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Abstract

Photochemical uncaging techniques use light to release active molecules from otherwise inert 

compounds. Here we expand this class of techniques by demonstrating the mechanical uncaging 

of a reactive species within a single protein. We prove this novel technique by capturing the 

regiospecific reaction between a thiol and a vicinal disulfide bond. We designed a protein that 

includes a caged cysteine and a buried disulfide. The mechanical unfolding of this protein in the 

presence of an external nucleophile frees the single reactive cysteine residue, which now can 

cleave the target disulfide via a nucleophilic attack on either one of its two sulfur atoms. This 

produces two different and competing reaction pathways. We use single molecule force 

spectroscopy to monitor the cleavage of the disulfides, which extends the polypeptide by a 

magnitude unambiguously associated with each reaction pathway. This allowed us to measure, for 

the first time, the kinetics of disulfide bond isomerization in a protein.

Disulfides, formed by the oxidation of the sulfhydryl groups of two cysteine residues, are 

the most widespread cross-links in proteins. Differently to other covalent bonds, disulfides 

can be highly dynamic in physiological conditions as a consequence of a set of reactions 

known as thiol/disulfide exchange1. In these reactions, electrons are reshuffled between a 

thiolate (R1-S−) and a disulfide bond (R2-S-S-R3) via an SN2 mechanism that produces a 

different disulfide and a new thiolate2 (Figure 1a). The relative rate of reactions (1) and (2) 

in Figure 1a is referred to as the regiospecificity of the reaction, a concept of the highest 

importance in thiol/disulfide exchanges in biology. Crucial cellular processes, such as the 

acquisition of native disulfide bonds of proteins in the endoplasmic reticulum, involve 
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regiospecific thiol/disulfide exchange reactions3,4. Although the interaction between redox 

agents and proteins containing only one disulfide bond is relatively straightforward, a much 

more complex scenario is predicted for the ~19% of proteins with multiple disulfides. For 

example, when a disulfide in a protein with more than one disulfide bond is reduced, 

reactive cysteine residues are generated that can react with the remaining disulfides, leading 

to disulfide isomerization. Because of their general inability to differentiate isomers with the 

same oxidation state, current bulk technologies have serious limitations to discriminate 

parallel intramolecular reaction pathways. These bulk approaches usually rely on quenching 

agents to freeze thiol/disulfide exchange reactions at specific times. The reaction mixtures 

are then analyzed by means of techniques such as HPLC, electrophoresis or NMR1,4. Even 

though smart experimental protocols and careful analysis of the results have provided 

average rates for intramolecular thiol/disulfide exchange, the values obtained span several 

orders of magnitude5–7. In addition, divergent interpretations are frequently given to the 

experimental results8,9. Furthermore, when studying the kinetics of a thiol/disulfide 

exchange, bulk techniques have to deal with the unavoidable interference coming from the 

reverse reaction. Hence, the prevalence of disulfide isomerization reactions in proteins 

remains to be unambiguously quantified. To this end, it is necessary to obtain unequivocal 

and regiospecific rates for discrete thiol/disulfide exchange reactions occurring within 

proteins.

In this work, we report the first direct observation of disulfide isomerization in a protein. 

With that aim, we caged a reactive cysteine residue in a protein disulfide. Using single-

molecule force-clamp spectroscopy, we freed the reactive cysteine and studied its 

regiospecific reactivity towards a second disulfide. Different reaction pathways were 

distinguished by their different associated extensions of the polypeptide chain. Our 

experimental approach has allowed the first unambiguous description of the kinetics of 

intramolecular isomerization of disulfides in proteins. Thus, using our new single-molecule 

methodology, it becomes possible to dissect the increased complexity in thiol/disulfide 

exchange reactions in polypeptides with more than one disulfide.

RESULTS

Increased complexity in the reduction of a protein with two disulfides

In previous reports, we have shown that single-molecule force-clamp spectroscopy by 

atomic force microscopy (AFM) can monitor the reduction of single disulfides in real 

time10,11. When proteins containing a disulfide are unfolded under forces of few hundreds of 

piconewtons, they extend up to the disulfide (Figure 1b). Similar to most other covalent 

bonds, disulfides cannot be broken by forces below ~1 nN10,12. Only if a reducing agent is 

present in solution can the disulfide be cleaved, which is detected as an additional extension 

of the polypeptide chain. Importantly, the magnitude of this extension is determined solely 

by the number of amino acids trapped behind the disulfide13 (Supplementary Text). 

