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Abstract

The logistic mixed model (LMM) is well-suited for the genome-wide association study

(GWAS) of binary agronomic traits because it can include fixed and random effects that

account for spurious associations. The recent implementation of a computationally efficient

model fitting and testing approach now makes it practical to use the LMM to search for mark-

ers associated with such binary traits on a genome-wide scale. Therefore, the purpose of

this work was to assess the applicability of the LMM for GWAS in crop diversity panels. We

dichotomized three publicly available quantitative traits in a maize diversity panel and two

quantitative traits in a sorghum diversity panel, and them performed a GWAS using both the

LMM and the unified mixed linear model (MLM) on these dichotomized traits. Our results

suggest that the LMM is capable of identifying statistically significant marker-trait associa-

tions in the same genomic regions highlighted in previous studies, and this ability is consis-

tent across both diversity panels. We also show how subpopulation structure in the maize

diversity panel can underscore the LMM’s superior control for spurious associations com-

pared to the unified MLM. These results suggest that the LMM is a viable model to use for

the GWAS of binary traits in crop diversity panels and we therefore encourage its broader

implementation in the agronomic research community.

Introduction

The genome-wide association study (GWAS) is one of the most widely used quantitative

genetics analyses in agronomy due to its potential to unlock the genomic sources of pheno-

typic variation [1]. Used as a discovery tool, the GWAS utilizes genome-wide marker sets in

diversity panels to search the genome for polymorphisms that are associated with a phenotype

of interest [2]. A genomic mechanism underlying the ability of a GWAS to successfully identify

marker-trait associations is linkage disequilibrium (LD), defined as the non-random associa-

tion of alleles at different loci [3]. A GWAS uses statistical models to search for indirect associ-

ations between single nucleotide polymorphisms (SNPs) and the phenotype of interest, relying
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on the property of LD to infer the location of the causal variant. The most commonly used sta-

tistical approach for a crop GWAS is to fit a model at each marker, where the trait of interest is

the response variable, and the additive effects of the tested marker are an explanatory variable.

[1].

The unified mixed linear model (MLM; [4]), which uses fixed and random effects to control

for population structure and familial relatedness, is one of the most widely used statistical

models in crop GWAS [1]. This model specifically controls for population structure through

the incorporation of fixed effect covariates (e.g., principal components from a principal com-

ponent analysis of a genome-wide marker set measured in a diversity panel). To account for

relatedness, the unified MLM includes the individuals as a random effect, and then an additive

genetic relatedness matrix (i.e., a kinship matrix) is used to estimate the variance-covariance

between the individuals. Although the unified MLM has successfully elucidated genomic sig-

nals for a wide variety of traits [5–7], it cannot be used to analyze every possible class of agro-

nomic traits because it assumes that the error terms are normally distributed, mutually

independent, and are homoscedastic. For example, when the unified MLM is applied to binary

traits (e.g., “1” = diseased vs. “0” = not diseased), violations of these assumptions are common-

place. Such violations could ultimately result in an empirical type I error rate that is substan-

tially different than what was intended by the researcher [8]. As a result, a mixed model

appropriate for binary traits, for example the logistic mixed model (LMM) [9], is necessary to

identify biologically important signals associated with binary traits.

An extensive amount of research has been conducted for quantitative trait locus (QTL)

analysis of binary traits in biparental crosses and related experimental populations. Many of

these approaches assume that there is an unobserved continuous trait (called the liability) that

underlies the binary trait; individuals with liability values that exceed an unknown threshold

have a value of “1” (instead of “0”) for the binary trait [10]. The likelihood of the liability is

then incorporated into approaches (described in e.g., [11–12]) similar to composite interval

mapping [13–14] that seek to identify QTLs associated with binary traits. These approaches

have been expanded upon to include Bayesian variants [15], to incorporate multi-family

crosses [16–17], to analyze other types of discrete traits [18], and even to replace the likelihood

of the liability with the probability that the binary trait equals “1” [19]. Collectively, this

research sets a precedent into the amount of quantitative genetics and statistical theory, as well

as utilization of the characteristics of the data set being analyzed, that should be investigated

when applying statistical approaches for binary trait GWAS in crop diversity panels.

Important strides in the development of statistical approaches to analyze binary traits and

to account for spurious associations have also been made outside the realm of QTL analyses.

For example a considerable amount of work has been done in human case-control studies

(e.g., [20]), which by design analyze binary traits. Statistical approaches designed to quantify

the effects of genomic loci associated with disease status (a binary trait) have ranged in com-

plexity from conducting a Pearson chi-square test at each SNP [21], to fitting a logistic regres-

sion model at each SNP [22], and even to using a mixed linear model to estimate the total

amount of variation in the liability underlying the binary trait that is attributable to a tested

genome-wide marker set [23]. The usefulness of mixed models to account for spurious associa-

tions has also been identified in association analyses across many species, and several studies

have investigated the adaption of mixed models to analyze non-normally distributed traits

[24–26]. Of all this work, the approach that is most directly applicable for analyzing binary

traits in crop diversity panels is the generalized linear mixed model association test (GMMAT)

[8]. Analogous to the genome-wide efficient mixed-model association approach for quantita-

tive traits [27], GMMAT fits the computationally intensive LMM once, and then conducts a

score test at each SNP to identify genomic loci associated with the binary trait under study.

