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ABSTRACT: This study was dedicated to introducing a new
method for predicting the Sauter mean diameter (SMD) buildup in
the swirl cup airblast fuel injector. There have been considerable
difficulties with predicting SMD mainly because of complicated flow
characteristics in a spray. Therefore, the backpropagation (BP) neural
network-based machine learning was applied for the prediction of
SMD as a function of geometry, condition parameters, and axial
distance such as primary swirl number, secondary swirl number,
venturi angle, mass flow rate of fuel, and relative air pressure. SMD
was measured by a phase Doppler particle analyzer (PDPA). The
results show that the prediction accuracy of the trained BP neural
network was excellent with a coefficient of determination (R2) score
of 0.9599, root mean square error (RMSE) score of 1.4613, and
overall relative error within 20%. Through sensitivity analysis, the relative air pressure drop and primary swirl number were the
largest and smallest factors affecting the value of SMD, respectively. Finally, the prediction accuracy of the BP neural network model
is far greater than the current prediction correlations. Moreover, for the predicting target in the present study, the BP neural network
shows the advantages of a simple structure and short running time compared with PSO-BP and GRNN. All these prove that the BP
neural network is a novel and effective way to predict the SMD of droplets generated by a swirl cup airblast fuel injector.

1. INTRODUCTION
Swirl cup airblast fuel injector has excellent fuel atomization
performance, uniform fuel−air mixing, and remarkable
emission reduction ability and it is widely used in modern-
day gas turbine combustors.1 Over the past few decades, it has
received extensive attention for its excellent performance.
Many researchers have focused their studies on the flow field,
spray characteristics, and combustion performance of a swirl
cup airblast fuel injector. Fu et al.2 studied the effects of
confinement venturi type on the flow field of a turbulent
confined swirling flow and concluded that the size and strength
of the recirculation zone were highly affected by the level of
confinement. Lin et al.3 studied the effect of the geometric
modification of the venturi on the no-reacting flow, they found
that the venturi significantly influenced the interactions of the
swirling motions between the primary and secondary flows. Liu
et al.4 studied the swirl angle on the spray performance, they
found that a big swirler angle contributed to the mixing of air
and fuel and eventually improved the ignition and lean blow-
out (LBO) combustion performances. Wang et al.5 studied the
hardware design of the flow field structure and found that the
flare influenced the size of the recirculation zone and droplet
dispersion. Becker and Hassa6 and Shanmugadas et al.7 studied

the fuel placement and droplet size inside the swirl cup using
PDI and PLIF. They highlighted that swirl shear layers should
be considered in fuel injector designs for improving atom-
ization and interactions between fuel and the air shear layer.
Ying et al.8 reviewed the dynamics and stability of swirl cup
combustor and flow characteristics influencing the atomization
processes such as vortex breakdown, processing vortex core
(PVC), central toroidal recirculation zone (CTRZ), etc. Im et
al.9 conducted an experimental study on the influence of
structural parameters of the venturi on atomization. They
found that the longer the venturi tube is, the larger the spray
cone angle is and the smaller the droplets generated. Moreover,
the venturi with a throat will make the droplet size distribution
more uniform. Ateshkadi et al.10 studied the effect of venturi
on atomization and fuel distribution by using the PLIF
technique. The results showed that the structure of the venturi
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has a great influence on the breakup process of liquid film and
the downstream distribution of droplets. In addition, the
venturi limited the spray to a smaller region compared with the
case without the venturi. Liu et al.11 investigated the spray
characteristics that influence the flame pattern and combustion
stability. Their results highlight that spray quality affects
combustion stability at ignition and close to LBO.

It can be seen from previous studies that atomization, as the
first stage of combustion, will directly affect combustion
efficiency and combustion stability. Thus, for engineering
design, it is quite useful to provide some estimates on the
performances of swirl cup airblast fuel injectors under various
conditions. The Sauter mean diameter (SMD) is widely
accepted as an average droplet size parameter in combustion
applications that controls the evaporation rate, which is defined
as follows

nD
nD

SMD
3

2=
(1)

Lefebvre et al.12 concluded that smaller SMD promoted fuel
evaporation and decreased the demand for ignition energy.
Hashimoto et al.13 found that SMD directly determined the
soot formation characteristics in the flame. The critical factors
that influence the spray are airflow velocity, fluid viscosity,
surface tension, and density.

