall’s Rank correlation algorithm
[1, 25], and Symmetric Uncertainty measure (SU) [26, 27].

Gene networks were constructed by calculation of the
presented measures (Kendall, Spearman, and SU) from the
expression levels in each pair of genes from the input datasets.
If the result of the measure exceeds a determinate threshold
(here after 𝑇ℎ𝛼) selected by the user, a new edge is added to
the network between the nodes as is represented by Figure 4.

For our study, we have selected a low threshold, 𝑇ℎ𝛼 =
0.5, in order to obtain over-connected networks as was
discussed in [3].

2.4. Biological Databases. The aim of this section is to present
the biological databases used as reference in the experiment
section.

In particular, we have selected three different databases:
(a) theGeneMANIAdatabase for evaluating yeast andhuman
networks, (b) YeastNet database for yeast, and (c) HumanNet
for human.

GeneMANIA [28] contains information presented in the
formofweb application for generating hypotheses about gene
functions. A prediction server uses a large set of functional
association data, including protein and genetic interactions,
pathways, coexpression, colocalization, and protein domain
similarities. The information stored in GeneMANIA is freely
available online. This information is stored in a structure
categorized by organisms, where genes (nodes) are related
(gene-gene relationship) if at least one piece of evidence of
this relation exists in the literature.

YeastNet, which was presented in [29], is a probabilistic
functional gene network obtained from 5794 protein-coding
genes of the yeast extracted from Saccharomyces cerevisiae
Genome Database [30]. This network combines protein-
protein interactions, protein-DNA interactions, coexpres-
sion, phylogenetic conservation, and also literature infor-
mation, in total covering 102803 linkages among 5483 yeast
proteins.

Finally HumanNet, which was presented in [31], is a
probabilistic functional gene network of 18714 validated
protein-coding genes of Homo sapiens. It is constructed by
modified Bayesian integration of 21 types of “omics” data
from multiple organisms. Each data type is weighted accord-
ing to how well it associates known genes to a biological
function inHomo sapiens. Each interaction inHumanNet has
an associated log-likelihood score that rates the probability of
a relationship representing a true functional linkage between
two genes.

3. Results and Discussion

The performance of the proposed method was tested by
means of two different experiments. The aim of the first
experiment is proving that the networks processed by our
methoddonot lose rate of biological information. To this end,
we have used different networks, generated using standard
methods of literature, and different databases (see Sections
2.3 and 2.4). In the second experiment, a topological analysis
of different networks is carried out to check how biological
structure indicators are improved.

3.1. Biological Information Analysis. The aim of this experi-
ment is to show how the networks processed by our method
reduce the size of the network, keeping their biological
information ratio. To do so, for each dataset used, we present
a comparison, in terms of size and performance, between the
original inferred network and those optimized by GeSOp.

3.1.1. Performance Evaluation. The quality of the optimized
networks was assessed by a direct comparison with a gold
standard, that is, the biological databases presented in Sec-
tion 2.2. To compute the quality measures, the following
indices were defined as they were presented in [32]:

(i) True positives (TP): both networks contain the gene-
gene relationship evaluated.

(ii) False positives (FP): the input network contains a
relationship which is not present in the biological
database.

(iii) True negatives (TN): the relationships are not present
neither in the input network nor in the biological
database.

(iv) False negatives (FN): the relationship exists in the
biological database but it does not in the input
network.
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Table 1: Results of yeast cell cycle networks processed with GeSOp. As it is shown, networks are significantly reduced in size.

