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SUMMARY
Direct conversion of nonneural cells to functional neurons holds great promise for neurological disease modeling and regenerative med-

icine. We previously reported rapid reprogramming of mouse embryonic fibroblasts (MEFs) into mature induced neuronal (iN) cells by

forced expression of three transcription factors: ASCL1,MYT1L, and BRN2. Here, we show that ASCL1 alone is sufficient to generate func-

tional iN cells frommouse and human fibroblasts and embryonic stem cells, indicating that ASCL1 is the key driver of iN cell reprogram-

ming in different cell contexts and that the role of MYT1L and BRN2 is primarily to enhance the neuronal maturation process. ASCL1-

induced single-factor neurons (1F-iN) expressed mature neuronal markers, exhibited typical passive and active intrinsic membrane

properties, and formed functional pre- and postsynaptic structures. Surprisingly, ASCL1-induced iN cells were predominantly excitatory,

demonstrating that ASCL1 is permissive but alone not deterministic for the inhibitory neuronal lineage.
INTRODUCTION

Transcriptional programs are believed to maintain cellular

identities and are stabilized through various mechanisms,

including chromatin modifications and lineage-deter-

mining transcription factors (Vierbuchen and Wernig,

2012). However, under several experimental approaches,

imposed changes in the intrinsic and extrinsic cues have

been shown to overcome these epigenetic barriers, driving

the cells to pluripotency or completely unrelated somatic

lineages (Jaenisch and Young, 2008; Ladewig et al., 2013;

Vierbuchen and Wernig, 2011). Lineage conversion of em-

bryonic stem cells (ESCs) and induced pluripotent stem

cells (iPSCs) or already differentiated somatic cells into

other cell types, such as neuronal cells, has recently

attracted immense interest due to its possible application

in the therapy of developmental diseases and in regenera-

tive medicine (Blanpain et al., 2012; Han et al., 2011; Mar-

chetto and Gage, 2012). We initially reported that forced

expression of the three transcription factors ASCL1,

BRN2, and MYT1L (BAM factors) successfully converts

mesodermal fibroblasts into induced neuronal (iN) cells

(Vierbuchen et al., 2010). In subsequent studies, we and

others generated functional iN cells from human fibro-

blasts based on the same three BAM factors but adding

additional transcription factors, microRNAs, or small mol-

ecules (Caiazzo et al., 2011; Ladewig et al., 2012; Pang et al.,

2011; Pfisterer et al., 2011; Yoo et al., 2011). Thus, just like
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the critical breakthrough for generating iPSCs, a combina-

tion of factors was thought to be required for iN cell reprog-

ramming from fibroblasts, and use of single transcription

factors was considered insufficient.

For ESCs, on the other hand, we and others recently es-

tablished that single factors, such as neurogenic differen-

tiation factor 1 (NEUROD1) or neurogenin 2 (NGN2),

alone are sufficient to rapidly induce the neuronal fate

(Thoma et al., 2012; Zhang et al., 2013). In fibroblasts,

however, we had originally observed that ASCL1 can

induce neuronal cells only with very immature features,

suggesting that single factors may initiate, but cannot

complete, the reprogramming process (Vierbuchen et al.,

2010). This raised interesting questions about the capacity

and relative contribution of reprogramming factors to-

ward neurogenesis from different cellular lineages. Our

recent studies suggested a clear hierarchical role of the re-

programming factors, as ASCL1 alone, of the three BAM

factors, immediately and directly accessed the majority

of its cognate target sites in the fibroblast chromatin

as a pioneer factor (Wapinski et al., 2013). BRN2 and

MYT1L, on the other hand, bind to ectopic sites in a tight

cell-context-specific manner and appear to be mainly

required at later reprogramming stages. This suggests

that ASCL1 might be the central driver of iN cell reprog-

ramming, but it remained unclear whether ASCL1 is suffi-

cient to induce generation of mature iN cells without

further assistance from BRN2 and MYT1L.
hors
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In the present study, we addressed this very question and

found that ASCL1 alone is indeed fully capable of convert-

ing mouse and human fibroblasts and ESCs into iN cells.