A large number of studies have been carried out on the
influencing factors of the SMD of spray generated by a swirl
cup fuel injector. Many studies have proposed empirical and
semiempirical SMD correlations. Lefevre et al.,1 Jasuja et al.,14

Urbań et al.,15 Chong et al.,16 Shanmugadas et al.,7 and others
have done a lot of meaningful work on the effects of atomizer
scale, alternative fuels, impingement angle of air onto a liquid
sheet, and classical and prompt atomization on SMD, and
proposed many widely used SMD empirical correlations,
However, current SMD correlations mainly focused on liquid
properties, particularly viscosity. The influence of geometric
changes was not validated systematically and the application
range of prediction was limited.

Backpropagation (BP) neural network has the advantages of
self-adaption, self-learning, nonlinear mapping, and fault
tolerance, which can fit more complicated causal relationships
and has been successfully applied to prediction in many
fields.17 Nowadays, the BP neural network is widely used in
industry, agriculture, food, construction, etc. Cui et al.18

proposed the prediction model of multicomponent surrogates
based on the BP neural network to predict ignition delay. The
results showed that the neural network model was able to
realize high accuracy of octane number (RON) and motor
octane number (MON) with a maximum deviance of no more
than three units. Zhao et al.19 used a bidirectional recurrent
neural network (bi-RNN) to predict flow fields inside an
engine cylinder at different time steps by particle image
velocimetry (PIV). According to the results, during the early
intake stroke and compression stroke, the global indices could
reach 0.9. Kaiser et al.20 applied the machine learning
algorithm based on an artificial neural network to closed
coupled atomization nozzle research. The predicted results
obtained a high R2 = 0.98 at most positions, which was in good
agreement with the experimental results. Park et al.21 used an
optimized ANN to predict the operating characteristics of the
combustion chamber and conducted a sensitivity analysis by
using the real-time data of the industrial gas turbine. The

turbine exhaust temperature and the main design parameters of
the gas turbine were used as input parameters to predict the
fuel flow, turbine inlet temperature, fuel distribution of each
nozzle, NOx, working pressure of the combustion chamber,
and inlet air temperature. The result of the sensitivity analysis
of input parameters showed that the influence of ambient
conditions is very small.

However, only a limited number of researchers have
conducted SMD prediction in neural networks using a fuel
nozzle. Taghavifar et al.22 used the artificial neural network-
genetic algorithm(ANN-GA) to predict spray liquid tip
penetration and SMD in a diesel engine. Consequently, R2 =
0.994 for penetration, whereas SMD yields a lower amount of
0.992. Kaveh et al.23 used the general regression neural
network (GRNN) to predict the velocity and SMD in liquid−
liquid coaxial swirl injectors. The general regression neural
network had a good performance, achieving a velocity
prediction accuracy of 93%. Liu et al.24 constructed GA-BP
for supersonic atomized water to predict the SMD. The results
are consistent with the experimental results. The prediction by
GA-BP is better with R2 = 0.979.

According to previous research, the majority of studies on
SMD prediction in fuel nozzles have relied on traditional
semiempirical correlations, and the application range of
prediction was limited. Only a few researchers have explored
the use of complex machine learning models for SMD
prediction. In addition, to the best of our knowledge, swirler
cup airblast injectors have not been used to establish a machine
learning model for SMD prediction. Moreover, the relative
influence weights of geometry and fuel/air supply condition
parameters affecting the SMD are not clear. The main aim of
this study is to develop SMD correlations based on the BP
neural network. To achieve this goal, the BP neural network
was trained and further validated with an extra data set in order
to predict SMD of spray generated by swirl cup airblast fuel
injector with high accuracy and wide application range under
different geometry and condition parameters. Then, sensitivity
analysis was also conducted to extract the most significant
parameters affecting the SMD. Further, we compared the final
trained BP neural network with the current SMD correlations
and other neural networks to verify the performance of the BP
neural network.