Furthermore, the reaction is irreversible when studied under force, as both cysteines become 

separated after the extension of the polypeptide. Thus, the kinetics of the reaction can be 

monitored with no interference from the reverse reaction. In Figures 1c and 1d, we show 

experimentally obtained reduction events from two polyproteins (i.e. single polypeptide 
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chains composed of several modules of the same protein molecule) consisting of I27 

domains with a single disulfide bond, (I2732–75)8 and (I2724–55)8, in the presence of L-Cys 

and at a force of 250 pN. A single population of reduction events is detected at 14.5 nm for 

I2732–75, or 10 nm for I2724–55 (Figures 1c, d). As expected, both experimental values 

match the predicted ones (Supplementary Text). To study the increase in complexity in the 

reduction of a protein with multiple disulfides, we performed the same experiment on a 

polyprotein containing I27 modules with both disulfides 24–55 and 32–75; (I272S-S)4 

(Figure 1b, Supplementary Figures S1, S2, Supplementary Text). The results we obtained 

for (I272S-S)4 cannot be explained by the simple combination of step sizes found for the 

single-disulfide I27 variants (Figures 1c, d, e). On the contrary, the presence of both 

disulfide bonds in I272S-S generates a much more complex distribution of step sizes, with at 

least four different populations centered at 2–3, 4, 7–8, and 10 nm (Figure 1e).

Force-clamp spectroscopy detects specific disulfide isomerization reactions

We hypothesized that the increase in complexity found in the reduction by L-Cys of I272S-S 

could arise from intramolecular thiol/disulfide exchange reactions. To quantify the kinetics 

of these isomerization reactions, it was first necessary to assign the experimental reduction 

steps to specific thiol/disulfide exchange reactions. With this aim, we took advantage of the 

fact that the step sizes of disulfide reduction detected in force-clamp can be predicted from 

the number of amino acids released after cleavage of the disulfide13 (Supplementary Text).

The most prevalent step found in the reduction of I272S-S is characterized by an increase in 

length of 4 nm. We observed that these steps tended to happen before other events, 

suggesting that they mark the initial event in the reduction of an I272S-S domain (Figures 1e, 

2). The reduction of disulfide 32–75 in I272S-S would release 12 amino acids corresponding 

to a 4-nm elongation of the polypeptide chain (Supplementary Text, Supplementary Figure 

S3). In contrast, the initial reduction of 24–55 could never produce a 4-nm step 

(Supplementary Text, Supplementary Figure S4). Therefore, we assigned the 4-nm steps to 

the reduction of disulfide 32–75 in I272S-S.

Immediately after cleavage of disulfide 32–75, Cys75 is pulled away by force, while Cys32 

remains in the vicinity of disulfide 24–55 (Figure 2, Supplementary Figure S3). Thus, 

disulfide 24–55 can be cleaved following three different reaction pathways (Figure 2). As 

demonstrated above for I2724–55, the straightforward reduction of disulfide 24–55 by an 

external L-Cys molecule extends the protein by 10 nm (Figures 1d, 2a). However, if instead 

of L-Cys, Cys32 attacks disulfide 24–55 at Cys55, the protein is extended by 3 nm 

(predicted extension 2.8 nm). This reaction generates a new disulfide bond, 32–55, not 

present in I272S-S (Figure 2b). Alternatively, if Cys32 reacts with the sulfur at Cys24, an 8-

nm increase in length is observed (predicted extension 8.1 nm). In this case, the reaction 

renders a disulfide between residues 24–32 (Figure 2c). Whenever the reduction of disulfide 

24–55 is mediated by Cys32, a second step adding up to the 10-nm total extension follows 

the initial 3 or 8-nm steps, indicating the cleavage of the newly isomerized disulfide by an 

external L-Cys molecule (Figures 2b, c). Thus, the different regiospecific thiol/disulfide 

exchange reactions described in Figure 2 explain the different populations of step sizes 

found in the reduction of I272S-S (Figure 1e). The three pathways start with the cleavage of 
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disulfide 32–75 rendering a 4-nm step. The events detected afterwards are a signature of the 

particular reduction pathway. Two of the reactions are intramolecular thiol/disulfide 

exchanges, which had not been directly observed before. To unambiguously assign the 

different step sizes to any of the possible reaction pathways, both the size of the steps and 

the order in which they appear in a trace were employed (Figures 1e, 2).

