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ABSTRACT: As the natural-born photoelectrolyzer for oxygen delivery, photosystem II (PSII) is hardly replicated with man-made
constructs. However, building on the “quantasome” hypothesis (Science 1964, 144, 1009−1011), PSII mimicry can be pared down to
essentials by shaping a photocatalytic ensemble (from the Greek term ”soma” = body) where visible-light quanta trigger water
oxidation. PSII-inspired quantasomes (QS) readily self-assemble into hierarchical photosynthetic nanostacks, made of bis-cationic
perylenebisimides (PBI2+) as chromophores and deca-anionic tetraruthenate polyoxometalates (Ru4POM) as water oxidation
catalysts (Nat. Chem. 2019, 11, 146−153). A combined supramolecular and click-chemistry strategy is used herein to interlock the
PBI-QS with tetraethylene glycol (TEG) cross-linkers, yielding QS-TEGlock with increased water solvation, controlled growth, and
up to a 340% enhancement of the oxygenic photocurrent compared to the first generation QS, as probed on 3D-inverse opal indium
tin oxide electrodes at 8.5 sun irradiance (λ > 450 nm, 1.28 V vs RHE applied bias, TOFmax = 0.096 ± 0.005 s−1, FEO2 > 95%).
Action spectra, catalyst mass-activity, light-management, photoelectrochemical impedance spectroscopy (PEIS) together with
Raman mapping of TEG-templated hydration shells point to a key role of the cross-linked PBI/Ru4POM nanoarrays, where the
interplay of hydrophilic/hydrophobic domains is reminiscent of PSII-rich natural thylakoids.

Photosystem II (PSII) organization in natural thylakoids
suggests a perfectioned model to elaborate on the

oxidative artificial photoelectrolyzers.1−3 Inspired by the PSII
core-assembly, we have designed supramolecular “quanta-
somes” (QS), i.e., multichromophore architectures integrated
with catalytic cores, which can convert radiation quanta into
chemical energy by mimicking the PSII oxygenic function. This
approach represents a paradigm change with respect to the
classical sensitizer-catalyst dyad approach.1,4 Supramolecular
QSs are readily obtained in water by encapsulation of the
polyanionic oxygen evolving catalyst Ru4POM,5−8 within a
multichromophore “corolla” of cationic perylenebisimides,
PBI2+ (Scheme 1).4 The self-assembled QSs display a 5:1
stoichiometry ([PBI2+]5Ru4POM), dictated by complemen-
tary electrostatic interactions, and aggregate into a multi-
lamellar architecture as a consequence of the PBI π−π
aromatic stacking.4 In native chloroplasts, PSII paired function
is regulated by protein−protein interactions, holding together
the membrane stacks, while favoring the PSII contact (velcro
effect, Scheme 1E).9,10 This asset is essential for the stability of
the photosynthetic machinery and for its unique adaptation to
illumination conditions.11 Inspired by the PSII membrane
packing and building on our artificial design, we have now
cross-linked the quantasome network by installing hydrophilic
tetraethylene glycol (TEG) bridges, using click-chemistry (QS-
TEGlock, Scheme 1A−D).12 Our results compare and contrast
the photoelectrocatalytic (PEC) performance of QS versus
QS-TEGlock, probed on the 3D-photoconductive lattice of
inverse opal indium tin oxide (IO-ITO) electrodes (Scheme
1F,G).13,14 The locked structure exhibits up to 340%
photocurrent increase associated with quantitative oxygen

evolution (faradaic efficiency, FEO2 > 95%) and provides a
keen stability gain under high solar irradiance (> 8 suns),
compared to state-of-the-art PSII biohybrid and molecular
photoanodes (Table S1).
QS-TEGlock was obtained after installation of clickable 2-