2. EXPERIMENTAL APPARATUS AND
METHODOLOGY

2.1. Swirl Cup Fuel Injector. Figure 1 schematically
shows the swirl cup airblast fuel injector used in this study. The
pressure-swirl atomizer is located at the center of the swirl cup,
which generates an 80° hollow cone spray. Eight elliptical
tangential primary jets are used to generate the primary

Figure 1. Detailed information on the swirl cup airblast fuel injector.
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swirling stream, and a radial secondary swirler has 10 blocks to
introduce the co- or counter-rotating air streams into the swirl
cup. During the swirl cup working process, most droplets
generated by the pressure-swirl atomizer impinge on the
venturi and form a thin liquid film on the venturi’s inner
surface. At the edge of the venturi, the thin liquid sheet
undergoes intense shearing action by co- or counter-rotating
air streams and breaks up into ligaments. Meanwhile, the
stronger secondary swirling airflow undergoes vortex break-
down, creating a central toroidal recirculation zone (CTRZ) at
the swirl cup exit. Very few droplets from the pressure-swirl
atomizer directly flow out of the swirl cup without impinge-
ments on the venturi. The geometric parameters of the swirl
cup in this study are given in Table 1.

Swirl number (SN) quantifies the relative strength of swirl
produced by the swirler, which is varied by primary and
secondary swirler angles in this study and it was originally
proposed by Beer25

G

G R
SN

z
=

(2)

where Gφ is the axial flux of the angular momentum, Gz is the
axial thrust, and R is the exit radius of the swirler.

The primary swirl number can be derived based on eq 2
R R
kwd

SN sinp
e v= ±

(3)

where Re is the radius of the primary swirler exit, Rv is the
radius of the venturi exit, k is the number of vanes in the
cascade, wd is the axial width of a channel, and α is the primary
swirler angle. In this study, the flow direction is changed to co-
rotation or counter-rotation by altering the blade direction in
the primary swirler and keeping the secondary swirler constant.
For example, the blade direction in a primary swirler is
clockwise, while that in a secondary swirler is oriented in a
counterclockwise manner to yield a counter-rotation swirl flow
and vice versa for co-rotation.

The following equation was used to find the swirl number of
the secondary swirler.26

( )
SN 0.28

1
1

tan

1 tan tan
n

s =
+ (4)

where n is the number of blades, ψ is the blockage factor, and β
is the secondary swirler angle.

ψ can be written as

ns
R2 coss

=
(5)

where s is the thickness of the vanes and Rs is the radius of the
secondary swirler exit.

2.2. Experimental Setup and Diagnostic Techniques.
The atomization test rig is illustrated in Figure 2, which

consists of three major components: air/fuel supply and
control system, optical devices PDPA, and swirl cup airblast
fuel injector. LabVIEW-based program and NI-CDAQ-9186
board were used to control the air/fuel supply system. Air was
supplied by a compressor. Before entering the swirl cup, the air
was dried by an adsorption dryer and stored in a surge tank.
The tank was connected to the swirl cup airblast fuel injector
through the air mass flow controller (0−300 lpm, ±2%). The
PSI pressure difference sensors (0−10 psi, ±0.05%) were
arranged before and after the swirl cup to measure the inlet
total air pressure and outlet static pressure. The relative air
pressure drop (ΔPa/Pa) across the swirler was defined as the
difference between total pressure at the inlet and at the outlet
divided by the total pressure at the inlet. The fuel tank was
connected to the swirl cup airblast fuel injector through a gear
pump, oil filter, ball valve, and fuel mass flow controller (0−20
kg/h, ±0.1%). A pressure transducer (0−0.6 MPa, ±0.1%) was
used to record the fuel pressure. Relative air pressure drop and
fuel mass flow rate were adjusted by controlling the fuel mass
flow controller and gear pump output power. To reduce the
error of measurement, every instrument was zero-calibrated
before tests.

Phase Doppler particle analyzer (PDPA) was used to
measure the droplet size, which was installed on a computer-
controlled three-axis traverse system (moving range 600 × 600
× 600 mm3, accuracy 0.01 mm). An argon ion laser was used
to supply a continuous wave with a 514.5 nm wavelength. The
integrated transmitter unit divided the laser beam into two
beams with a 40 MHz frequency shift. The incident laser
beams were scattered from a 500 mm focal length transmitting
optic. A receiving optic with a 750 mm focal length was also
positioned in the forward scattering direction. The laser
emitted by the transmitting optics was scattered by droplets
and then entered the receiving optics. Subsequently, the
received optical signal was transferred to the PDPA processor
to convert it into an electrical signal and sent to the computer.
The PDPA details are shown in Table 2.