Logistic mixed model in crop genome-wide association studies
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Given that the computationally efficient GMMAT is publicly available in the GENetic EStima-

tion and Inference in Structured samples (GENESIS) [28] R package and that the LMM is the-

oretically optimal for the GWAS of binary agronomic traits, there is a critical need to use

GMMAT to evaluate the performance of the LMM using actual data from crop diversity

panels.

The purpose of this study was to compare the performance of the LMM to the unified

MLM when analyzing binary traits in real crop diversity panels. To achieve this, we dichoto-

mized three quantitative traits in a maize diversity panel and two quantitative traits in a sor-

ghum diversity panel, and then conducted a GWAS on these dichotomized traits using both

the LMM and the unified MLM. We also simulated an additional two binary traits using the

maize data set to explore how well the LMM and unified MLM control the type I error rate in

the presence of subpopulation structure. The objectives of this work were to i.) assess whether

or not the LMM is capable of identifying the same peak marker-trait associations as those

reported in the analysis of the original quantitative traits, and ii.) use agronomic data to deter-

mine if the LMM is capable of superior control of spurious associations for binary traits where

the observed proportion of “1’s” differ across subpopulations, as was originally demonstrated

using human case-control and simulated data in [8]. We were consequently able to document

the applicability and usefulness of the LMM for analyzing binary agronomical traits.

Materials and methods

Description of phenotypic and genotypic data

We used publicly available phenotypic and genotypic data from two crop diversity panels to

conduct our analyses. One of these diversity panels consists of maize lines, while the other con-

sists of sorghum lines. To assess the performance of the LMM for binary traits where there

were roughly an equal number of observed “0’s” and “1’s”, as well as for binary traits where

there was an unequal number of “0’s” and “1’s”, we dichotomized (i.e., converted to binary

traits) each of five studied quantitative traits twice. First, for a given quantitative trait, all lines

with trait values greater than the 50th percentile were given a value of “1”, while the remaining

lines were given a value of “0”. The second dichotomization was conducted in a similar man-

ner, except that all lines with trait values greater than the 75th percentile were given a value of

“1” and the remaining lines were given a value of “0”. Given that the observed proportion of

“0’s” and “1’s” in a binary trait could theoretically range from [0,1], these two dichotomizations

were essential for determining whether or not any advantages in the performance of the LMM

for binary trait were specific to a particular observed ratio of “0’s” and “1’s”. All genotypic, phe-

notypic, and R scripts used in this work are available at: https://figshare.com/articles/

Shenstone_et_al_2018_zip/7212902.

Goodman maize diversity panel

In its entirety, the Goodman diversity panel [29] contains 302 unique maize lines and captures

75% of all allelic diversity in maize [30]. As such, this panel consists of lines from various sub-

populations of maize, including stiff stalk, non-stiff stalk, tropical, and popcorn lines. We

dichotomized three publicly available quantitative traits measured in various subsets of lines in

this panel. The first, α-tocopherol grain content, was measured in the subset of 252 lines origi-

nally published in [31]. Hypothesized to have a relatively tractable genetic architecture [31–

32], previous studies of this trait in maize have identified peak marker-trait associations in the

vicinity of the ZmVTE4 tocochromanol biosynthetic pathway gene on chromosome 5 [31–33].

The second trait from this panel dichotomized for this study was zeaxanthin levels measured

in the grain of a subset of 201 lines with non-white kernels, which was originally published in

Logistic mixed model in crop genome-wide association studies
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[34]. Although this trait is hypothesized to be controlled by a small number of genes, the

strength of the peak marker-trait associations identified for this trait (analyzed in [34]) were

not as strong as those identified for α-tocopherol. The final trait we dichotomized in this panel

was ear height (http://www.maizegenetics.net/tassel) measured in a subset of 278 lines. A pre-

vious GWAS of this trait in the Goodman diversity panel [35] did not identify any statistically

significant marker-trait associations.

The genotypic data used in this study have been extensively documented elsewhere (e.g.,

[34] and [35]). In total, between 294,290–299,723 SNPs obtained from the Illumina Mai-

zeSNP50 BeadChip ([36], available at https://cbsusrv04.tc.cornell.edu/users/panzea/download.

aspx?filegroupid=7), genotyping-by-sequencing ([37], available at https://cbsusrv04.tc.cornell.

edu/users/panzea/download.aspx?filegroupid=5) and various other genotyping technologies

[4,37] were used in the analysis of these data. As done in previous studies (e.g., [31,34]), the

missing values of all SNPs were imputed with the major allele.

US sorghum association panel

We analyzed a total of 320 accessions from the US sorghum association panel [38]. Similar to

the Goodman maize diversity panel, this sorghum diversity panel contains accessions that are

representative of the entirety of sorghum diversity. Both of the quantitative traits that we

dichotomized were analyzed and published in [38] and [39]. The first of these traits, plant

height, is considered to be polygenic. The GWAS conducted by [38] underscores this conjec-

ture by identifying two genomic regions exhibiting peak marker-trait associations. In contrast

the second trait, branch length, is thought to be more complex, and the corresponding GWAS

did not identify as strong marker-trait associations. We used a total of 115,767 GBS SNPs orig-

inally from [40] in our analyses. Consistent with the analysis of the Goodman maize diversity

panel, all missing genotypic data were imputed with the major allele.