Although ASCL1-induced single-factor neuron (1F-iN) cells

displayed slower maturation kinetics at early develop-

mental stages, their functional properties and neuronal

gene-expression profile at later time points were surpris-

ingly similar to that of NGN2- or BAM-mediated iN cells.
RESULTS

ASCL1 Alone Is Sufficient to Convert Mouse

Embryonic Fibroblasts into iN Cells with Active

Membrane Properties

Wehave previously reported that the combined expression

of BRN2, ASCL1, andMYT1L (BAM) is sufficient to convert

mouse fibroblasts into functional iN cells and that omis-

sion of any of the three factors yields functionally more

immature cells under the conditions analyzed (Vierbuchen

et al., 2010). However, we recently observed that ASCL1

acts as an ‘‘on target’’ pioneer factor, whereas BRN2 and

MYT1L appear to engage with the fibroblast chromatin

less robustly and in a much more context-dependent

fashion (Wapinski et al., 2013). This raised the question

whether ASCL1 is also functionally the main driver of iN

cell formation and whether ASCL1 alone might be suffi-

cient to generate mature iN cells. To address this question,

we derived mouse embryonic fibroblasts (MEFs) from

TauEGFP knockin mice expressing enhanced GFP (EGFP)

from the well-characterized, neuron-specific Tau locus

(Tucker et al., 2001) and infected themwith lentivirus over-

expressing ASCL1 under the doxycycline-inducible Tet-on

promoter. We confirmed our previous observation that

ASCL1 alone induced neuronal features and detected cells

with bright TauEGFP fluorescence but immature morphol-

ogies 7 days after transduction (Vierbuchen et al., 2010; Fig-

ure 1A, left panel).

Next, we wondered whether improved and extended cul-

ture conditions would be sufficient to complete the reprog-

ramming of ASCL1-only iN cells. It is well established that

glial cultures provide critical trophic support for neurons

and are essential for synapse formation (Baloh et al.,

2000; Clarke and Barres, 2013; Wu et al., 2006). Remark-

ably, the coculture with glia for another 2 weeks was suffi-

cient to turn immature ASCL1-induced 1F-iN cells into

neuronal cells with very elaborate neuronal morphologies

(Figure 1A, middle and right panels). In order to determine

whether these cells have membrane properties character-

istic of functional neurons, we performed patch-clamp re-

cordings of TauEGFP-positive cells on days 7, 14, and 21

after infection.We observed a progressive increase inmem-

brane capacitance and decrease of membrane resistance
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and resting membrane potential during this time frame,

as one would expect from maturing neurons (Figure 1B).

Also, voltage-gated Na+/K+ currents continued to increase

over time (Figure 1C), and action-potential (AP) firing prop-

erties in terms of AP number, threshold, and height

matured substantially from days 7 to 21 (Figure 1D).

Finally, by day 21 after induction, 1F-iN cells also expressed

mature neuronal markers (Figure 1E). These data show

that the single factor ASCL1 alone is sufficient to convert

MEFs into iN cells with intrinsic membrane properties of

mature neurons when the cells are cultured in optimized

conditions.

The Reprogramming Function of ASCL1 Is Unique

among the Proneural bHLH Family of Transcription

Factors

The family of proneural basic helix-loop-helix (bHLH) tran-

scription factors consists of many closely related genes that

are well conserved throughout the animal kingdom (Ber-

trand et al., 2002). Some bHLH factors are early expressed

during neuronal induction, while others are expressed at

later stages of neuronalmaturation (Cau et al., 2002; Helms

et al., 2005). Typically, early and late bHLH factors exhibit a

region-specific expression pattern, suggesting that their

proneural or promaturation functions are conserved. For

example, of the early bHLH factors, ASCL1 is most strongly

expressed ventrally in the forebrain, whereas NGN1 and

NGN2 are expressed dorsally (Guillemot et al., 1993; Lo

et al., 1991). Genetic deletion of NGN2 leads to a dorsal up-

regulation of ASCL1, which is considered to compensate

for the loss of proneural NGN2 function in this area

(Fode et al., 2000). Genetic switching experiments between

ASCL1 and NGN2 have only uncovered subtle functional

differences between the two genes (Parras et al., 2002).

We therefore asked whether the closely related proneuro-

nal bHLH transcription factors NGN2 andNEUROD1 could

replace ASCL1 and induce neuronal cells fromMEFs as sin-

gle factors. Of note, both genes are powerful inducers of the

neuronal fate in mouse and human pluripotent stem cells

(Sugimoto et al., 2009; Thoma et al., 2012; Zhang et al.,

2013). Surprisingly, only ASCL1, but neither NGN2 nor

NEUROD1, was able to generate any TauEGFP-positive cells

from MEFs (Figure 2A). This finding suggests that one or

more critical ASCL1 downstream target genes fail to be

induced by NGN2. To test this hypothesis, we measured

the endogenous mRNA levels of Brn2 and Myt1l in transi-

tioning MEFs 7 days after ASCL1 and NGN2 induction, us-

ing quantitative RT-PCR (Figure 2B).We found a strong and

consistently higher Myt1l mRNA expression as well as a

moderate enhancement of Brn2 mRNA levels in ASCL1-

inducedMEF iN cells, when compared to NGN2 (Figure 2B;