Yeast
Kendall Spearman SU

Input GeSOp diff. % Input GeSOp diff. % Input GeSOp diff. %
Nodes 5466 5466 - 5521 5521 - 4802 4802 -
Edges 619552 10801 -98.25 % 2555009 446704 -82.51% 145329 26421 -81.81%

Once these indices are obtained, other measures used in
the literature have been selected to rate the quality of gene
networks [2, 3], Precision andRecall [2, 33], which are defined
below.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(2)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(3)

3.1.2. Yeast Experiment. As was stated before, in this subsec-
tion, the results obtained by the networks generated by the
Yeast Cell Cycle dataset are presented. The input networks
were generated using a 𝑇ℎ𝛼 = 0.5 as cut-off to generate
over-connected networks as was introduced in [3]. On the
other hand, GeSOp uses a threshold 𝑇ℎ𝛽 = 0.7 for adding
relationships. We have selected this threshold as relevant
correlation value as was also discussed in [3].

The first analysis is presented in Table 1, in which the
number of nodes and edges of the original networks and the
optimized ones are exposed.

The table presents the different results obtained by the
networks generated by the following methods: Kendall,
Spearman, and SU. The first column of each method rep-
resents the original input network (network obtained by
method on the dataset with 𝑇ℎ = 0.5) and the second
one (“GeSOp”) the final network obtained by our method.
On the other hand, the rows of the table represent the
number of nodes presented in the network (“Nodes”) and the
number of relationships comprising the network (“edges”),
respectively. Finally, the column “diff. %” represents the
difference between the number of edges of the input and final
network.

Firstly, it is worth mentioning that the network genera-
tion methods present different results for the same dataset.
Spearman’s method is the one that obtains larger networks
since the method is able to find less strictness coexpression
levels. On the other hand, SU’s method is themost restrictive,
as this technique is based on detecting not only the lineal
dependencies, but also the nonlinear ones. Finally, Kendall’s
method is more restrictive than the Spearman method but
more relaxed than the SU’s.

Regarding the size of the networks, results show that
the networks optimized by GeSOp have reduced their size
from 81, 81% to 98.25%, in terms of number of edges. Note
that GeSOp preserves the nodes, as was described previously.
These results represent a significant size reduction, which
implies that the final networks are simpler and more user-
friendly for researchers in terms of size and visualization.

Once it has been shown that GeSOp is capable of carrying
out a reduction in the size of gene networks, it is also
important to check if these optimized networks keep the ratio
of biological information that they originally contained. For
this aim, Tables 2 and 3 are presented. In them, for each
method of generation (i.e., Kendall, Spearman, and SU), three
columns are displayed. The columns “Input” represent the
results for the input network, columns “GeSOp” represent
the optimized networks generated by GeSOp. In addition,
the results obtained by the networks computed only in step
1 of our method are presented in the “Pruned” columns. The
rows “Precision” and “Recall” indicates the ratio of biological
information of the networks according to the biological
databases used.

Results show that the networks do not suffer any loss
of information. On the contrary, the value of the Precision
measure for these networks is increased. For example, in the
case of theKendall’s network compared toYeastNet, Precision
value goes from 0.01 to 0.09, which is a significant improve-
ment. This behaviour is also presented in the Spearman’s and
SU’s networks, where Precision’s values increase from 0.01 to
0.02.

Regarding the Recall, it has been reduced in all the
networks optimized by our method. This fact makes sense,
since Recall value is inversely proportional to the number
of FN, which are the relationships that are present in the
biological databases. Therefore, our method for reducing the
size of the network is inherently increasing the number of FN.
Thus, the greater the database used to rate the network, the
lower the value of its Recall because there will be more FN.

3.1.3. Homo sapiens Experiment. In this subsection, the
experiments carried out by means of the human SNP dataset
are described. The obtained networks were generated using
the same parameters as in the previous section (𝑇ℎ𝛼 = 0.5
and 𝑇ℎ𝛽 = 0.7).

The analysis carried out on the size of the different human
networks is shown in Table 4. The results follow the same
pattern as of the yeast networks. Spearman is the method
which presents the larger network while SU presents the
smaller.