Statistical models considered for GWAS

Logistic mixed model (LMM). The GMMAT procedure used to fit the LMM at each

dichotomized trait and then use the score test to test for a statistically significant marker-trait

association, as has been previously described [8]. Within the context of the work presented in

this paper, the LMM used to associate each marker with each dichotomized trait is presented

as follows:

Yi are independent Bernoulli random variables with expected values:

EfYig ¼ pi

and variance of:

VarfYig ¼ pið1 � piÞ

and:

log
pi

1 � pi

� �

¼ mþ
X3

k¼1
bkPCik þ axi þ Linei;

and:

πi = P{Yi = 1} = probabiltiy that the binary trait at the ith line takes on a value of 1,

μ = the grand mean,

βk = fixed effect of the kth principal component (PC),

PCik = value of the kth PC for ith line,
α = fixed additive effect of the tested marker,

Logistic mixed model in crop genome-wide association studies
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xi ¼ observed genotype of tested marker for the ith line;

¼

0; if aa

1; if Aa or aA

2; if AA

;

8
>>><

>>>:

Linei = Random effect of the ith line,
and:

ðLine1; . . . ; LinenÞ � MVNð0; 2Ks2
GÞ, and:

K = kinship (i.e. additive genetic relatedness) matrix
For the traits analyzed in maize, the PCs and kinship matrix described in [31] were used.

Similarly, the 115,767 GBS SNPs from [40] were used to obtain the PCs and kinship matrix

(calculated with the method described in [41]) used in the analysis of the sorghum data. For

both panels, the first three PCs were determined to adequately control for population structure

(S1 and S2 Figs), which is consistent with previous GWAS of both data sets (e.g.,[31,38]). The

use of the score test by GMMAT substantially reduces computational burden because the

LMM only needs to be fitted once (without any marker included as an explanatory variable)

for a given GWAS [9]. The computational time required to run an LMM-based GWAS on

these data using GMMAT on a MacBook Pro was similar to that required for running unified

MLM-based GWAS (S1 Table). We used the Benjamini-Hochberg procedure [42] to control

the false discovery rate (FDR) at 5% and 10%.

Unified MLM. For each dichotomized trait, a second GWAS was conducted using the

unified MLM [4] with population parameters previously determined [43] in the Genome

Association and Prediction Integrated Tool (GAPIT) R package [44]. Within each species, the

same respective PCs and kinship matrix as those considered for the LMM were also used for

this GWAS. Again, the FDR was controlled at 5% and 10% using the Benjamini-Hochberg

procedure [42].

Comparison of false positive control between the LMM and unified MLM

Using an asthma case-control study and simulated data, [8] demonstrated that when the prev-

alence of a binary trait (i.e., the probability that a binary trait equals “1”) substantially differs

for at least one subpopulation of individuals in a data set, a GWAS using the unified MLM will

inadequately control for type I errors. Moreover, this previous study showed that it is poten-

tially difficult to identify such erroneous type I error rates using standard diagnostic

approaches (e.g., a QQ-plot of −log(10) P-values or calculating a genomic control, or GC, sta-

tistic [45]) because SNPs that are more common in the subpopulation with higher prevalence

tend to have more significant P-values than expected under H0: No marker-trait association

from the unified MLM, while SNPs that were more rare in the same subpopulation tended to

have less significant P-values under the same null hypothesis. Finally, [8] demonstrated that

the LMM has superior control of the type I error rate regardless of the distribution of SNP

alleles within the subpopulations. Given the importance of this result, we conducted an analy-

sis similar to [8] on our data to determine if it is possible to observe inadequate control of the

false positive rate when using the unified MLM to analyze binary traits in a crop diversity

panel.

Due to the availability of information on its subpopulation structure, we chose to use the

Goodman maize diversity panel for this analysis. Based on our observation that tropical lines

in this panel tended to have larger ear height than non-tropical lines, we decided that ear

height dichotomized at the 75th percentile would be the ideal trait to analyze. That is, we

hypothesized that we would observe a substantially higher proportion of “1’s” for this trait in

Logistic mixed model in crop genome-wide association studies
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the tropical subpopulation compared to other subpopulations. Thus for this trait, we filtered

out all 32,110 SNPs that were monomorphic within either of these two subpopulations (i.e.,

tropical and non-tropical) and assessed the distributions of test statistics and P-values from the

remaining 262,191 SNPs. Following the analysis of [8], we used minor allele frequencies

(MAFs) to subdivide these SNPs by the expected variance of allele frequencies [2MAF

(1-MAF)] within these two subpopulations as follows: i.) all SNPs where the ratio of expected

variance between tropical and non-tropical was less than 0.80 (i.e., SNPs that tended to be

more common in the non-tropical subpopulation), ii.) all SNPs where the ratio was between

0.80 and 1.25 (SNPs that have similar allele frequencies in both subpopulations), and iii.) all

SNPs where this ratio was greater than 1.25 (SNPs that tended to be more common in the trop-

ical subpopulations). We then used QQ-plots of the −log(10) P-values and GC of SNP test sta-

tistics within and across these three subdivisions of SNPs to assess the extent to which the

unified MLM and LMM were controlling for spurious associations. In general, GC inflation

factors [45], estimated as a function of the median of the test statistics across all SNPs, that are

close to λ = 1 suggests that test statistic values are not unduly inflated (or deflated) by popula-

tion structure.