propynyl terminals on the PBI scaffold (PBI-YNYL) followed
by copper-catalyzed azide−alkyne cycloaddition (CuAAC) in
water, with bis-azido-TEG linkers (Scheme 1A).12 This
protocol interlocks a multi-PBI network (PBIn-TEGlock,
Scheme 1B) that can be purified by gel permeation
chromatography.12 Characterization by FTIR and NMR
spectroscopy confirms the formation of the expected triazole
cross-linkers (Figures S1−S3). UV−vis spectra, in both DMF
and H2O (pH 7), show a solvent-independent broad
absorption spanning a 400−650 nm wavelength range (Figure
S4), ruling out residual PBI monomers, typically characterized
by sharp vibronic features.15 Indeed, 1H-diffusion ordered
spectroscopy (DOSY) NMR recorded for PBIn-TEGlock (2
mM in D2O, 400 MHz NMR, at 20 °C, Figure S5) provides a
translational diffusion coefficient of 6.3 × 10−11 m2 s−1 (logD/
m2 s−1 = −10.2), 1 order of magnitude lower than what
reported for PBI monomers and dimers (in the range (2.0−
9.0) × 10−10 m2 s−1, Table S2) and consistent with a columnar
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stacking of ∼20 PBI cores (d = 6.7 nm, based on a
hydrodynamic spherical model; see Table S2).16,17 Accord-
ingly, PBIn-TEGlock shows aggregation-induced emission
quenching in DMF with a fluorescence quantum yield of 4%
(fluorescence lifetime τFl,1 = 1.3 ns, τFl,2 = 4.0 ns, Figures S6
and S7), while maintaining an estimated potential of the
excited state, E(PBIn-TEGlock*/•−) = 2.26 V vs NHE, suitable
to drive photoassisted water oxidation (Figure S8).4 Associ-
ation of PBIn-TEGlock with Ru4POM yields the integrated QS-
TEGlock, as probed by UV−vis, fluorescence, and ζ-potential
titrations (25−100 μM, pH 7, Figure S9). The resulting
spectral fingerprint is typical of the quantasome assembly
(Figure 1A), which suggests a similar structural motif, where
the multi-PBI network is templated around the polyoxometa-
late.4 This is confirmed by powder X-ray diffraction (PXRD)
patterns that are consistent with previous WAXS/SAXS
evidence,4 ascribed to a lamellar-type structure, with broad
π−π stacking reflections at qc = 18−21 nm−1 and low q
reflections at qb = 4.7−4.9 nm−1 arising from the Ru4POM
scattering centers. However, the interlamellar diffraction peak
at qa = 3.2 nm−1 is not observed for QS-TEGlock, likely due to a
dislocation of the lamellar stacks by the TEG spacers (Figure
1B). Colloid characterization by dynamic light scattering
(DLS, 25 μM in H2O) indicates smaller dimensions for QS-
TEGlock compared to QS, with hydrodynamic radius
distribution centered respectively at 20 and 95 nm (Figure
1C), which supports the QS-TEGlock improved stability against
overaggregation and precipitation (> 10 h, up to 5 mM in
water, Figure S10). QS-TEGlock exhibits a superior PEC
response, probed upon co-deposition of the quantasome
building blocks on IO-ITO electrodes (600 ± 100 nm voids,
10 ± 2 μm film thickness, roughness factor RF = 950 ± 200,
Figures S11 and S12, Table S3). Deep infiltration of the IO-
ITO cross-section is demonstrated by the EDX-SEM profile of
the Ru component (Figure 1D). In all cases, diffuse reflectance
spectra of the IO-ITO|QS-TEGlock vs QS photoanodes display
a superimposable spectral envelope matching the quantasome
signature (Figure 1A, solid lines).18 Chopped light linear

sweep voltammetries (LSV) of IO-ITO|QS-TEGlock vs QS
electrodes (12 nmol cm−2, Figure 2A) display a photocurrent
onset at 0.62 V vs RHE and a dual transient regime with
dominant recombination at low applied bias (<0.90 V vs RHE)
while reaching an optimal charge collection in the range 0.90−
1.62 V vs RHE. Photocurrent densities up to J(QS-TEGlock) =
100 ± 10 μA cm−2 and J(QS)= 35 ± 3 μA cm−2 are recorded
at 1.12 V vs RHE, anticipating the thermodynamic barrier for
oxygen evolution (E(O2/H2O) = 1.23 V vs RHE) and reaching
values of J(QS-TEGlock) = 370 ± 30 μA cm−2 and J(QS) =
290 ± 40 μA cm−2 at 1.52 V vs RHE (Figure 2A), in both

Scheme 1a

a(A) Cross-linking of PBI-YNYL with bis-azido-TEG linkers yielding (B) PBIn-TEGlock in water. (C) Self-assembly of QS-TEGlock. (D) Cartoon
of the QS-TEGlock photosynthetic unit. (E) Natural PSII pairs in appressed thylakoids.10 (F, G) Oxygenic PEC transients by QS-TEGlock vs QS
probed on IO-ITO electrodes.

Figure 1. QS-TEGlock versus QS characterization. (A) Superimposed
UV−vis spectra, shifted for clarity, in H2O (dashed lines) and diffuse
reflectance spectra of IO-ITO electrodes (solid lines, KM units). (B)
PXRD patterns with notable distances (see text). (C) DLS size
distribution in H2O. (D) SEM-EDX cross-section of loaded IO-ITO
electrodes mapping Ru infiltration (2.4 nmol cm−2 loading, orange
line).
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cases leading to quantitative oxygen evolution (FEO2 > 95%) as
determined with generator-collector method (Figures S15 and
S16, Table S4). The photocurrent density and associated
turnover frequency (TOF) depend on the applied voltage,
showing a well-behaved, log(TOF) vs E (V), steady increase
for QS-TEGlock while a biphasic plot is obtained for QS with a
break point at 1.28 V vs RHE (Figure 2B). At this break
potential, the J(QS-TEGlock)/J(QS) photocurrent enhance-
ment reaches a 340% apex of a volcano-type profile (Figure
2C). This potential-dependent regime is indicative of a rate-
limiting interfacial charge-transfer at the WOC sites triggering
diverse mechanistic manifolds (Scheme S1).8,19 Photoelec-
trochemical impedance spectroscopy (PEIS) allows us to
deconvolute the photogenerated charge-transfer resistance
(RCT) at the quantasome/water interface, as a function of
the applied potential (Figure 2C, Figures S17−S19, Table S5).
It turns out that the hydrophilic domains of QS-TEGlock are
instrumental to lower RCT, boosting the oxygenic performance
at levels that can be matched by QS only upon increasing the
applied bias, to counteract competitive recombination
phenomena.20 The incident photon to current efficiency
(IPCE, Figure 2D) profile confirms the competent action
spectrum of the PBI-quantasomes (λ = 470−500 nm) and is
consistent with the efficiency enhancement imparted by the
QS-TEGlock structural modification (IPCE up to 1.2% at 1.52
V vs RHE applied bias, Figure S20, Table S6).21 Chopped light
chronoamperometry (CLCA) experiments, recorded at in-
creasing quantasome loading (2.4−12.0 nmol cm−2, Figure
2E), remark the QS-TEGlock advantage, which provides a
linear photocurrent increase in the entire loading range,
paralleling the photoanode optical density (Figure 2E, gray
squares). On the contrary, a steady deviation is observed at QS
loading of > 5.0 nmol cm−2, leveling the photocurrent to a