GeSOp is able to reduce considerably the size of the
networks (e.g., −85.68% for Kendall’s network and −89.46%
for Spearman’s), but the case of SU’s network is remarkable.
In this case, the reduction is about −40.08%, which is
significantly lower than the rest of the cases. This result is
consistent with the fact that the SU’s network is significantly
smaller than the rest of the studied networks, so it is difficult
to reduce the size of this network without losing biologically
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Table 2: Yeast’s network results against YeastNet.

Kendall Spearman SU
Input Pruned GeSOp Input Pruned GeSOp Input Pruned GeSOp

TP 8331 94 909 19706 64 6589 1744 94 436
FP 444362 4035 9449 1864316 4374 328473 102890 3496 20850
Precision 0.01 0.02 0.094 0.01 0.01 0.02 0.01 0.026 0.02
Recall 0.08 9.18 ⋅ 10−4 0.009 0.2 6.25 ⋅ 10−4 0.006 0.01 9.18 ⋅ 10−4 0.004

Table 3: Yeast’s network results against GeneMANIA.

Kendall Spearman SU
Input Pruned GeSOp Input Pruned GeSOp Input Pruned GeSOp

TP 194918 1942 7863 692753 1909 147360 43991 1722 10281
FP 400383 3273 8423 1770378 3326 293279 95244 2824 18206
Precision 0.32 0.37 0.48 0.28 0.36 0.33 0.31 0.37 0.36
Recall 0.04 4.01 ⋅ 10−4 0.016 0.08 3.94 ⋅ 10−4 0.003 0.009 3.56 ⋅ 10−4 0.002

Table 4: Results of human SNP networks processed with GeSOp. The size of the networks is also significantly reduced.

Human
Kendall Spearman SU

Input GeSOp diff. % Input GeSOp diff. % Input GeSOp diff. %
Nodes 8068 8068 - 31061 31061 - 1431 1431 -
Edges 68329 9783 -85.68% 5387473 567590 -89.46% 1871 1121 -40.08%

Table 5: Human’s network results against GeneMANIA.

Kendall Spearman SU
Input Pruned GeSOp Input Pruned GeSOp Input Pruned GeSOp

TP 17144 1282 2085 351686 1305 52563 525 299 303
FP 26416 2759 3116 2512234 11646 248969 745 545 553
Precision 0.39 0.31 0.4 0.12 0.10 0.18 0.40 0.35 0.36
Recall 0.0024 1.83 ⋅ 10−4 2.98 ⋅ 10−4 0.04 1.86 ⋅ 10−4 0.0075 0.7 ⋅ 10−4 0.4 ⋅ 10−4 0.43 ⋅ 10−4

Table 6: Human’s network results against HumanNet.

Kendall Spearman SU
Input Pruned GeSOp Input Pruned GeSOp Input Pruned GeSOp

TP 4216 276 586 46850 141 8202 125 77 77
FP 35931 3291 4084 2465035 10540 258413 1045 699 711
Precision 0.10 0.07 0.12 0.01 0.01 0.03 0.10 0.09 0.09
Recall 0.008 5.79 ⋅ 10−4 0.001 0.09 2.95 ⋅ 10−4 0.017 2.4 ⋅ 10−4 1.61 ⋅ 10−4 1.66 ⋅ 10−4

relevant relationships. Due to this result, it is possible to argue
that GeSOp performs better with larger gene networks which
contain spurious relationships.

The biological validation of the different networks using
GeneMANIA and HumanNet databases (see Section 2.2 for
more details) is presented in Tables 5 and 6, respectively.

The validation results follow the same pattern as for
the yeast networks. The accuracy value increases for all
cases except for SU’s networks. As was discussed above, it
is difficult to prune small networks without losing relevant

relationships. Even so, the loss of Precision value is very small
(0.04 with GeneMANIA and 0.01 on HumanNet).