Kinetic characterization of the intramolecular isomerization of disulfides

To get information about the kinetics of the reactions, we developed a model accounting for 

all the possible reaction pathways for the reduction of I272S-S by L-Cys, including the 

regiospecificity of two of the reactions (Figure 3a, for a full description, see Supplementary 

Text). Our model predicts that the frequency of appearance of the different steps is governed 

both by the corresponding rate constants and the concentration of L-Cys. For example, the 

first-order constants k1 and k7 at a given concentration of L-Cys determine the rate of 

appearance of the 4-nm steps. However, the appearance of the 10-, 3- and 8-nm steps is a 

much more complex scenario. First, they only happen after a 4-nm step, so their frequency 

depends on the rate of occurrence of the 4-nm steps. In addition, as they are the signature of 

competing reaction pathways, their frequency does not only depend on their characteristic 

rate constants, but also on the competing constants. Despite this complexity, the model 

implies a simple expected behavior: at high concentrations of L-Cys the frequency of the 10-

nm steps should increase at the expense of the 3- and 8-nm steps. This is a direct 

consequence of the competition between inter- and intramolecular thiol/disulfide exchange 

reactions, with the former being accelerated by increasing concentrations of external L-Cys 

(Figure 3a, top). In addition, the relative frequency of the 3- and 8-nm steps should be 

independent of the concentration of L-Cys, as both pathways are purely intramolecular. 

Thus, to test the validity of the kinetic model, we monitored the reduction of I272S-S in the 

presence of increasing concentrations of L-Cys. We computed the frequency of appearance 

of the 10-, 3- and 8-nm steps. As predicted by our model, at high concentrations of L-Cys 

the 10-nm steps become more prevalent, while the 3- and 8-nm steps appear less frequently 

(Figures 3b, c). At the same time, the relative frequency of the 3- and 8-nm steps is 

independent of the concentration of L-Cys (Figure 3d).

In order to quantify the rate of the reactions, we computed the dwell times associated with 

every type of event (Supplementary Figure S2). Time courses of appearance of the different 

step sizes were generated by plotting the cumulative number of events at each particular 

dwell time (Figure 3e, Supplementary Figure S5). As expected from the end-point results 

discussed above, we found that the kinetics of appearance of the steps is also highly 

dependent on the concentration of L-Cys (Figure 3e). To find the rate constants that best fit 

our experimental data, we solved the coupled differential equations governing the time 

evolution of our model system (i.e. the probability of the system occupying each of the 

states depicted in Figure 3a). We then used a downhill simplex method to find the optimal 

parameters that minimized the discrepancy between the predicted outcome and the 

experimental data (Supplementary Text). Using this procedure, we determined a set of rate 

constants that predict kinetic traces highly similar to the experimental results (Figure 3e, 

Supplementary Figure S5). As a further test, we used the same rate constants to fit the 

frequency of the different step sizes as predicted by our model (Supplementary Text). The 
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fits of Supplementary Equations S4–S6 to the frequencies of appearance of the different step 

sizes are remarkably accurate (Figure 3b).

DISCUSSION

In vivo, thiol/disulfide exchange reactions are highly dynamic and regiospecific, and often 

involve the participation of transient disulfides14–17. These properties generate complex 

behaviors in proteins with multiple disulfide bonds, such as the intramolecular isomerization 

of disulfides described in this report. However, so far it has been impossible to predict the 

extent of these ubiquitous isomerization reactions because no accurate estimates existed for 

the rate of intramolecular thiol/disulfide exchange occurring in proteins. This is a 

consequence of the lack of experimental methods able to dissect parallel reaction pathways 

while retaining kinetic information1,4,18.

Our experimental approach bears a resemblance to the photochemical uncaging experiments 

frequently employed to study biological processes such as neurotransmitter physiology or 

Ca2+-mediated cell signaling19,20. In our case, we caged Cys32 in the form of an inert 

disulfide with Cys75 in I272S-S. After the forced unfolding of I272S-S in the presence of L-

Cys, the reactive Cys32 is uncaged and situated in the vicinity of disulfide 24–55. This 

allowed us to monitor the three different competing reaction pathways available for cleavage 

of disulfide 24–55 in a synchronized manner (Figure 4a). Using an analytical optimization 

procedure, we obtained the rates for each one of the discrete competing pathways (Figure 

4b). Thus, for the first time, we have directly measured the rate of intramolecular thiol/

disulfide exchange reactions in a protein.