To further explore the influence of unequal proportion of “1’s” of a binary trait among

these two subpopulations on the empirical null distribution of P-values from the LMM and the

unified MLM, we repeated the above analysis on two binary traits simulated on the same all

n = 278 maize lines with ear height data. The first binary trait was generated by simulating Ber-

noulli(π = 0.5) random variables for each of the 64 tropical maize lines and Bernoulli(π = 0.05)

random variables on the 216 non-tropical maize lines, while the second binary trait was gener-

ated by simulating Bernoulli(π = 0.5) random variables on all 278 lines. Because there were no

genetic components underlying these binary traits (i.e., no quantitative trait nucleotides were

simulated), the resulting empirical distributions of P-values from the LMM and unified MLM

were generated under H0: No marker-trait association. Thus, any deviations of these empirical

P-values from the expected Uniform[0,1] distribution would suggest inadequate control of

type I errors.

Results

Results for dichotomizing maize and sorghum quantitative traits at the

50th percentile

To assess the ability of the LMM to analyze binary agronomical traits, we dichotomized three

quantitative traits in maize and two quantitative traits in sorghum based on the 50th percentile

of each trait. For each of these five dichotomized traits, we then used marker data in the

respective maize and sorghum diversity panels to conduct a GWAS using two statistical mod-

els, specifically the LMM and the unified MLM. For each trait, the performance of each model

was evaluated by assessing how well they controlled for spurious associations and how many

statistically significant marker-trait associations that they identified. Both the LMM and the

unified MLM appeared to adequately control for spurious associations when commonly used

diagnostic approaches were implemented (Table 1, Fig 1 and S3–S8 Figs). We then compared

the number of statistically significant associations identified by these two models at 5% and

10% FDR (Table 1). Interestingly for the two dichotomized traits where statistically significant

associations were identified (α-tocopherol in maize and plant height in sorghum), either an

equal or greater number of statistically significant associations were identified by the LMM.

These significantly associated SNPs identified using both models colocalized to the same geno-

mic regions harboring the most significant marker-trait associations in the published GWAS

results of the original quantitative traits reported in [31], [33], [38] and [39](Fig 1).

Logistic mixed model in crop genome-wide association studies
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Results for dichotomizing maize and sorghum quantitative traits at the

75th percentile

We then repeated the same analysis on the same three traits in maize and two traits in sor-

ghum, this time with each trait dichotomized at the 75th percentile. Similar to when these traits

were dichotomized using the 50th percentile, the LMM and the unified MLM appeared to suffi-

ciently control for spurious associations (Table 2, Fig 2 and S9–S14 Figs). However, a different

number of statistically significant associations were obtained from the unified MLM and the

LMM when these traits were dichotomized using the 75th percentile. Interestingly, the unified

MLM identified four SNPs significantly associated with maize ear height at 10% FDR and one

statistically significant marker-trait association for sorghum branch length at 5% FDR (Table 2

and S9 Fig). Despite these differences, the majority of the peak associated SNPs identified by

the two dichotomizations of colocalized to the same genomic regions (Figs 1 and 2).

Demonstration of superior control for spurious associations when using

the LMM in the Goodman maize diversity panel

One major pitfall of using the unified MLM to analyze binary traits is that it could inade-

quately control the type I error rate, especially when certain subpopulations have a substan-

tially different proportion of “1’s” than the remaining subpopulations [8]. Here we

demonstrate that it is possible for conditions that lead to such inadequate control to occur for

a binary trait in agronomic data, and that the LMM provides superior control for spurious

associations when used to analyze the same trait. The specific trait that we used to illustrate

this point was ear height in the Goodman maize diversity panel dichotomized at the 75th per-

centile. For this trait, a substantially greater proportion of tropical maize lines have “1’s” (0.48)

compared to non-tropical lines (0.18), which results in a larger variance for this trait in the

tropical subpopulation (Table 3). We observed that, for this trait, the unified MLM yielded

noticeably inflated −log(10) P-values compared to those from the LMM when used to test

SNPs that had more common allele frequencies in the tropical subpopulation (Fig 3). Although

not as visually apparent, we also observed that for SNPs that were less common in the tropical

subpopulation, the unified MLM produced −log(10) P-values that were more deflated than

those produced by the LMM.

Table 1. Genome-wide association study results for quantitative traits that are dichotomized at the 50th percentile. Number of statistically significant marker-trait

associations and genomic control values from the unified mixed linear model and the logistic mixed model are presented.

Species Dichotomized Trait No. of Significant Associations GCa λ Values

5% FDRb 10% FDR

MLMc LMMd MLM LMM MLM LMM

Maize α-tocopherol 3 3 3 5 1.03 1.03

Maize Zeaxanthin 0 0 0 0 1.02 1.04

Maize Ear Height 0 0 0 0 1.04 1.03

Sorghum Plant Height 35 169 72 259 1.01 1.01

Sorghum Branch Length 0 0 0 0 1.02 0.96

aGC, Genomic control
bFDR, False discovery rate
cMLM, Unified mixed linear model
dLMM, Logistic mixed model

https://doi.org/10.1371/journal.pone.0207752.t001
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To put these results for dichotomized ear height into perspective, we also simulated two

binary traits among the same 278 maize lines. One of these was simulated to have contrasting

proportions of “1’s” in the tropical (π = 0.5) and non-tropical (π = 0.05) subpopulations, while

the other was simulated to have an equal proportion of “1’s” (π = 0.5) in both subpopulations.