2.3. Test Conditions. The fuel used was BP-3 kerosene,
whose physicochemical properties were similar to those of Jet

Table 1. Variation Range of Geometric Parameters
Investigated

test case SNp SNs θv

base −1.090 0.443 50
Case 1 −0.803 0.443 50
Case 2 −1.557 0.443 50
Case 3 1.334 0.443 50
Case 4 1.557 0.443 50
Case 5 −1.090 0.770 50
Case 6 −1.090 0.291 50
Case 7 −1.090 0.443 30
Case 8 −1.090 0.443 70

Figure 2. Experimental setup.
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A-1. The detailed fuel properties can be found in a study by
Ma27 et al. The test was carried out at room temperature and
pressure with four different relative air pressure drops (ΔPa/Pa
2%, 3%, 4%, 5%) and five mass flow rates of fuel (mf 2.0, 2.5,
3.0, 3.5, 4.0 kg/h). Thus, the number of operating conditions
for each type of swirler cup was 20.

The PDPA measurements were carried out at five axial
positions (Z = 20, 30, 40, 50, 60 mm), and at each axial
location, radial measurements were carried out with an interval
of 2 mm until the spray edge. The measured SMD values at
several radial locations for each axial position were used to
calculate a single value of the line-of-sight SMD. The line-of-
sight SMD was the averaged SMD over each axial location and
weighted by the measured volume flux at each radial location.
Therefore, the line-of-sight SMD used in this study was
defined as28

n

n
SMD

SMDr R
r 1

r r

r
=

×=
=

(6)

where nr was the valid volume flux of droplets in the axial
direction through the probe volume at every measured point
and r was the radial distance of measurement points from the
swirler cup axis.

2.4. BP Neural Network. 2.4.1. Basic Construction of BP
Neural Network. An artificial neural network (ANN) is an
adaptive system that mimics the biological neural network of
the human brain.29 As a classic algorithm in ANN, a
backpropagation (BP) neural network was widely used to
establish predictive models because of its abilities of self-
learning, arbitrary function approximation, and seeking
solutions at a high speed.30 Depending on their task, the BP
neural network is divided into three different layers: input,
hidden, and output. In this study, the relative air pressure drop
(ΔPa/Pa), fuel mass flow rate (mf), primary swirl number
(SNp), secondary swirl number (SNs), venturi angle (θv), and
axial location (Z) are selected as input parameters, and SMD is
selected as output parameters. The structure of the BP neural
network is shown in Figure 3.

Each neuron in the network was fully connected to each
other in the next layer. When the input data were introduced
to the neurons in the input layer, they were multiplied by
weights connecting them to the neurons in the hidden layer;
the weighted input data were then summed and reached the
hidden layer after the nonlinear conversion of the activation
function. The hidden data finally entered the output layer of
the neuron after the same steps. This process was continued in
the forward layer by layer. The functional relationship
represented by the network structure can be expressed as
follows

i

k
jjjjjjj

i
k
jjjjjj

y
{
zzzzzz

y

{
zzzzzzzf w x b bSMD

j i
ij i j k

1

5

1

6

= + +
= = (7)

where xi is the input layer neuron (i = 1−6), hj is the hidden
layer neuron (j = 1−5), ok is the output layer neuron (k = 1),
wij is the weight of the connection between the input layer
neurons and the hidden layer neurons, and bj is the bias for the
hidden layer neuron. Similarly, wjk is the weight of the
connection between the hidden layer neurons and the output
layer neurons and ok is the bias for the output layer neuron. f(.)
and φ(.) represent the activation functions of the hidden layer
and output layer, respectively. In this study, the Tansig
function was used as the hidden layer activation function f(.),
and the Pureline function was used as the output layer
activation function φ(.), which are defined as follows

x
e
e

tansig( )
e
e

x x

x x=
+ (8)

x xpureline( ) = (9)

The training process aimed to minimize the error function
defined as the difference between the predicted output and the
desired output. Randomly setting the initial weight and bias,
the Levenberg−Marquardt (LM) backpropagation algorithm
was run to calculate the error. If the error was bigger than a
certain threshold, the weights and bias iteratively updated in a
gradient-descent direction of the error. This process was
repeated until the error was reduced to an acceptable level.31

Since the final weights and bias performing best for the
target database are not necessarily applicable to other
databases, the trained BP neural network needed two
additional steps to crosscheck, namely, validation and test
steps,32 and the number of training data sets needed to be large
enough to avoid overfitting.33

In this study, an error backpropagation algorithm was
developed to establish the BP neural network model. A total of
900 sets of data were trained to avoid overfitting. The data
were randomly divided into a training set, validation set, and
test set. Each trained neural network was different, so it needed
to be trained multiple times to get the minimum error.