Noticeably, our results provide a regiospecific description of two different thiol/disulfide 

exchange reactions. Regarding the intermolecular cleavage of disulfide 32–75 by L-Cys, we 

found that Cys75 is attacked 2.2 times more frequently than Cys32 (compare k1 and k7 in 

Supplementary Text, Figure 3a). We also observed that the intramolecular attack of Cys32 

on position 55 is 3.8 times more frequent than on position 24 (Figure 4b). Thus, both thiol/

disulfide exchange reactions showed a considerable regiospecificity, the origin of which is 

intriguing. Steric effects should not have a strong influence on the reactivity towards an 

unfolded polypeptide. From a chemical point of view, it has been proposed that the quality 

of a thiolate as a leaving group is related to its pKa, with lower pKa values being associated 

with better leaving groups2. The presence of positive residues next to Cys32 and Cys55 

would suggest that these two cysteines are better leaving groups than their counterparts 

Cys75 and Cys24 (Supplementary Table S1)2. We found that Cys32 is the preferred leaving 

group when cleaving disulfide 32–75. However, Cys24, and not Cys55, is the most frequent 

leaving group in the rupture of disulfide 24–55. Therefore, our results demand new 

theoretical developments that can account for the observed experimental regiospecificities.

The order of magnitude we obtain for the rate of intramolecular thiol/disulfide exchange 

suggests that the spontaneous intramolecular isomerization of disulfides in proteins can 

effectively compete with their intermolecular reduction. Indeed, for small reducing agents 

such as glutathione, the fastest experimental rate constants for protein disulfide reduction are 

~102 M−1s−1 21. Considering that the concentration of glutathione inside cells is 10 mM22, a 
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maximum rate of ~1 s−1 is predicted for disulfide reduction by glutathione. A similar figure 

is obtained for enzyme-catalyzed reduction of disulfides22–24. Thus, with a rate of ~0.3 s−1 

(Figure 4b), the isomerization of disulfides may interfere with physiological redox 

processes. The existence of this unavoidable competition may contribute to explain why 

different mechanisms have evolved to mitigate the harmful effects coming from undesired 

intramolecular thiol/disulfide exchange reactions. An interesting example can be found in 

protein disulfide isomerases25. The malfunction of any such mechanisms could be 

responsible for the persistent formation of aberrant disulfides that may trigger unfolding 

and/or aggregation of proteins. Interestingly, some pathologies such as familial amyotrophic 

lateral sclerosis or cataracts formation have been linked to the formation of incorrect 

disulfides in proteins26,27.

Our study demonstrates the feasibility of mechanically uncaging reactive thiols that can 

engage in subsequent thiol/disulfide exchange reactions. We speculate that similar 

mechanisms may be found as regulatory switches in Biology, since the activity of some 

proteins is controlled by the oxidation state of specific cysteines28. Interestingly, some of 

these proteins are also subject to mechanical stress that can trigger thiol/disulfide exchanges. 

For instance, it has been shown that the adhesion activity of the von Willebrand factor is 

regulated by shear-induced disulfide formation29.

Specific transfers of electrons between cysteine residues are essential for a myriad of 

cellular redox systems14,15,17,30 and their relevance in an increasing number of diseases is 

starting to be unveiled. Additionally, in the emerging field of nanobioelectronics there is a 

need to develop nanoscopic biomaterials able to transport electrons in a controlled 

manner31–33. Our results validate a new platform to study the complexity of intramolecular 

thiol/disulfide exchange reactions in proteins with multiple disulfides. The single-molecule 

approach that we introduce opens up the possibility to systematic studies on how the 

environment of cysteine residues in proteins modifies their reactivity34. Such information 

may be useful both to predict the behavior of cysteines and disulfides in physiological 

reactions and to engineer proteins with particular electron reshuffling properties. Our 

methodology relies on the generation of a reactive thiol group from a buried disulfide. A 

similar experimental design could potentially be employed to study other chemical reactions 

involving thiol groups. The mechanical uncaging of different reactive groups may broaden 

the applicability of our methodology to other chemical reactions that result in the cleavage 

of mechanically resistant covalent bonds.