Consequently, the former binary trait had substantially different variances in the two subpopu-

lations, while the latter had equal variances regardless of subpopulation (Tables 4 and 5). Inter-

estingly, the concordance between the P-values for the binary trait with equal proportion of

“1’s” in both subpopulations was greater than those for the binary trait with unequal

Fig 1. Results for two quantitative traits dichotomized at the 50th percentile. Manhattan plots summarizing the genome-wide association study (GWAS) results for

two quantitative traits dichotomized at the 50th percentile. Each trait was analyzed using both the unified mixed linear model (MLM) and the logistic mixed model

(LMM). Quantile quantile (QQ)-plots depicting the observed (Y-axis) and expected (X-axis) −log(10) P-values are inserted into each Manhattan plot. The Manhattan

plots on each graph shows the physical bp position of each tested SNP in either the maize B73_RefGen v2 reference genome (for A and B) or the sorghum Btx623 v2.1

reference genome (for C and D) on the X-axis; while the −log(10) P-values from either the unified MLM (A and C) or LMM (B and D) on the Y-axis. The vertical line

on each graph indicates the approximate location of the peak marker-trait associations identified in the previously-published GWAS of the original quantitative trait.

(A) Results for a GWAS on dichotomized α-tocopherol measured in maize grain using the unified MLM. (B) Results for a GWAS on dichotomized α-tocopherol

measured in maize grain using the LMM. (C) Results for a GWAS on dichotomized sorghum plant height using the unified MLM. (D) Results for a GWAS on

dichotomized sorghum plant height using the LMM.

https://doi.org/10.1371/journal.pone.0207752.g001

Logistic mixed model in crop genome-wide association studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0207752 November 21, 2018 8 / 20

https://doi.org/10.1371/journal.pone.0207752.g001
https://doi.org/10.1371/journal.pone.0207752


proportion of “1’s” in both subpopulations (S15 and S16 Figs). In any case, given that there

were no genomic sources underlying the variability of these two simulated traits, the resulting

distributions of P-values for testing H0: No marker-trait association from the LMM and uni-

fied MLM fitted at each marker were expected to adhere to the theoretical Uniform[0,1] distri-

bution expected under any null hypothesis [46]. While Figs 4 and 5 show that the resulting

distributions of P-values from the LMM reasonably follow this expected distribution, the P-

values from the unified MLM deviate strongly from this theoretical distribution for the binary

trait with unequal variances in the two subpopulations. This is particularly apparent for those

SNPs that were less (Fig 4B) and more (Fig 4D) common in the tropical subpopulation. Thus,

these findings demonstrate that it is possible for crop diversity panels to display the same prop-

erties described in [8] that lead to the unified MLM’s deficient control of type I errors when

used to analyze binary traits.

Discussion

From a statistical perspective, the use of the unified MLM to analyze a binary trait is inappro-

priate because of violations in model assumptions. Using the computationally efficient imple-

mentation of GMMAT in the GENESIS R package [8,28] we dichotomized five agronomic

traits in two crop diversity panels to explore the performance of a statistically appropriate ana-

logue of the unified MLM for analyzing binary traits, namely the LMM. We demonstrated that

the LMM was generally capable of detecting the same statistically significant marker-trait asso-

ciations as those identified with the unified MLM; moreover these signals co-localized to the

same genomic regions identified in the studies that presented the GWAS results of the original

quantitative traits [31,38]. Finally, we conducted the analysis described in [8] using agronomic

data to demonstrate through simulated and real phenotypes that the conditions leading to the

unified MLM’s insufficient control of spurious associations can arise in crop diversity panels.

Thus the work presented here provides an example of the usefulness and applicability of the

LMM in diversity panels of two different crop species.

Impact of species and proportion of “1’s” on LMM performance

To assess the robustness of the LMM’s performance to the crop species under study and the

observed proportion of “1’s” for the studied binary trait, we performed our analyses in diver-

sity panels from two separate species and dichotomized the studied quantitative traits based on

Table 2. Genome-wide association study results for quantitative traits that are dichotomized using the 75th percentile. Number of statistically significant marker-

trait associations and genomic control values from the unified mixed linear model and the logistic mixed model are presented.

Species Dichotomized Trait No. of Significant Associations GCa λ Values

5% FDRb 10% FDR

MLMc LMMd MLM LMM MLM LMM

Maize α-tocopherol 1 1 1 1 0.96 1.00

Maize Zeaxanthin 0 0 0 0 1.05 1.01

Maize Ear Height 0 0 4 0 1.02 1.05

Sorghum Plant Height 593 495 756 642 1.08 1.06

Sorghum Branch Length 1 0 1 0 1.02 0.95

aGC, Genomic control
bFDR, False discovery rate
cMLM, Unified mixed linear model
dLMM, Logistic mixed model

https://doi.org/10.1371/journal.pone.0207752.t002
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Fig 2. Results for two quantitative traits dichotomized at the 75th percentile. Manhattan plots summarizing the genome-wide association study (GWAS) results for

two quantitative traits dichotomized at the 75th percentile. Each trait was analyzed using both the unified mixed linear model (MLM) and the logistic mixed model

(LMM). Quantile quantile (QQ)-plots depicting the observed (Y-axis) and expected (X-axis) −log(10) P-values are inserted into each Manhattan plot. The Manhattan

plots on each graph shows the physical bp position of each tested SNP in either the maize B73_RefGen v2 reference genome (for A and B) or the sorghum Btx623 v2.1

reference genome (for C and D) on the X-axis; while the −log(10) P-values from either the unified MLM (A and C) or LMM (B and D) on the Y-axis. The vertical line

on each graph indicates the approximate location of the peak marker-trait associations identified in the previously-published GWAS of the original quantitative trait.