Table 2. PDPA Setting Parameters

parameter value

laser argon ion laser 3W
wavelength 514.5 nm
beam waist 126.64 μm
beam separation 50 mm
Bragg frequency 40 MHz
front focal length of transmitting and receiving optics 500 mm, 750 mm
scattering angle 33°
receiving optics refraction
polarization perpendicular

Figure 3. Diagram of BP neural network.
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2.4.2. Data Preparation and the Number of Neurons in
the Hidden Layer. In this study, 900 samples were collected
from the experiments and randomly divided into three groups,
namely, 80% of the data for training, 10% for validation, and
10% for testing of the BP neural network model. In order to
improve the training efficiency and avoid the largest input
parameters being overwhelmed by the influence of other
parameters, which reduced the prediction accuracy, all data
must be normalized to the standardized data between 0 and 1
so that the parameters with large differences in the original
distribution have the same weight effect on the model. The
calculation formula is presented in eq 10

x
x x( )

SDst =
(10)

where x is the original data, xst is the normalized data, x̅ is the
mean value of data, and SD is the standard deviation.

According to previous research results,34 unless the data
used for the BP neural network were of peculiar discontinuity,
a hidden layer was sufficient to approximate most functions.
Therefore, a hidden layer of the BP neural network was used in
this study.

After determining the number of hidden layers, a key step
was to select the appropriate number of hidden layer neurons,
which was set according to the empirical equation 11.35

N I O h= + + (11)

where N is the number of neurons in the hidden layer, I is the
number of neurons in the input layer, O is the number of
neurons in the output layer, and h represents the constant
between 1 and 10.

According to eq 11, the number of hidden layer neurons was
3−12. A trial-and-error method determined the number of
hidden layer neurons. Different numbers of neurons were used
for training, and the quality of the neural network was
determined by comparing the root mean square error (RMSE)
and the coefficient of determination (R2). RMSE is the mean
square error between the output and target, which is usually
used to evaluate the similarity between the predicted value and
the actual value. The lower RMSE indicates a better robustness
of the model. The R2 value was usually used to measure the
correlation between the predicted value and the target value.
The R2 value close to 1 means that there is a close relationship
between the predicted results and the actual data, indicating
that the prediction accuracy was high. RMSE and R2 can be
calculated as follows in eq 12

R
y y

y y
1

( )

( )
i
n

i i

i
n

i

2 1
M P 2

1
M 2= =

= (12)

n
y yRMSE

1
( )

i

n

i i
1

M P 2=
= (13)

where yM is the measured value of SMD, y̅ is the mean value of
yM, and yP is the predicted value of SMD with a BP neural
network.

As shown in Figure 4 with the increase in the number of
neurons, RMSE gradually decreased and R2 gradually
increased. When the number of hidden layer neurons was
11, the maximum R2 and minimum RMSE were obtained,
indicating that the BP neural network with 11 neurons in the

hidden layer performed best according to the RMSE and R2

results.
In addition, the trial-and-error method was also used to

check whether the data set size was appropriate. As shown in
Figure 5, with the increase in the size of the data set, RMSE

gradually decreased and R2 gradually increased until the size of
the data set reached 400. This indicated that a 900 data set is
enough for training the BP network used in the present study.

3. RESULTS AND DISCUSSION
3.1. BP Neural Network Training Results and

Experimental Validation. Figures 6−9 show the regression
plot of final results, training, validation, testing, and the overall
process in this study. As illuminated in Figure 6−9, the black

Figure 4. Variation of RMSE and R2 with the number of hidden
neurons.

Figure 5. Variation of RMSE and R2 with the size of the data set.

Figure 6. Regression analysis for the training step.
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solid line indicated that the predicted value was equal to the
actual value, namely, the most optimal prediction result; the
relative error (RE) was defined to represent the prediction
accuracy of a single point, which can be calculated as

y y
y

RE 100%
M

= ×
(14)

The closer the predicted points were to the black solid line,
the smaller the relative error of the prediction results was. All
of the relative errors between the predicted value of SMD and
the experimental data were less than 20%, indicating that the
prediction results of the BP neural network are very

satisfactory, independent of the randomly grouped training,
validation, and testing data. It was also worth noting that in
these three processes, R2 was higher than 0.96, indicating that
the prediction accuracy was high.