METHODS

Protein purification

The expression and purification of (I2732–75)8 and (I2724–55)8 has been described before13. 

In order to produce the cDNA for I272S-S, we applied the QuikChange Multi Site-Directed 

Mutagenesis kit from Stratagene (La Jolla, CA) using the cDNA coding for I2724–55 as a 

template. We constructed polyproteins using an iterative process of digestion and ligation of 

DNA fragments, as described before35,36. BamHI and KpnI sites were used to insert cDNAs 

into the expression vector pQE80L (Qiagen, Valencia, CA)36. Protein production in Origami 

B E. coli cells was induced at OD600 ~1.0 with 1 mM IPTG overnight at 23 °C. Soluble 
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proteins were obtained by a combination of sonication and passes through a French press. 

Polyproteins were purified from the soluble fraction by an affinity chromatography using 

Talon resin (Mountain View, CA), followed by an FPLC step in a Superdex 200 column 

(Amersham Biosciences, Pittsburgh, PA). The buffer employed was 10 mM Hepes pH 7.2, 1 

mM EDTA, 150 mM NaCl. We observed that polyproteins based on I27 modules solely 

including cysteine residues at positions 24, 32, 55, and 75 were mainly recovered in the 

insoluble fraction, which precludes purification. However, we found that the amount soluble 

proteins could be improved by decreasing the number of repeats in the polyprotein and by 

mutations affecting the loop between residues 24 and 32. In our experiments, we used a 

polyprotein with four repetitions of I272S-S that included the following substitutions at 

positions 26–30: Ser26-Glu-Pro-Asp-Val30 to Asp26-Asp-Asp-Asp-Lys30. The purification 

procedure applied to this engineered polyprotein rendered homogeneous soluble fractions of 

(I272S-S)4, as estimated by SDS-PAGE (Supplementary Figure. S1).

Single-molecule force-clamp spectroscopy

1–5 µL of a ~0.2 mg/mL (I272S-S)4 solution were deposited onto an evaporated gold 

coverslip. Veeco silicon nitride MLCT (Camarillo, CA) cantilevers were used. They were 

calibrated using the equipartition theorem37. Typical spring constants were in the range of 

15 – 25 pN/nm. To pick up single molecules, the cantilever was pushed against the surface 

at contact forces of ~2 nN for 1–2 seconds, and then retracted. We used a custom-built 

atomic force microscopy (AFM) setup that allows a strict control of the force based on en 

electronic feedback with a ~5 ms response time that controls the extension of the 

piezoelectric actuator38. Experiments were done at room temperature (22 – 25 °C) in 10 mM 

Tris-HCl pH7.6. The effective concentration of L-Cys was calculated as described in the 

Supplementary Text.

Traces showing steps that could be assigned to specific thiol/disulfide exchanges were 

selected. Only traces that showed a pattern of steps that was compatible with the reaction 

pathways described in Figure 2 and Supplementary Figure S4 (>85% of the selected traces) 

were included in the analysis. It has been described before that the criteria used to select 

traces in single-molecule force-clamp experiments can affect the calculated rates39. For 

instance, including traces with short detachment times can bias the results towards faster 

rates. Consequently, we only considered traces that showed long times between the 4-nm 

steps and the detachment event (5.6 mM L-Cys; 20 s; 13.2 mM L-Cys; 10 s, 33.4 mM L-

Cys; 7.5 s; 43 mM L-Cys; 5 s). These cut-off values were chosen according to slow reaction 

events observed for each experimental condition.

The error bars in Figures 3b, c, d were estimated by bootstrapping40. To this end, 10,000 

artificial data sets including the number of observed events for each step size were randomly 

generated from the experimental traces at a given L-Cys concentration. Next, the frequency 

of appearance of each step size was calculated for every simulated data set, resulting in a 

distribution of frequencies. The error bars in Figure 3b are given by the standard deviation 

of such distributions. The errors in the relative frequencies shown in Figures 3c and 3d were 

calculated from the errors in the corresponding absolute frequencies.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Increased complexity in the reduction of a protein with two disulfides
a, Generic thiol-disulfide exchange reactions. b, Schematic experimental setup. Polyproteins 

containing several I27 modules with one or two disulfide bonds are unfolded by force-clamp 