In conclusion, the results obtained by both experiments
show how GeSOp is able to perform a pruning process on
large networks, by reducing their size while keeping their
ratio of biological information. The relevance of our method
becamemore evident since, as was discussed in literature [14],
the optimization usually implies loss of information in the
majority of the cases. However, for almost all analyzed cases,
Precision of the network is improved by GeSOp.
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(a) 𝐼𝑛𝑝𝑢𝑡𝑦 (b) 𝐺𝑒𝑆𝑂𝑝𝑦

Figure 5: Visual comparison of yeast network.The original Kendall’s network is shown on (a). On (b), the final network obtained with GeSOp
is depicted. As can be observed, the optimized network presents a scale-free topology.

3.2. Topological Analysis. In this section, the ability of GeSOp
to improve the topology of gene networks is analyzed.

As was stated in Section 1, biological networks usually
follow topological patterns, in particular the scale-free topol-
ogy. The topology of a network is crucial to understand
the biological network’s architecture and performance [34].
Therefore, gene networks inferred by computationalmethods
should present this type of topology [3]. Based on this
assumption, we present a topological analysis of some of the
networks optimized by GeSOp in the previous section. The
objective is to identify if their topology indicators have been
improved in terms of scale-free topology.

Scale-free networks have a structure containing only a few
Hubs, among some other features. The most important and
commonly used topological features of scale-free networks
are presented [35, 36] as follows:

(i) Characteristic path length (CPL): The CPL of a net-
work indicates the shortest path length between two
nodes, averaged over all pairs of nodes comprising
the network. A high path length indicates that the
network is in a linear chain. A lower value means that
is more compact. Scale-free networks usually have a
great CPL.

(ii) Diameter: The diameter of a network indicates the
maximal distance between two nodes. As in the case
of CPL, a greater diameter of the network indicates
that it follows a biological pattern.

(iii) Clustering coefficient: For one node, this coefficient
can be calculated as the number of links among
the nodes within its neighbourhood divided by the
number of links that are possible among them. A
high clustering coefficient for a network is another
indicator of the existence of biological relationships.

(iv) Graph density: The density of a network defines
the ratio of the number of edges to the number of
possible edges. Gene networks are generally sparsely

connected. Therefore, a low density should indicate
biological meaning in the network.

(v) �e node degree distribution: It indicates the ratio
of nodes in the network with degree 𝑘. Scale-free
networks usually follow a power law: 𝑃(𝑘) ∼ 𝑘𝛾,
where 𝛾 is a constant (≥ 0). A high 𝛾 is an indicator of
a scale-free topology.

For this experiment, the networks obtained by Kendall’s
method on Yeast and Human datasets have been used
as reference, for the sake of simplicity. Thus, we present
a topological study for four networks, the originals
(named “𝐼𝑛𝑝𝑢𝑡𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚”) and the processed ones (hereafter
“𝐺𝑒𝑆𝑂𝑝𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚”). Visual representation of the networks is
depicted in Figures 5 and 6, where it is possible to check the
topological differences of the networks.

As can be seen in the figures, the optimized networks
(“𝐺𝑒𝑆𝑂𝑝𝑥”) present a more linear and less compact topology
than the input ones, so they fit better with the scale-free topol-
ogy. In addition, an exhaustive topological analysis of the
four networks has been carried out based on the indicators
presented above. The topological analysis of the network has
been performed using the toolNetworkAnalyzer [37] and the
results obtained are depicted in Table 7.

The results presented in Table 7 show that the networks
improve their topological indicators once they are processed
by GeSOp. Moreover, it is possible to argue that these
networks follow a biological pattern according to [36]. That
is, after the optimization process, networks show, on the one
hand, a lower mean clustering coefficient and density. On the
other hand, they present higher characteristic path length,
diameter, and 𝛾 constant. These results mean that networks
have improved in terms of the biological relevance of their
relationships.