Figure S1 available online). Next, we asked whether the dif-

ferential induction of Myt1l and/or Brn2 could explain the
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Figure 1. ASCL1 Alone Is Sufficient to Generate Functional 1F-iN Cells from MEFs
(A) Representative images displaying gradual development of the morphological complexity of ASCL1-induced single-factor MEF-iN cells at
day 7 (left) and after coculturing with glia until day 14 (middle) or day 21 (right). Scale bars, 10 mm.
(B) Average values of resting membrane potential (Vrest, i), membrane capacitance (Cm, ii), and input resistance (Rm, iii) of ASCL1-induced
single-factor MEF-iN cells from day 7 (blue), day 14 (red), and day 21 (green). Bar graphs represent mean values ± SEM (n = 12 for
individual averages). Open circles of corresponding colors represent values measured from individual cells.
(C) Example traces of Na+/K+ currents recorded at Vhold =�70 mV with a step voltage of 50 mV (i) and corresponding averages ± SEM (n = 12
for each point, ii) for current-voltage (I-V) relationship (filled circles: Na+-current and filled squares: K+-current) recorded from single-
factor MEF-iN cells at day 7 (blue), day 14 (red), and day 21 (green). The black line (upper panel, i) indicates time period used for
calculating average K+ currents. The insets depict expanded views of Na+ current (bottom panel, i) and reversal of K+ current (ii).
(D) Analysis of action potential (AP) firing properties from 1F-iN cells at day 7 (blue), day 14 (red), and day 21 (green). Example traces of
single (left) or multiple (right) APs generated by a 90 pA step-current injection, with pie charts representing fraction of iN cells in each

(legend continued on next page)
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differential effects of ASCL1 and NGN2 in MEFs. Indeed,

supplementing NGN2-induced MEF cells with MYT1L

and BRN2 or even with MYT1L alone overexpression was

sufficient to generate functional iN cells (Figure S1). These

findings suggest that MYT1L is a critical mediator of iN cell

reprogramming that cannot be induced by NGN2 alone.

ASCL1-iN Cells Can Reach Maturation Levels

Equivalent to Those of BAM-iN Cells

We previously found that ASCL1-iN cells were less mature

than BAM-iN cells 12 days after induction in the absence

of glia, based on intrinsic active membrane properties

(Vierbuchen et al., 2010). Therefore, we next asked

whether prolonged coculture with glia would allow gener-

ation of 1F-iN cells of a maturation state similar to that of

BAM-iN cells. Qualitative assessment of morphological

properties revealed vast differences between the ASCL1

and BAM infection on day 7 but suggested a similar

complexity of neuronal shapes with similar neurite

numbers and complexity on day 21 (Figure 2C). In order

to quantify the degree of maturation, we compared eight

electrophysiological parameters (membrane capacitance,

input resistance, resting membrane potential, AP number,

AP threshold, AP height, and peak Na+ and K+ currents) be-

tween ASCL1- and BAM-iN cells (Figure 2D). We measured

these parameters at 7, 14, and 21 days after induction

because we had noticed a gradual increase of maturation

in both ASCL1-derived and BAM-derived MEF-iN cells dur-

ing this time period (Figure 1 and Figure S2, respectively).

We found that the average values of most of the parame-

ters were significantly different on days 7 and 14 but lost

statistical significance 21 days after induction. Thus,

1F-iN cells are more immature at early reprogramming

stages but can reach the similar maturation state as

BAM-iN cells 3 weeks after induction when cultured in

optimized conditions.

1F-iN Cells Form Functional Synapses

The defining feature of neuronal identity is functional syn-

apse formation.We therefore asked whether 1F-iN cells can

receive synaptic inputs from other neurons (i.e., generate

functional somatic or dendritic postsynaptic structures)

and whether they can form synapses onto other neurons

(i.e., generate functional axonal presynaptic structures).