(A) Results for a GWAS on dichotomized α-tocopherol measured in maize grain using the unified MLM. (B) Results for a GWAS on dichotomized α-tocopherol

measured in maize grain using the LMM. (C) Results for a GWAS on dichotomized sorghum plant height using the unified MLM. (D) Results for a GWAS on

dichotomized sorghum plant height using the LMM.

https://doi.org/10.1371/journal.pone.0207752.g002

Table 3. Summary of observed values of maize ear height dichotomized using the 75th percentile among the tropical and non-tropical subpopulations of 278 lines

from Goodman maize diversity panel.

Subpopulation No. Individuals Proportion of “1’s” for Ear Height

Dichotomized by 75th percentile

Approximate variance of Dichotomized Ear Heighta

Non-tropical 214 0.18 0.1476

Tropical 64 0.48 0.2496

aVariance is calculated by p̂ ð1 � p̂ Þ, where p̂ is the observed proportion of individuals with “1’s” within a given subpopulation

https://doi.org/10.1371/journal.pone.0207752.t003
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Fig 3. Distribution of -log10(P-values) for dichotomized maize ear height at the 75th percentile. Quantile-quantile (QQ) plots showing the distribution of −log(10)

P-values of 262,191 single nucleotide polymorphisms (SNPs) tested for association with dichotomized maize ear height at the 75th percentile. On each plot the observed

−log(10) P-values from the unified mixed linear model (MLM; blue squares) and logistic mixed model (LMM; purple triangles) are plotted against the expected −log

(10) P-values. The value of lambda for genomic control for the unified MLM and LMM are presented in the legend of each plot. (A) QQ-plot for all 262,191 SNPs that

are non-monomorphic within the tropical and non-tropical subpopulations of the Goodman diversity panel. (B) QQ-plot of the SNPs that were more common in the

non-tropical subpopulation (i.e., the SNPs where the ratio of expected variance between tropical and non-tropical subpopulations was less than 0.80). (C) QQ-plot of

SNPs that tended to have similar allele frequencies in both subpopulations (i.e., the SNPs where the ratio of expected variance between tropical and non-tropical lines

were between 0.80 and 1.25). (D) QQ-plot of SNPs that were more common in the tropical subpopulation (i.e., the SNPs where the ratio of expected variance between

tropical and non-tropical subpopulations was greater than 1.25).

https://doi.org/10.1371/journal.pone.0207752.g003
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two different percentiles. Our results suggest that both of these factors had minimal influence

on the ability of our analyses to detect genomic signals that correspond to those identified in

previous studies. While these findings are not particularly groundbreaking, they could be con-

sidered within the context of the genomic properties of the two species we analyzed. As an out-

crosser, the average range of LD decay in maize [47] is substantially shorter than that of

sorghum [38]. Thus regardless of the contrasting LD decay in these two species, the LMM was

capable of yielding results that are consistent with previous analyses of the original quantitative

trait. In a similar vein, despite that the expected variance of the binary traits dichotomized at

the 75th percentile were 25% less than those dichotomized at the 50th percentile, the similarity

between the genomic regions identified by the LMM as containing statistically significant sig-

nals between these two dichotomizations were generally similar (Figs 1 and 2). This suggest

that for binary traits where the observed proportion of “1’s” resemble those that we considered,

the proportion of “1’s” do not have an undue influence on the ability of the LMM to identify

peak associations. Thus, it appears reasonable to conclude that for our study, the key factors

driving the ability of the LMM to identify markers that are statistically significantly associated

with these tested binary traits are the same genetic and non-genetic sources underlying the var-

iability of the original quantitative traits.

Demonstration of superior control for spurious associations of LMM

Using a dichotomized version of ear height and simulated binary traits in the Goodman maize

diversity panel, we performed the procedure described in [8] to demonstrate that it is possible

for the unified MLM to inadequately control for spurious associations when analyzing binary

traits in crop diversity panels. Ubiquitously used in crop GWAS, diversity panels strive to

encompass as wide a range of genetic diversity as possible [1] and this typically translates to

the presence of subpopulation structure among the individuals comprising a panel. Thus when

the unified MLM is fitted to binary traits that are highly correlated with population structure,

the resulting residuals could theoretically be heteroscedastic. The use of the unified MLM on

such a binary trait would consequently be especially prone to inadequate control of spurious

associations in a manner similar to what was demonstrated in [8] and in this work. Although

such insufficient control by the unified MLM is likely due to heteroscedasticity of the residuals

and other violations of model assumptions instead of any unique characteristic of crop

Table 4. Summary the binary trait simulated on 278 lines from Goodman maize diversity panel where the probability of observing “1” differed in the tropical and

subtropical subpopulations.

Subpopulation No. Individuals Values of π = P{Binary trait = 1} pulation Variance of binary trait in each subpopulationa

Non-tropical 214 0.05 0.0475

Tropical 64 0.50 0.2500

aVariance is calculated by π(1 − π)

https://doi.org/10.1371/journal.pone.0207752.t004

Table 5. Summary the binary trait simulated on 278 lines from Goodman maize diversity panel where the probability of observing “1” was the same in the tropical

and subtropical subpopulations.

Subpopulation No. Individuals Values of π = P{Binary trait = 1} subpopulation Variance of binary trait in each subpopulationa

Non-tropical 214 0.50 0.2500

Tropical 64 0.50 0.2500

aVariance is calculated by π(1 − π)

https://doi.org/10.1371/journal.pone.0207752.t005
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diversity panels, it is nevertheless important to demonstrate these properties for crop data. In

this light, implementation of the LMM for the GWAS of binary agronomical traits would add

to the efforts already made to control for sources of false positive marker-trait associations

[4,48,49] that frequently occur in diversity panels.