Moreover, the optimized networks present characteristics
closer to a scale-free topology as their node degree distri-
bution follows a power law with 𝛾 ≥ 0[34] (see Figure 7 ).
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(a) 𝐼𝑛𝑝𝑢𝑡ℎ (b) 𝐺𝑒𝑆𝑂𝑝ℎ

Figure 6: Visual comparison of human networks used in this experiment. The original Kendall’s network is shown on (a). On (b), the
optimized network obtained with GeSOp is depicted.
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Figure 7: Node degree for the optimized networks obtained with GeSOp.The fitted power law indicates that the networks follow a scale-free
topology.

Table 7: Topological indicator of four selected networks.The results presented showhow the optimized networks obtained byGeSOp improve
their indicators.

Network Clust. coef. CPL Diameter Density Gamma (𝛾)

Yeast 𝐼𝑛𝑝𝑢𝑡𝑦 0.411 2.697 9 0.041 0.845
𝐺𝑒𝑆𝑂𝑝𝑦 0.085 6.156 20 0.001 1.375

Human 𝐼𝑛𝑝𝑢𝑡ℎ 0.21 4.954 19 0.003 1.394
𝐺𝑒𝑆𝑂𝑝ℎ 0.024 10.84 33 ∼ 0.000 2.079
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This fact can be verified by the results presented in column
“Gamma” of Table 7, in which the values of 𝛾 (from power
law) are improved in the optimized networks.

The results generated by this second experiment probes
that GeSOp is a reliable method to improve the topological
features of the gene networks, in terms of biological structure.

4. Conclusions

In this work, a new backward elimination method for opti-
mization of large gene networks structure, namely, GeSOp,
has been presented. The method, which is based on a greedy
strategy, is able to perform a drastic reduction of size of
the input network in terms of the number of gene-gene
relationships. The prune of the less biologically significant
relationships produces simpler and more user-friendly net-
works for researchers in terms of size and visualization.

On one hand, the results presented show that the method
is able not only to perform a prune of the input network, but
also to keep the ratio of the biological information presented
in the original network. Furthermore, for almost all studied
cases, this ratio is improved. On the other hand, topological
analyses carried out in the experiments show how networks
optimized by GeSOp improve their biological indicators
by acquiring a scale-free topology. Finally, regarding the
generated results, it is possible to argue that the relevance
of our method becomes evident for the processing and
optimization of large gene networks.

As futureworks, wewill work on the inclusion of previous
biological knowledge, in form of gene networks as gold
standard, in the second step of the methodology. Thus, the
method will take into account not only the existing Hubs
in the input network, but also the genes that have a great
relevance in the networks used as gold standard. Another
future work is based on the implementation; we are working
in paralleling implementation of the algorithm to improve its
performance.

Data Availability

In this section, we provide the links to the datasets and
databases presented above. In particular, the links for the
datasets are as follows:

(1) Yeast dataset: https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE23

(2) Human dataset: https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GPL570

and those for the databases are as follows:

(1) GeneMANIA: http://genemania.org/data/
(2) YeastNet: https://www.inetbio.org/yeastnet/
(3) HumanNet: http://www.functionalnet.org/human-

net/
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[3] F. Gómez-Vela, C. D. Barranco, and N. Dı́az-Dı́az, “Incorporat-
ing biological knowledge for construction of fuzzy networks of
gene associations,” Applied Soft Computing, vol. 42, pp. 144–155,
2016.

[4] D. Marbach, R. J. Prill, T. Schaffter, C. Mattiussi, D. Flore-
ano, and G. Stolovitzky, “Revealing strengths and weaknesses
of methods for gene network inference,” Proceedings of the
National Acadamy of Sciences of the United States of America,
vol. 107, no. 14, pp. 6286–6291, 2010.

[5] A. Lachmann, F. M. Giorgi, G. Lopez, and A. Califano,
“ARACNe-AP: gene network reverse engineering through adap-
tive partitioning inference ofmutual information,”Bioinformat-
ics, vol. 32, no. 14, pp. 2233–2235, 2016.

[6] N. Omranian, J. M. O. Eloundou-Mbebi, B. Mueller-Roeber,
and Z. Nikoloski, “Gene regulatory network inference using
fused LASSO on multiple data sets,” Scientific Reports, vol. 6,
Article ID 20533, 2016.