To address their postsynaptic competence, we sparsely

plated TauEGFP-positive 1F-iN cells 7 days after induction

on previously established hippocampal neuronal cultures
condition able to generate single AP (gray), multiple AP (white), or no
individual averages) for AP number with respect to current-pulse ampli
circles represent corresponding values measured from individual cells
(E) Immunostaining analysis of 1F-iN cells at day 21 with indicated n
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(2 days in vitro) and performed patch-clamp recordings

from EGFP-positive cells on day 21 (Figure 3A). We readily

observed both spontaneous excitatory (AMPA receptor-

mediated) and inhibitory (GABAA receptor-mediated) post-

synaptic currents (EPSCs and IPSCs) in 1F-iN cells, as

confirmed by application of the specific AMPA and

GABAA receptor antagonists CNQX and picrotoxin, respec-

tively (Figures 3B and 3C). Furthermore, AMPA receptor-

and NMDA receptor-mediated evoked EPSCs and GABAA

receptor-mediated evoked IPSCs could also be elicited by

extracellular field stimulation (Figures 3D and 3E), clearly

indicating that 1F-iN cells can specialize postsynaptic

membrane compartments and receive synaptic input

from primary mouse hippocampal neurons.

To address the presynaptic functional competence of

1F-iN cells, we plated 7-day TauEGFP-positive cells in

high density on a pure glial culture devoid of primary

neurons and characterized them 14 days later (Figure 3F).

Immunostaining experiments demonstrated that ASCL1-

induced MEF iN cells express excitatory neuronal marker

vesicular glutamate transporter 1 (vGLUT1), but not

inhibitory neuronal marker vesicular GABA transporter

(vGAT), similar to BAM-induced MEF-iN cells (Figure S3).

This suggests that single-factor MEF-iN cells are predomi-

nantly excitatory. Next, we investigated whether the cells

expressed functional AMPA receptors on their membranes

and locally applied AMPA close to the soma and proximal

dendrites of recorded iN cells. We observed AMPA recep-

tor-mediated EPSCs with near-zero reversal potential (Fig-

ure 3G), demonstrating the presence of functional AMPA

receptors in the cells even in the absence of presynaptic

inputs from primary neurons. Next, we wondered

whether 1F-iN cells can form functional synapses among

each other. We could record both spontaneous and evoked

AMPA receptor-mediated EPSCs (Figures 3H and 3I; Fig-

ure S3) as well as evoked NMDA receptor-mediated EPSCs

(Figure 3I). The synapses between iN cells also displayed

remarkable short-term plasticity (Figure 3I). Thus, the

single transcription factor ASCL1 was capable of gener-

ating both intrinsically and synaptically mature iN cells

from MEFs.
1F-iN Cells Can Be Derived fromPostnatal andHuman

Fibroblasts

To further evaluate if 1F-iN cells can also be generated from

postnatal cells, we derived tail-tip fibroblasts (TTFs) from 4-

day-old TauEGFP animals. Similar to our MEF experiment,
AP (black) (i). Average values presented as means ± SEM (n = 12 for
tude (ii), AP threshold (iii), AP height (iv), and AP latency (v). Open
(iii–v).
euronal markers. Scale bars, 10 mm.

ell Reports j Vol. 3 j 282–296 j August 12, 2014 j ª2014 The Authors 285



A

B

C

Di ii iii iv

v vi vii viii

Figure 2. Delayed Maturation Kinetics of
ASCL1-Induced Single-FactorMEF-iN Cells
(A) Representative images of MEFs (left)
and day 7 MEF-iN cells after induction of
ASCL1 transgene (middle). Immunofluores-
cence signals include Tau-GFP signal in
green and DAPI in blue. Scale bar, 50 mm.
Average percentages of TauEGFP-positive
cells (right) generated using different re-
programming factors are normalized to DAPI
count and plotted as means ± SEM (n = 60
fields/three batches). Open circles indicate
percentages of TauEGFP-positive cells
counted from individual experiments. Note
that NGN2 and NEUROD1 failed to generate
any TauEGFP-positive cells from MEFs.
(B) Quantitative RT-PCR for mRNA levels of
Ascl1 (left), Myt1l (second left), Brn2 (sec-
ond right), and Ngn2 (right) at day 7 post-
induction when MEFs were infected with
lentivirus expressing rtTA only (calibration
control, black), rtTA + ASCL1 (red), rtTA +
NGN2 (blue), and rtTA + BAM (green). Bar
graphs represent average values ± SEM, and
the numbers indicate number of indepen-
dent experiments for each condition. As-
terisks indicate a significant difference
between DCtsample and DCtrtTA (*p < 0.05,
**p < 0.01, ***p < 0.005, one-tailed t test);
ns, not significant (p > 0.01).
(C) Relative morphological comparison be-
tween BAM-induced three-factor iN cells
(top) and ASCL1-induced 1F-iN cells (bot-
tom) at day 7 (left) and after coculturing
with glia until day 14 (middle) or day 21
(right). Arrowhead shows limited neurite
outgrowth in immature but TauEGFP-posi-
tive iN cells at day 7. TUJ1 stainings (red) at
day 14 and day 21 show gradual neurite
arborization. Scale bars, 50 mm.
(D) Comparisonbetweenelectrophysiological
properties of BAM iN cells versus ASCL1 iN
cells. Eight parameters that were compared
between two conditions include membrane
capacitance (Cm, i), membrane resistance
(Rm, ii), resting membrane potential (Vrest,
iii), number of APs at 90 pA current-injection
step (# AP, iv), AP threshold (APthreshold, v),
AP height (APheight, vi), and peak Na+ (INa,
vii) or K+ current (IK, viii) at�20 mV or 0 mV
step-pulse, respectively. For all panels, n = 12
for day 7, n = 24 for day 14, and n = 25 for day
21. Average difference and error bars repre-
senting SEMs are generated using error pro-
pagation. Ratio represents BAM condition/