To further validate the BP neural network training results
and avoid the phenomenon of overfitting, an extra set of
experimental data was selected for testing. The geometry and
condition parameters are shown in Table 3. This set of data

was not used in the previous process (training, validation, and
test). The prediction results of the BP neural network are
shown in Figure 10. The RMSE and R2 values were 1.4613 and

0.9599, respectively. The relative error of the predicted SMD
for the whole extra data set is less than 20%, and 90% of the
data point error is less than 10%, indicating that the model did
not show overfitting problems and had a wide range of
applications. Hence, the BP neural network was able to predict
the SMD of droplets generated by a swirl cup airblast fuel
injector with other geometries and condition parameters.

In order to further analyze the prediction accuracy, Figures
11−15 show the measured and predicted values of SMD for
the change of ΔPa/Pa and mf with different Z in extra SMD
tests. Solid lines represent BP neural network prediction
results, and discrete points represent experimental results. With
the increase of mf both measured and predicted SMD values
show a declination tendency, this was because the fuel supply
pressure also increased with the increase of mf, which improved
the atomization quality of the pressure fuel injector.

A comparison of the predicted and measured values showed
that the predicted SMD results were larger regardless of the
ΔPa/Pa and mf at Z = 20 and 30 mm, and SMD differences of
up to 3.94 μm were observed at Z = 20 mm, mf = 3 kg/h, and
ΔPa/Pa = 2%. In addition, most of the predicted values were
large relative to the actual values at Z = 40−60 mm, and the

Figure 7. Regression analysis for the validation step.

Figure 8. Regression analysis for the test step.

Figure 9. Regression analysis for the BP neural network.

Table 3. Geometry and Condition Parameters for Extra
SMD Tests

specification value

relative air pressure drop, ΔPa/Pa (%) 2−5
fuel mass flow rate, mf (kg/h) 2.0−4.0
primary swirl number, SNp −0.803
secondary swirl number, SNs 0.770
venturi angle, θv (deg) 50
axial location, Z (mm) 20−50

Figure 10. Regression analysis for the extra set of experimental data.
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maximum difference of 2.52 μm is observed at Z = 60 mm, mf
= 32 kg/h, and ΔPa/Pa = 2%. This indicated that the
prediction accuracy of the neural network was better at Z =
40−60 mm. The reason was that the data used in the training
step came from different geometries, and the different
geometries born about the change of the near swirler flow
field further affected atomization. At Z = 20 and 30 mm, the
spray was not completely secondary atomized; as a result, the
particle size fluctuated greatly, which had an adverse effect on
the prediction accuracy of the neural network. However, at Z =

40−60 mm, the spray was completely atomized under different
geometries, and the variation of spray particle size was
relatively slight, which was beneficial to the prediction of the
neural network.

3.2. Sensitivity Analysis. Although the trained neural
network can predict the SMD values well, it can be difficult to
obtain a clear physical or functional relationship between the
SMD values predicted by the BP neural network and the input
parameters.

Therefore, a systematic “elimination method” sensitivity
analysis was conducted to analyze the influence of the initial
input parameters on the prediction accuracy and to determine
the most significant parameter.36

In the first step, every parameter among the six parameters
was eliminated, and other parameters were retained. Then, the
process was performed on the remaining parameters to obtain
a new BP neural network model, and the new model was
compared with the original model trained with all input
parameters in terms of both R2 and RMSE. If the eliminated
parameter was critical for SMD, the new model trained by
eliminating this parameter would have higher RMSE and lower
R2.

The results of the sensitivity analysis are illustrated in Table
4 and Figure 16, which compared the R2 and RMSE with the
results after eliminating ΔPa/Pa, mf, SNp, SNs, θv, and Z,
respectively.

The results show that the trained neural network has the
highest R2 and the lowest RMSE after eliminating the input

Figure 11. Comparison between predicted and measured values of
SMD at Z = 20 mm.

Figure 12. Comparison between predicted and measured values of
the SMD at Z = 30 mm.

Figure 13. Comparison between predicted and measured values of
SMD at Z = 40 mm.

Figure 14. Comparison between predicted and measured values of
SMD at Z = 50 mm.