[7] F. Petralia, P. Wang, J. Yang, and Z. Tu, “Integrative random
forest for gene regulatory network inference,” Bioinformatics,
vol. 31, no. 12, pp. i197–i205, 2015.

[8] H. Yu, B. Jiao, L. Lu et al., “NetMiner-an ensemble pipeline
for building genome-wide and high-quality gene co-expression
network usingmassive-scale RNA-seq samples,”PLoSONE, vol.
13, no. 2, p. e0192613, 2018.

[9] W. L. Poehlman, M. Rynge, D. Balamurugan, N. Mills, and F.
A. Feltus, “OSG-KINC: high-throughput gene co-expression
network construction using the open science grid,” in Proceed-
ings of the 2017 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pp. 1827–1831, Kansas City, MO,
November 2017.

[10] J. Xia, E. E. Gill, and R. E. W. Hancock, “NetworkAnalyst
for statistical, visual and network-based meta-analysis of gene
expression data,” Nature Protocols, vol. 10, no. 6, pp. 823–844,
2015.

[11] A. Barabási and Z. N. Oltvai, “Network biology: understanding
the cell’s functional organization,”Nature Reviews Genetics, vol.
5, no. 2, pp. 101–113, 2004.

[12] R. R. Vallabhajosyula, D. Chakravarti, S. Lutfeali, A. Ray, and A.
Raval, “Identifying Hubs in protein interaction networks,” PLoS
ONE, vol. 4, no. 4, Article ID e5344, 2009.

[13] Y. Wang, X. Zhang, and L. Chen, “Optimization meets systems
biology,” BMC Systems Biology, vol. 4, no. Suppl 2, p. S1, 2010.

[14] S. A.Thomas andY. Jin, “Reconstructing biological gene regula-
tory networks: where optimizationmeets big data,”Evolutionary
Intelligence, vol. 7, no. 1, pp. 29–47, 2014.

[15] M. R. Mendoza and A. L. Bazzan, “Evolving random boolean
networks with genetic algorithms for regulatory networks
reconstruction,” in Proceedings of the the 13th annual conference,
p. 291, Dublin, Ireland, July 2011.

[16] J. Liu, Y. Chi, and C. Zhu, “A dynamic multiagent genetic
algorithm for gene regulatory network reconstruction based on
fuzzy cognitive maps,” IEEE Transactions on Fuzzy Systems, vol.
24, no. 2, pp. 419–431, 2016.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL570
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL570
http://genemania.org/data/
https://www.inetbio.org/yeastnet/
http://www.functionalnet.org/humannet/
http://www.functionalnet.org/humannet/


Computational and Mathematical Methods in Medicine 11

[17] J. Xiong and T. Zhou, “Gene regulatory network inference
frommultifactorial perturbation data using both regression and
correlation analyses,” PLoS ONE, vol. 7, no. 9, Article ID e43819,
2012.

[18] J. Li and X.-S. Zhang, “An optimization model for gene reg-
ulatory network reconstruction with known biological infor-
mation,” in Proceedings of the First International Symposium on
Optimization and Systems Biology, pp. 35–44, 2007.

[19] M. E. Studham, A. Tjärnberg, T. E. M. Nordling, S. Nelander,
and E. L. L. Sonnhammer, “Functional association networks as
priors for gene regulatory network inference,” Bioinformatics,
vol. 30, no. 12, pp. I130–I138, 2014.

[20] F. M. Lopes, D. C. Martins Jr., J. Barrera, and R. M. Cesar
Jr., “A feature selection technique for inference of graphs from
their known topological properties: revealing scale-free gene
regulatory networks,” Information Sciences, vol. 272, pp. 1–15,
2014.