AFM. For the sake of simplicity, only a single I27 module is shown. The depicted I27 

module contains two disulfides linking positions 24–55 and 32–75; I272S-S. After 

mechanical unfolding, disulfides are rendered solvent accessible and can be cleaved by L-

Cys. c, (Left) Experimental trace showing reduction events obtained for (I2732–75)8 

polyprotein in the presence of L-Cys at 250 pN. (Right) The reduction events found for 

(I2732–75)8 are characterized by a single population of 14.5 nm steps. d, (Left) Experimental 

trace showing reduction events obtained for (I2724–55)8 polyprotein in the presence of L-Cys 

at 250 pN. (Right) The step sizes for the reduction events found for (I2724–55)8 fall into a 

single population centered at 10nm. e, (Left) Two experimental traces showing reduction 

events obtained for (I272S-S)4 polyprotein in the presence of L-Cys at 250 pN. (Right) The 

distribution of step sizes for the reduction events found for (I272S-S)4 is not a simple 

combination of the populations found for the proteins with only one disulfide.
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Figure 2. Fingerprints of the pathways available for the reduction of disulfide 24–55 after the 
reduction of disulfide 32–75
In ~95% of the events, disulfide 32–75 in I272S-S is reduced before disulfide 24–55 

producing a step of 4 nm (Supplementary Text, Supplementary Figure S3). Following the 

initial reduction of disulfide 32–75, disulfide 24–55 can be cleaved following three different 

reaction pathways. a, Cleavage of disulfide 24–55 by L-Cys. b, Cleavage of disulfide 24–55 

by the attack of Cys32 on position 55. c, Cleavage of disulfide 24–55 by the attack of Cys32 

on position 24. The figure shows (left) diagrams that illustrate the reaction pathways, 

(center) representative experimental traces, and (right) computed histograms of the step 

sizes associated with each one of the thiol/disulfide exchanges. The step sizes for different 

reactions rarely overlap. Hence, the different step sizes together with the order in which the 

events are detected can be used to assign reaction pathways. In the diagrams on the left, the 

colored lines between residues 24–32 (blue), 32–55 (red) and 55–75 (green) represent the 

polypeptide chain linking the various cysteine residues. The remaining polypeptide chain is 

depicted in gray. The same color code is used in Figures 1b and 4a.
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Figure 3. Kinetic model of complete protein reduction by L-Cys following the initial reduction of 
disulfide 32–75
a, L-Cys can react with either sulfur in disulfide 32–75. (Top) Reaction at position 75 

generates a free thiolate at position 32, which can then react intramolecularly with disulfide 

24–55. This attack can happen at either sulfur atom, and competes with the intermolecular 

reaction with L-Cys. The intramolecular reactions generate new disulfides that can only be 

cleaved by L-Cys. (Bottom) If the initial reaction happens at position 32, the intramolecular 

reactions are blocked by the formation of a mixed disulfide between L-Cys and Cys32. In 
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this case, a free thiol group is generated at position 75, but it is pulled away by force and can 

not participate in intramolecular exchanges with disulfide 24–55. The rate constants 

governing the reactions and their characteristic step sizes are indicated. b, The frequency of 

appearance of the step sizes depends on the concentration of L-Cys. The solid lines are the 

plots of Supplementary Equations S4–S6 using the rate constants derived from the downhill 

simplex method. c, With increasing concentrations of L-Cys, the relative frequency of 

appearance of the 10- and 3-nm increases. d, The relative frequency of the 3- and 8-nm steps 

is independent of L-Cys concentration. e, (Solid lines) Time course for the appearance of the 

different step sizes at two L-Cys concentrations. (Dashed lines) Theoretical curves obtained 

from the rate constants determined using the downhill simplex method. In panels b and e, 

traces are identified by the magnitude of the steps.
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Figure 4. The uncaging of a single cysteine residue in a protein allows calculating the rate of 
spontaneous disulfide isomerization
a, In the presence of external nucleophiles, a single reactive cysteine, Cys32, is uncaged 

after the mechanical unfolding of I272S-S. Cys32 remains in the vicinity of disulfide 24–55, 

which can be cleaved by the reaction of any of its sulfur atoms with Cys32 or by the attack 

of an external L-Cys molecule. b, Using our experimental approach, we determine the rates 

of two intramolecular thiol/disulfide exchange reactions, i.e. the attack of Cys32 to Cys24 or 

Cys55.
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