Fig 4. Distribution of -log10(P-values) for binary trait simulated in maize with unequal proportion of “1’s” in subpopulations. Quantile-quantile (QQ) plots

showing the distribution of −log(10) P-values of 262,191 single nucleotide polymorphisms (SNPs) tested for association with binary trait where the probability of

observing “1” differed between the tropical and non-tropical subpopulations. On each plot the observed −log(10) P-values from the unified mixed linear model (MLM;

blue squares) and logistic mixed model (LMM; purple triangles) are plotted against the expected −log(10) P-values. The value of lambda for genomic control for the

unified MLM and LMM are presented in the legend of each plot. (A) QQ-plot for all 262,191 SNPs that are non-monomorphic within the tropical and non-tropical

subpopulations of the Goodman diversity panel. (B) QQ-plot of the SNPs that were more common in the non-tropical subpopulation (i.e., the SNPs where the ratio of

expected variance between tropical and non-tropical subpopulations was less than 0.80). (C) QQ-plot of SNPs that tended to have similar allele frequencies in both

subpopulations (i.e., the SNPs where the ratio of expected variance between tropical and non-tropical lines were between 0.80 and 1.25). (D) QQ-plot of SNPs that

were more common in the tropical subpopulation (i.e., the SNPs where the ratio of expected variance between tropical and non-tropical subpopulations was greater

than 1.25).

https://doi.org/10.1371/journal.pone.0207752.g004
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Fig 5. Distribution of -log10(P-values) for binary trait simulated in maize with equal proportion of “1’s” in subpopulations. Quantile-quantile (QQ) plots

showing the distribution of −log(10) P-values of 262,191 single nucleotide polymorphisms (SNPs) tested for association with binary trait where the probability of

observing “1” was the same between the tropical and non-tropical subpopulations. On each plot the observed −log(10) P-values from the unified mixed linear model

(MLM; blue squares) and logistic mixed model (LMM; purple triangles) are plotted against the expected −log(10) P-values. The value of lambda for genomic control

for the unified MLM and LMM are presented in the legend of each plot. (A) QQ-plot for all 262,191 SNPs that are non-monomorphic within the tropical and non-

tropical subpopulations of the Goodman diversity panel. (B) QQ-plot of the SNPs that were more common in the non-tropical subpopulation (i.e., the SNPs where the

ratio of expected variance between tropical and non-tropical subpopulations was less than 0.80). (C) QQ-plot of SNPs that tended to have similar allele frequencies in

both subpopulations (i.e., the SNPs where the ratio of expected variance between tropical and non-tropical lines were between 0.80 and 1.25). (D) QQ-plot of SNPs

that were more common in the tropical subpopulation (i.e., the SNPs where the ratio of expected variance between tropical and non-tropical subpopulations was

greater than 1.25).

https://doi.org/10.1371/journal.pone.0207752.g005

Logistic mixed model in crop genome-wide association studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0207752 November 21, 2018 14 / 20

https://doi.org/10.1371/journal.pone.0207752.g005
https://doi.org/10.1371/journal.pone.0207752


The use of the LMM for GWAS in binary and binomial agronomical traits

Prior to the implementation of GMMAT in the GENESIS R package, the inherent computa-

tional burden associated with fitting the LMM would have rendered its use in a GWAS of hun-

dreds of thousands of SNPs impractical. As such, this implementation has potential to

significantly benefit the agronomical GWAS research community because it enables the use of

arguably the most statistically appropriate model for analyzing binary traits on a genome-wide

scale. To make this implementation even more relevant to this community, we suggest that the

current implementation of GMMAT be augmented with the ability to analyze binomially dis-

tributed traits. Because a typical experimental unit in data sets obtained from crops grown in

the field is a plot consisting of at least several plants, traits such as the number of plants that

experience stalk lodging can theoretically be well-approximated with a binomial distribution.

Hence, such an extension to the current implementation of GMMAT could eliminate the need

for agronomical researchers to incorrectly use the unified MLM to analyze this class of non-

normally distributed traits.

Conclusion

It is imperative the most statistically appropriate models are used to analyze binary traits. Until

recently, it was computationally infeasible to implement such a model for the GWAS of binary

traits in crop diversity panels, namely the LMM. Due to the implementation of GMMAT in

the GENESIS R package, it is now practical to use this model for such an analysis. We hope

that the simple study presented here shows the usefulness of this approach for analyzing binary

traits in a crop diversity panel, and we therefore advocate its use for GWAS among the crop

quantitative genetics community.
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sorghum association panel. The X-axis is the principal component number and the Y-axis is
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adequately explain the variation among the genome-wide markers.
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S3 Fig. Manhattan plots summarizing the genome-wide association study (GWAS) results

for all analyzed quantitative traits dichotomized at the 50th percentile. The specific trait

and species of each plot is indicated in the row labels. The X-axis of each graph is physical posi-

tion of either the B73_RefGen v2 position of the maize genome (for first three rows) or the

Btx623 v2.1 position of the sorghum genome (for the bottom two rows), and the Y-axis shows

the −log(10) P-values from either the unified mixed linear model (MLM; presented in the left
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against those from the unified mixed linear model (X-axis) for the genome-wide association
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S6 Fig. Comparison of -log10(P-values) from the logistic mixed model and the unified

mixed linear model. Plot of -log10(P-values) of SNPs from the logistic mixed model (Y-axis)

against those from the unified mixed linear model (X-axis) for the genome-wide association
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percentile. Both sets of -log10(P-values) are from testing H0: no association between the tested