Figure 15. Comparison between predicted and measured values of
SMD at Z = 60 mm.
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parameter of SNp, which indicated that SNp had the least effect
on the prediction accuracy of SMD. After eliminating the ΔPa/
Pa, the trained neural network had the smallest R2 and the
highest RMSE, indicating that the ΔPa/Pa was the main factor
that affected the prediction accuracy of SMD.

From the results, we can also determine that the R2 and
RMSE of the trained neural network vary greatly by excluding
mf and ΔPa/Pa, which are the two condition parameters,
respectively, while the R2 and RMSE of the trained neural
network vary little by excluding the number of SNp, SNs, and
θv, which were the three geometrical parameters, indicating
that for the nozzle used in this study, the effect of condition
parameters was greater than that of the geometry parameters.

3.3. Comparison between BP Neural Network and
SMD Correlation Formulas. As mentioned in the
Introduction section, a large number of studies have been
conducted on airblast atomization in the past few decades and
presented many empirical and semiempirical correlation
formulas for estimating SMD. These correlations connect
SMD with the operating range of air and the liquid,
measurement location, and the type of injector. To evaluate
the BP neural network, it is necessary to compare the
prediction accuracy of the BP neural network and SMD
correlations.

The BP neural network performances based on SMD results
at 50 mm downstream of the swirl cup exit for samples in
Table 3 are compared with that of the existing correlations,
which are listed in Table 5.

Table 4. Sensitivity Analysis Results for Input Parameters

case eliminated input parameter R2 RMSE

Case 1 NA 0.9689 0.0443
Case 2 mf 0.5272 0.1381
Case 3 ΔPa/Pa 0.4437 0.1831
Case 4 SNp 0.8548 0.0840
Case 5 SNs 0.7824 0.0976
Case 6 θv 0.7664 0.0936
Case 7 Z 0.7747 0.1086

Figure 16. Sensitivity analysis results for the input parameter.

Table 5. Correlations to Predict SMD from Previous Investigations
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where σ is the surface tension of fuel; ρa and ρf are air and
fuel densities, respectively; μa and μf are the air and fuel
viscosities, respectively; ua and uf are the mean velocities of air
and fuel at the swirler exit, respectively; ALR is the air-to-fuel
ratio (ma/mf); and d0 is a characteristic dimension, which is the
diameter of the swirler exit. A, B, and C are empirical constants
that depend on the shape of the nozzle and are calculated with
the experimental SMD results. Since some correlations contain
two unknowns A and B, it is necessary to obtain the optimal
solution that satisfies both. In this study, the empirical
constants A and B are obtained by two variable linear
regression analyses and C is calculated by linear regression
analyses.

Lefevre proposed the most widely used correlation 15 for
airblast atomization, and this correlation was composed of two
parts. The first part considered the effects of aerodynamic
force, and the second part considered the physical properties of
the liquid. Based on correlation 15, correlations 16−20 were
derived by other researchers, which were also widely used for

SMD prediction in the case of airblast atomization. The
structures of these correlations were quite similar, with only
the exponents modified, or characteristic dimension d0 was
eliminated.

Correlation 21 was derived by Hsiang and Faeth, they
focused on the secondary breakup of the droplet and ligaments
in the shear breakup regime.

Correlation 22 was developed by Sattlemayer and Wittig
based on the experiments with a planar prefilmer; in this
correlation, only air velocity and fuel surface tension had
effects on droplet size.

Correlation 23 was developed by Aigner and Wittig on the
swirl injector; in their opinions, fuel volume and viscosity have
no direct effect on droplet size near the prefilmer tip.

More recent formulas for SMD estimation of airblast
atomization are correlations 24 and 25.

Correlation 24 was based on the investigation by Chen et al.
for air-assisted atomizers. They formulated the correlation with

Table 6. Comparison of Prediction Accuracy between Prediction Correlations and BP Neural Network at Z = 50 mm

Figure 17. Comparison between BP neural network and PSO-BP neural network, GRNN.
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fuel viscosity, injection pressure, and airblast pressure by using
the linear fitting of the design of the experiment (DoE).

Varga et al.’s correlation 23 was based on airblast
atomization with a high-velocity gas stream and focused
primarily on the disintegration of the liquid jet rather than the
droplet sizes.