ASCL1 condition, whereas D represents BAM condition � ASCL1 condition, for corresponding parameters. Asterisks indicate significant dif-
ferences (p < 0.05, one-tailed t test) between the two conditions, and dotted lines indicate ratio = 1 orD = 0 for corresponding comparisons.
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Figure 3. Functional Synapse Formation by ASCL1-Induced
Single-Factor MEF-iN Cells
Electrophysiological recordings performed on ASCL1-induced 1F-iN
cells cocultured with low-density primary hippocampal neurons
(A–E) or with glia only (F–I).
(A) Recording configuration shown in phase contrast (left), GFP
fluorescence (middle), and as both views merged (right). Rec,
recording electrode; white arrowhead, TauEGFP-positive (green)
1F-iN cell; black arrowhead, hippocampal neurons (non-GFP). Scale
bars, 20 mM.
(B) AMPAR-mediated spontaneous EPSCs recorded from an example
cell in presence of picrotoxin (top) and blocked by subsequent
application of CNQX (bottom). Expanded view of events reveals fast
kinetics (middle).
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after coculturing with glia for 14 days (21 days postinduc-

tion), ASCL1-induced TTF-1F-iN cells displayed complex

neuronal morphologies, expressed panneuronal markers,

generated APs upon membrane depolarization, and ex-

hibited Nav/Kv-mediated currents as tested by specific

blockers (Figure 4A).

Encouraged by these findings, we explored whether

ASCL1 alone might be sufficient to induce iN cells even

from human fibroblasts. We note that, in our experience,

the conversion of human fibroblasts to iN cells is much

less efficient and requires additional transcription factors

(Pang et al., 2011). Surprisingly, we did indeed observemul-

tiple TUJ1- and MAP2-positive iN cells with neuronal

morphology in human fetal fibroblast (HFF; Figure 4B)