SNP and the phenotype.
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S7 Fig. Comparison of -log10(P-values) from the logistic mixed model and the unified

mixed linear model. Plot of -log10(P-values) of SNPs from the logistic mixed model (Y-axis)

against those from the unified mixed linear model (X-axis) for the genome-wide association

study conducted for sorghum plant height in the US sorghum association panel dichotomized

at the 50th percentile. Both sets of -log10(P-values) are from testing H0: no association between

the tested SNP and the phenotype.
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S8 Fig. Comparison of -log10(P-values) from the logistic mixed model and the unified

mixed linear model. Plot of -log10(P-values) of SNPs from the logistic mixed model (Y-axis)

against those from the unified mixed linear model (X-axis) for the genome-wide association

study conducted for sorghum branch length in the US sorghum association panel dichoto-

mized at the 50th percentile. Both sets of -log10(P-values) are from testing H0: no association

between the tested SNP and the phenotype.
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S9 Fig. Manhattan plots summarizing the genome-wide association study (GWAS) results

for all analyzed quantitative traits dichotomized at the 75th percentile. The specific trait

and species of each plot is indicated in the row labels. The X-axis of each graph is physical posi-

tion of either the B73_RefGen v2 position of the maize genome (for first three rows) or the

Btx623 v2.1 position of the sorghum genome (for the bottom two rows), and the Y-axis shows

the −log(10) P-values from either the unified mixed linear model (MLM; presented in the left

column) or the logistic mixed model (LMM; presented in the right column). Quantile quantile

(QQ)-plots depicting the observed (Y-axis) and expected (X-axis) −log(10) P-values are
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against those from the unified mixed linear model (X-axis) for the genome-wide association

study conducted for α-tocopherol levels in maize grain in the Goodman diversity panel dichot-

omized at the 75th percentile. Both sets of -log10(P-values) are from testing H0: no association

between the tested SNP and the phenotype.
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S11 Fig. Comparison of -log10(P-values) from the logistic mixed model and the unified

mixed linear model. Plot of -log10(P-values) of SNPs from the logistic mixed model (Y-axis)

against those from the unified mixed linear model (X-axis) for the genome-wide association

study conducted for zeaxanthin levels in maize grain in the Goodman diversity panel dichoto-

mized at the 75th percentile. Both sets of -log10(P-values) are from testing H0: no association

between the tested SNP and the phenotype.

(TIFF)

S12 Fig. Comparison of -log10(P-values) from the logistic mixed model and the unified

mixed linear model. Plot of -log10(P-values) of SNPs from the logistic mixed model (Y-axis)

against those from the unified mixed linear model (X-axis) for the genome-wide association

study conducted for maize ear height in the Goodman diversity panel dichotomized at the 75th

percentile. Both sets of -log10(P-values) are from testing H0: no association between the tested

SNP and the phenotype.
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S13 Fig. Comparison of -log10(P-values) from the logistic mixed model and the unified

mixed linear model. Plot of -log10(P-values) of SNPs from the logistic mixed model (Y-axis)

against those from the unified mixed linear model (X-axis) for the genome-wide association

study conducted for sorghum plant height in the US sorghum association panel dichotomized

at the 75th percentile. Both sets of -log10(P-values) are from testing H0: no association between

the tested SNP and the phenotype.
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S14 Fig. Comparison of -log10(P-values) from the logistic mixed model and the unified

mixed linear model. Plot of -log10(P-values) of SNPs from the logistic mixed model (Y-axis)

against those from the unified mixed linear model (X-axis) for the genome-wide association

study conducted for sorghum branch length in the US sorghum association panel dichoto-

mized at the 75th percentile. Both sets of -log10(P-values) are from testing H0: no association

between the tested SNP and the phenotype.
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S15 Fig. Comparison of -log10(P-values) from the logistic mixed model and the unified

mixed linear model. Plot of -log10(P-values) of SNPs from the logistic mixed model (Y-axis)

against those from the unified mixed linear model (X-axis) for the genome-wide association

study conducted for binary trait Y simulated in the Goodman maize diversity panel where P
{Y = 1} = 0.5 in the non-tropical subpopulation and P{Y = 1} = 0.05 in the non-tropical sub-

population. Both sets of -log10(P-values) are from testing H0: no association between the tested

SNP and the phenotype.

(TIFF)

Logistic mixed model in crop genome-wide association studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0207752 November 21, 2018 17 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207752.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207752.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207752.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207752.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207752.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207752.s016
https://doi.org/10.1371/journal.pone.0207752


S16 Fig. Comparison of -log10(P-values) from the logistic mixed model and the unified

mixed linear model. Plot of -log10(P-values) of SNPs from the logistic mixed model (Y-axis)

against those from the unified mixed linear model (X-axis) for the genome-wide association

study conducted for binary trait Y simulated in the Goodman maize diversity panel where the

P{Y = 1} = 0.5 regardless of the subpopulation. Both sets of -log10(P-values) are from testing

H0: no association between the tested SNP and the phenotype.
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24. Lobréaux S, Melodelima C. Detection of genomic loci associated with environmental variables using

generalized linear mixed models. Genomics. Academic Press; 2015; 105: 69–75. https://doi.org/10.

1016/J.YGENO.2014.12.001 PMID: 25499197
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