lower plateau, likely due to a major colloid clustering (Figures
2E and S21, Tables S7 and S8).22 Under light management
conditions, probed at photon irradiance in the range Iph =
100−850 mW cm−2 (1−8.5 suns), both PBI-quantasomes
reach a similar saturation plateau at Iph > 6.7 suns, which sets
the upper limit for a photon flux-regulated photocurrent
(yellow area in Figure 2F, Figure S23). Above this threshold,
the main photocurrent effector is independent of the light
intensity (blue area in Figure 2F, Tables S11 and S12).23,24 To
decouple the hydrophilic effect of TEG terminals from their
cross-linking impact, the PBI-YNYL cores were clicked with
methoxy-terminated, monoazide TEG pendants,12 preventing
their covalent interlocking (Figure S26). This yields the
unlocked TEGylated quantasome by self-assembly with
Ru4POM (Figure S26). The resulting QS-TEGunlock features
the expected spectral signature, similar CLCA response, and
quantitative oxygen production (Figures S27−S29, Tables S15
and S16, FEO2 > 95%), confirming that decoration of the PBI
scaffold with TEG residues, with or without cross-linking, can
leverage the quantasome hydration and facilitate water
oxidation, under light-assisted or dark electrocatalytic con-
ditions (Figures S30−S32 and Tables S17−S19).25,26 For-
mation of TEG-templated hydration shells has been detected
by Raman microscopy of water exposed photoanodes (Figure
3, Supporting Information section 1.2),27 showing a diffuse
water distribution (band area 3100−3600 cm−1) and a specific
effect of the TEG residues in structuring “ordered water” via
H-bonding, (band area < 3350 cm−1, green and red traces in
the blue zone Figure 3A, Figures S33−S35) with respect to
“disordered (bulk) water” observed for the TEG-free QS
(band area >3350 cm−1, blue trace in the pink zone, Figure
3A).27 The added value of TEG cross-linkers stems from the
improved QS-TEGlock film stability under a 1 h photo-

Figure 2. (A) Representative chopped light LSV (solar simulator AM 1.5 G, 850 mW cm−2 = 8.5 suns, λ > 450 nm, scan rate 10 mV/s, in 0.1 M
NaHCO3, pH 7) of IO-ITO|QS-TEGlock (red trace) vs QS (blue trace) and (B) corresponding log(TOF) vs E (V) (mean values ± 15%) based on
nominal loading (12 nmol cm−2). (C) Photocurrent enhancement (J(QS-TEGlock)/J(QS)%, left axis, orange squares) and related RCT values
resulting from PEIS measurements at increasing applied potential (right axis). (D) Corresponding action spectra (mean values ± 10% at 1.12 V
RHE applied bias, Supporting Information section 1.3) with superimposed diffuse reflectance spectra. Normalized J/Jo plots (scaled with respect to
the minimum value, Jo, mean values ± 15% at 1.12 V RHE applied bias) for IO-ITO|QS-TEGlock (red squares) vs QS (blue triangles) at (E)
increasing loading (2.4−12.0 nmol cm−2) with corresponding diffuse reflectance intensity converted in KM units F(R) values at 500 nm (gray
triangles and squares) and at (F) increasing light irradiance (Iph = 100−850 mW cm−2). Representative CLCA transients (inset) of IO-ITO|QS-
TEGlock.
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electrolysis at > 8 sun irradiance, whereby the unlocked
structure reports a major photocurrent loss (73% vs 56%
Figure S36, Table S1).28 Our results highlight that modulation
of the molecular environment is strategic to boost the
photosystem performance. Following this approach, our vision
aims at a modular, biomorphic design of fully functional
integrated photosynthetic architectures to face the artificial
photosynthesis challenge.
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mapped surface in (C) where the integrated area of the O−H
stretching signal (3100−3600 cm−1) is plotted for every pixel.
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