and human postnatal fibroblast (HPF; Figure 4C) cultures

3 weeks after induction of ASCL1, albeit with less complex

morphologies. Importantly, these HPF-derived 1F-iN cells

could also generate APs (Figure 4Civ), indicating ASCL1 is

also the key driver of the reprogramming process in human

fibroblasts.
Generation of 1F-iN Cells from Embryonic Stem Cells

with ASCL1

We and others reported that NGN2 and NEUROD1 can

convert mouse and human ESCs very efficiently into iN

cells (Sugimoto et al., 2009; Thoma et al., 2012; Zhang

et al., 2013). In stark contrast, we had noticed that ASCL1

can induce TUJ1-positive small elongated cells from hu-

man ESCs, but these cells did not exhibit any neuronal pro-

cesses up to 7 days after infection (Pang et al., 2011). Given

the results of this study, we revisited the effect of ASCL1 in

both mouse and human ESCs. To achieve homogeneous

ASCL1 expression in mouse ESCs, we generated an
(C) GABAR-mediated spontaneous IPSCs (top) with slower kinetics
(middle) recorded in presence of CNQX and blocked by picrotoxin
(bottom).
(D) Evoked EPSCs mediated through AMPAR (blue) and NMDAR
(green), as measured from two different cells.
(E) Evoked IPSC.
(F) GFP-fluorescence view of 1F-iN cells plated on glia at a high
density. Scale bar, 10 mM.
(G) EPSCs generated by puff application of AMPA at different Vhold
(left) and average I-V plot (right) presented as means ± SEM
(n = 5).
(H) AMPAR-mediated spontaneous EPSC (top) with fast kinetics
(bottom) recorded from a 1F-iN cell from a pure culture.
(I) AMPAR-mediated evoked EPSCs generated with a 10 Hz train
(top), and NMDAR-mediated evoked EPSC generated with a single
pulse (bottom) as recorded from two different cells (left). Average
(means ± SEM) peak amplitudes of AMPAR- (blue, n = 8) or NMDAR-
mediated (green, n = 4) EPSCs, with values from individual cells
plotted as color-matched open circles.
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Figure 4. ASCL1 Alone Generates Func-
tional Neurons from Postnatal Mouse
and Human Fibroblast
(A) 1F-iN cells generated by ASCL1-trans-
gene induction in tail-tip fibroblast (TTF)
derived from 4-day-old animals. (A) Immu-
nostaining of a 1F-iN cell with NEUN (i),
DAPI (ii), and GFP view (iii) displaying
mature neuronal morphology. White arrow-
head, 1F-iN cell (i–iii); gray arrowhead, glia
(ii). GFP view of a second cell (iv) immu-
nostained for MAP2 (v) and TUJ1 (vi). Scale
bars, 25 mm. Single (left) or multiple (right)
AP generation by single-factor TTF-iN cells
(vii) with step-current injection. Number of
cells corresponding to each firing pattern is
indicated. Sample traces (viii) of voltage-
gated Na+ (inset in red = magnified view of
the boxed area) and K+ currents recorded
from a single-factor TTF-iN cell (left) and
subsequently blocked by TTX (middle) and
4AP + TEA (right).
(B) Human fetal fibroblasts (HFF) trans-
duced with ASCL1 and immunostained with
TUJ1 (i), MAP2 (ii), and both views merged
(iii) at 22 days after induction. Cells were
maintained without coculturing on glia.
TUJ1/MAP2-negative but DAPI-positive
cells indicate nonreprogrammed fibroblasts.
Scale bars, 10 mm.
(C) Similar immunostaining as (B) but
performed on human postnatal fibroblast
(HPF, i–iii). Scale bars, 10 mm. Example
traces of AP firing (left) and voltage-gated
Na+/K+ currents (right) recorded from sin-
gle-factor HPF-iN cells (iv), similar to (A).
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ASCL1-inducible mouse ESC line by simultaneous infec-

tion of doxycycline-inducible ASCL1 lentivirus and a

constitutive rtTA lentivirus (Wapinski et al., 2013). Within
288 Stem Cell Reports j Vol. 3 j 282–296 j August 12, 2014 j ª2014 The Aut
5 days of ASCL1 induction with doxycycline, neuronal

cells with extensive neurite outgrowth were observed in

this line. The neuronal cells also expressed mature
hors
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Figure 5. ASCL1 Induces Functional
1F-iN Cell Generation from Mouse Embry-
onic Stem Cells
(A) Mouse embryonic stem cell-derived iN
(MES-iN) cells generated from ASCL1-
induction and immunostained with indi-
cated markers (TUJ1, i; MAP2, ii; DAPI, iii;
and all viewsmerged, iv). Scale bars, 100mm.
(B) Bright-field view of MES-iN cells
demonstrating patch-clamping configura-
tion. Rec, recording electrode. Scale bar,
50 mm.
(C) Step-current (top) mediated depolariza-
tion evoked single (middle) or multiple
(bottom) AP in single-factor MES-iN cells
when recorded in current-clamp mode.
Numbers indicate population of cells with
corresponding AP firing pattern. Color codes
represent responses from individual pulses.
(D) Example traces (left) representing step-
voltage (top) generated inward Na+ currents
and outward K+ currents. Inset: expanded
view of Na+ current. Average I-V curves
(right) for Na+ (INa) and K

+ (IK) currents are
plotted as mean ± SEM (n = 8 cells).
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neuronalmarkers (Figure 5A) and were able to generate APs

upon current injection (Figures 5B–5D), suggesting the suc-

cessful generation of ASCL1-induced 1F-iN cells from

mouse ESCs.

Wenextprobed the ability ofASCL1 to formfunctional iN

cells from human ESCs. H9 ESCswere infected with ASCL1-
Stem C
overexpressing lentivirus, treated with doxycycline to

induce ASCL1, puromycin-selected, and cultured together

with or without primary mouse glia (Figure 6). As seen

before, without glial coculture, ASCL1-induced 1F-iN cells

displayed immature morphology with inadequate neurite

outgrowth on day 9, while NGN2-infected cells already
ell Reports j Vol. 3 j 282–296 j August 12, 2014 j ª2014 The Authors 289



A B

C

D

hESC-iN cells hESC-iN cells (ASCL1 only)

(legend on next page)