To evaluate the prediction accuracy quantitatively, the
predicted relative errors are summarized in Table 6. The shade
of color in the table represented the size of the error. A darker
color means a larger error. As can be seen from Table 6, the
prediction accuracy of correlations 15, 16, and 18−20 was
relatively good, with overall errors within 20%; however, the
prediction accuracy of correlations 17, 21, 22, and 25 was very
poor, and the prediction error of some conditions reaches
more than 40%. The accuracy of BP prediction was within
10%, and the maximum prediction error was only 7%, which
was much better than other correlations.

3.4. Comparison between BP Neural Network and
Other Neural Networks. As mentioned in the Introduction
section, in addition to a BP neural network, there are several
neural network models for predicting SMD including particle
swarm optimization BP neural network (PSO-BP) and
generalized regression neural network (GRNN). PSO
algorithm is an evolutionary algorithm developed by Eberhart
and Kennedy in 1995.44 PSO-BP is a BP neural network that
uses the PSO algorithm to iteratively optimize the coefficients
of each layer in the BP neural network to obtain the best
performance.45 GRNN is a memory-based feed-forward
network that is based on the assessment of probability density
function.46 The main function of the GRNN is to estimate a
regression surface, whether it is linear or nonlinear, based on
the independent variables (also known as input vectors), while
considering the dependent variable.47

Figure 17 shows the R2, RMSE, and running time of the BP
neural network, PSO-BP, and GRNN. It can be found that the
R2 and RMSE performances of BP and PSO-BP are similar, but
the running time of PSO-BP is much longer than that of the
BP neural network. The R2 and RMSE of GRNN are worse
than those of the BP neural network under the same number of
hidden layers (11 layers). When the number of hidden layers
of the GRNN increases to 100, the prediction results of GRNN
and BP are similar. This indicated that, for the predicting target
in the present study, the BP neural network shows the
advantages of simple structure and short running time
compared with other neural networks.

4. CONCLUSIONS
The purpose of this study was to establish a novel and effective
SMD prediction model for a swirl cup airblast fuel injector by
the BP neural network. Geometry parameters (primary swirl
number, secondary swirl number, venturi angle), condition
parameters (mass flow rate of fuel, relative air pressure drop),
and axial distance from the swirler exit were used to train the
BP neural network model.

The results show that a BP neural network model can be
successfully developed for a highly accurate SMD prediction
with smaller RMSE and higher R2. Through validation by extra
experimental SMD results, it is implied that the BP neural
network model has good generalization and is able to predict
other swirl cup airblast fuel injector geometric combinations.

Based on sensitivity analysis of input parameters in the BP
neural network model, it could be obtained that the relative air
pressure drop and primary swirl number were the largest and

smallest factors affecting the SMD prediction accuracy. For the
swirl cup airblast fuel injector used in this study, geometry
parameters had a greater influence on SMD than the condition
parameters.

In addition, compared with the empirical and semiempirical
correlations of SMD in previous studies, the BP neural network
model shows lower prediction error, which is superior to those
correlations in previous studies. Moreover, for the predicting
target in the present study, the BP neural network shows the
advantages of a simple structure and short running time
compared with PSO-BP and GRNN.

Hence, the BP neural network model is more suitable for the
SMD prediction for the complex atomization process of the
swirl cup airblast fuel injector.
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■ NOMENCLATURE
ALR air-to-liquid mass flow ratio
A, B, C experimental parameters, varying dimensions
b bias
d0 characteristic size, mm
Gφ axial flux of the angular momentum
Gz axial thrust
I, O the number of neurons in the input and output layer
P pressure, MPa
SD standard deviation.
RMSE root mean square error
R2 coefficient of determination
SN Swirl number
SMD Sauter mean diameter
u velocity, m/s
wd axial width of primary swirl channel
w weight
Z axial positions from fuel injector exit

■ GREEK CHARACTERS
α primary swirler angle
β secondary swirler angle
θ angle
ψ blockage factor
Δ differential between the inlet and exit
ρ density, kg/m3
σ surface tension, N/m
μ dynamic viscosity, kg/(m·s)

■ ABBREVIATIONS
PDPA phase doppler particle analyzer
BP backpropagation neural network
ANN artificial neural network

■ SUBSCRIPTS
a air
f fuel
r radial distance of measurement points from the swirler

cup axis
p primary swirl
s secondary swirl
v venturi
i, j, k BP neural network nodes
M measured value
P prediction value
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