[21] B. Yang, J. Xu, B. Liu, and Z. Wu, “Inferring gene regulatory
networks with a scale-free property based informative prior,” in
Proceedings of the 8th International Conference on BioMedical
Engineering and Informatics (BMEI ’15), pp. 542–547, October
2015.

[22] D. B.West, Introduction to GraphTheory, Prentice-Hall of India
Private Limited, New Delhi, India, 2000.

[23] P. T. Spellman, G. Sherlock, M. Q. Zhang et al., “Comprehensive
identification of cell cycle-regulated genes of the yeast Sac-
charomyces cerevisiae by microarray hybridization,”Molecular
Biology of the Cell (MBoC), vol. 9, no. 12, pp. 3273–3297, 1998.

[24] Y. Hodo, M. Honda, A. Tanaka et al., “Association of
interleukin-28B genotype and hepatocellular carcinoma recur-
rence in patients with chronic hepatitis C,” Clinical Cancer
Research, vol. 19, no. 7, pp. 1827–1837, 2013.

[25] P. A. Jaskowiak, R. J. G. B. Campello, and I. G. Costa, “On
the selection of appropriate distances for gene expression data
clustering,” BMC Bioinformatics, vol. 15, article no. S2, 2014.

[26] L. Song, P. Langfelder, and S. Horvath, “Comparison of co-
expression measures: mutual information, correlation, and
model based indices,” BMC Bioinformatics, vol. 13, no. 1, article
no. 328, 2012.

[27] H. Liu, L. Liu, and H. Zhang, “Ensemble gene selection for
cancer classification,” Pattern Recognition, vol. 43, no. 8, pp.
2763–2772, 2010.

[28] D. W. Farley, S. L. Donaldson, O. Comes et al., “The Gene-
MANIA prediction server: biological network integration for
gene prioritization and predicting gene function,”Nucleic Acids
Research, vol. 38, no. 2, pp. W214–W220, 2010.

[29] H. Kim, J. Shin, E. Kim et al., “YeastNet v3: a public database
of data-specific and integrated functional gene networks for
Saccharomyces cerevisiae,” Nucleic Acids Research, vol. 42, no.
1, pp. D731–D736, 2014.

[30] J. M. Cherry, E. L. Hong, and C. Amundsen, “Saccharomyces
genome database: the genomics resource of budding yeast,”
Nucleic Acids Research, pp. D700–D705, 2012.

[31] I. Lee, U. M. Blom, P. I. Wang, J. E. Shim, and E. M. Marcotte,
“Prioritizing candidate disease genes by network-based boost-
ing of genome-wide association data,”Genome Research, vol. 21,
no. 7, pp. 1109–1121, 2011.

[32] E. R. Dougherty, “Validation of inference procedures for gene
regulatory networks,” Current Genomics, vol. 8, no. 6, pp. 351–
359, 2007.

[33] D.M. Powers, “Evaluation: from precision, recall and f-measure
to roc, informedness, markedness and correlation,” Interna-
tional Journal of Machine Learning Technology, vol. 2, no. 1, pp.
37–63, 2011.

[34] N. T. Doncheva, Y. Assenov, F. S. Domingues, and M. Albrecht,
“Topological analysis and interactive visualization of biological
networks and protein structures,” Nature Protocols, vol. 7, no. 4,
pp. 670–685, 2012.

[35] G. A. Pavlopoulos,M. Secrier, C.N.Moschopoulos et al., “Using
graph theory to analyze biological networks,” BioData Mining,
vol. 4, no. 1, article 10, 2011.

[36] W. Winterbach, P. V. Mieghem, M. Reinders, H. Wang, and D.
D. Ridder, “Topology of molecular interaction networks,” BMC
Systems Biology, vol. 7, article no. 90, 2013.

[37] Y. Assenov, F. Ramı́rez, S.-E. Schelhorn, T. Lengauer, and
M. Albrecht, “Computing topological parameters of biological
networks,” Bioinformatics, vol. 24, no. 2, pp. 282–284, 2008.