290 Stem Cell Reports j Vol. 3 j 282–296 j August 12, 2014 j ª2014 The Authors

Stem Cell Reports
ASCL1-Induced 1F-iN Cells



Stem Cell Reports
ASCL1-Induced 1F-iN Cells
displayedmature neuronalmorphologies (Figure 6A). How-

ever, after coculturingwith glia for another 21 days (i.e., day

28 after infection), ASCL1-induced human ESC-derived iN

(hESC-iN) cells demonstrated intricate neuronal morphol-

ogies surprisingly similar to NGN2-induced hESC-iN cells

(Figure 6A). Immunofluorescence analysis showed expres-

sion of mature neuronal markers (Figure 6B). In order to

more comprehensively compare the maturation state of

NGN2-mediated and ASCL1-mediated hESC-iN cells, we

quantified the expression levels of 31 panneuronal genes

and ten nonneuronal genes at the single-cell level using

the FluidigmBiomark platform (Figure 6C). ASCL1-induced

hESC-iN cells consistently expressed the mRNA levels of

several panneuronal genes including cytoskeletal, ion chan-

nels, and various pre- and postsynaptic genes. Themajority

of the ASCL1-induced hESC-iN cells also upregulated the

excitatory neurotransmitter transporter vGLUT2, withmin-

imal expression of genes of the inhibitory neuronal lineages

such as Glutamic Acid Decarboxylase (GAD) or vGAT.

AlthoughASCL1 is classically associatedwith the inhibitory

lineage, thismarker panel surprisingly suggests that ASCL1-

derivedhESC-iNcells are predominantly excitatory, just like

NGN2-derived ESC-iN cells and ASCL1-derived or BAM-

derived fibroblast iN cells (Pang et al., 2011; Vierbuchen

et al., 2010; Zhang et al., 2013; Figure 3; Figure S3). An unbi-

ased cluster analysis based onGAPDH-subtractedDCtvalues

(Figure 6D) further demonstrated that based on expression

of these 41 genes, ASCL1- andNGN2-induced hESC-iN cells

cannot be distinguished.

Finally, we asked whether the ASCL1-mediated ESC-iN

cells would possess functional electrophysiological proper-

ties. Voltage-clamp recordings from these cells confirmed

the presence of voltage-gated Na+/K+ channels and func-

tional membrane properties of mature neurons (Figures 7A

and 7B). The cells were also capable of generating mature

APs upon current injection in the current-clamp mode (Fig-

ure7Cand7D).Wenextprobed for the synaptic competence

of ASCL1-induced hESC-iN cells. Immunofluorescence
Figure 6. Comparison between ASCL1-Induced and NGN2-Induced
(A) Morphological comparison between ASCL1 (left) and NGN2 (right
(bottom, ii), respectively without or with culturing on glia. Note the
neurite arborization at day 9, but not at day 28. Scale bars, 10 mm.
(B) ASCL1-induced hESC-iN cells in GFP (i), NEUN stained (ii), and b
staining is shown (iv) from a different plate. Scale bars, 50 mm.
(C) Quantitative RT-PCR using a Fluidigm chip, performed on cytoplasm
induced iN cells derived from H9 hESCs and collected at day 28 or d
neuronal control genes (bottom) analyzed are indicated on the right. E
the bottom (color scales). Numbers indicate iN cell samples, ES1-8 in
control (blank), and REF1-8 represents 7-fold dilutions of human bra
(D) Dendrogram for cluster analysis using DCt values (Ct values of gen
(C). Numbers at the bottom indicate cell samples collected from the
arrowheads (red = 28 day ASCL1-induced, green = 45 day ASCL1-indu
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stainings indicated expression of dendritic MAP2 and pre-

synapticSYN1protein (Figure7E).Additionally,puff applica-

tion of exogenous AMPA and GABA demonstrated the pres-

ence of functional neurotransmitter receptors (Figure 7F). In

the voltage-clamp mode, spontaneous EPSCs with fast

kinetics could be readily identified (Figure 7G), and upon

extracellular stimulation, evoked EPSCs could be recorded

thatalsoexhibited short-termsynapticplasticity (Figure7H).

Thus, ASCL1-induced hESC-iN cells are fully functional, pre-

dominantly glutamatergic, and indistinguishable from

NGN2-induced hESC-iN cells at later stages of maturation.

However, the maturation kinetics of ASCL1-induced hESC-

iN cells is slower than that of NGN2-induced hESC-iN cells.
DISCUSSION

Wepreviously found that the combined expression of three

transcription factors (BAM) is required to induce fully func-

tional iN cells from fibroblasts (Vierbuchen et al., 2010).

Under the same conditions, single factors could only

generate cells that had some neuronal characteristics but

lacked critical others such asmorphological and functional

properties. Based on this observation, we had assumed that

single factors can only initiate a partial reprogramming to-

ward iN cells and additional factors are required to com-

plete the reprogramming process. In this study, we chal-

lenged this hypothesis and demonstrate instead that cells

reprogrammedwith the single factor ASCL1 are in fact fully

reprogrammed to a neuronal lineage but are simply less

mature compared to cells reprogrammed with all three fac-

tors at early time points. Later in the reprogramming pro-

cess, the single-factor iN cells can reach maturation levels

almost equivalent to three-factor cells. This conclusion

has important implications on how we view the molecular

mechanism of iN cell reprogramming. Obviously, ASCL1 is

the single most important driver of reprogramming, and

success or failure of reprogramming of a given cell type
HESC-iN Cells
) induced hESC-iN cells (GFP-infected) at day 9 (top, i) and day 28
striking difference between ASCL1 and NGN2 conditions in terms

oth views merged with boxed area (dotted) magnified (iii). TUJ1

aspirated from single iN cells by patch pipette. ASCL1- and NGN2-
ay 45 after lentiviral transduction. Neuronal genes (top) and non-
xpression levels (expressed as Ct values) are color-coded as shown at
dicates hESC samples (negative control), NTC indicates no template
in total RNA (positive control).
e expression subtracted from that of GAPDH) of genes as depicted in
ESC (blue) or iN (red) population. iN cell identities indicated with
ced, black = 45 day NGN2-induced).
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Figure 7. ASCL1-Induced Single-Factor hESC-iN Cells Display Functional Membrane and Synaptic Properties
(A) Example trace showing the presence of voltage-dependent Na+/K+ current. Dotted box in red points to Na+-channel-dependent inward
current, and the blue bar on top indicates time course of K+-channel-mediated outward current used for average analysis in (B).
(B) Average (means ± SEM) current-voltage relationship (I-V curve) for Na+/K+ current (n = 6, i), membrane capacitance (Cm, n = 20,
left, ii), and input-resistance (Rm, n = 20, right, ii). Open circles represent respective values from individual cells.
(C) Single (red) or multiple (blue) AP generation by ASCL1-induced single-factor hESC-iN cells at day 28. Pie chart indicates respective
population fractions (color matched).
(D) Characterization of AP-generation properties in terms of number of APs generated with current-pulse amplitude (i), resting membrane
potential (Vrest, ii), AP threshold (APthreshold, ii), and AP amplitude (APamplitude, ii). Average values are shown as means ± SEM (n = 17), and
open circles represent corresponding values from different cells.

(legend continued on next page)
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will critically depend on the efficient engagement of ASCL1

with the proper chromatin targets. We recently identified

an intriguing trivalent chromatin state (consisting of

high H3K4 monomethylation, high H3K27 acetylation,

and low H3K9 trimethylation levels) associated with

ASCL1 targets in MEFs and potentially important for the

correct targeting of ASCL1 to its proper sites (Wapinski

et al., 2013). Now, with the knowledge that ASCL1 alone

is sufficient to generate mature iN cells, these ASCL1-

specific chromatin findings are even more relevant than

originally assumed. In particular, for future attempts to

generate iN cells from thus-far reprogramming-resistant

cells such as keratinocytes or blood cells, the efforts should

focus on targeting ASCL1 to its proper chromatin sites. The

other two transcription factors, BRN2 and MYT1L, are not

less important, but their predominant role appears to be to

enhance neuronal maturation and less to contribute to the

cell lineage conversion mechanism. These studies would

predict that Pou-domain-containing and MYT-domain-

containing transcription factors also act as maturation fac-

tors during normal neural development. Furthermore,

ASCL1 can activate endogenousMyt1l and Brn2 expression,

which supports the notion that these two transcription fac-

tors are responsible for neuronalmaturation also in ASCL1-

induced iN cells.

Another remarkable observation of this study is that

ASCL1-iN cells are exclusively excitatory. This is surprising,

because ASCL1 is not typically associated with the excit-

atory neuronal lineage during neural development (Ber-

trand et al., 2002; Fode et al., 2000; Guillemot et al.,

1993; Johnson et al., 1990; Kim et al., 2008). In the fore-

brain, ASCL1 is predominantly expressed in the ventral

medial and lateral ganglionic eminences (Guillemot et al.,

1993; Lo et al., 1991). In Ngn2�/� mice, ASCL1 is ectopi-

cally overexpressed dorsally where also inhibitory marker

genes such as Dlx2 and Gad67 are induced (Fode et al.,

2000). These data suggested that ASCL1 acts as an impor-

tant instructive signal for the inhibitory lineage, and one

might have expected that ASCL1 would induce the inhibi-

tory neuronal lineage in fibroblasts and ESCs. However, our

results clearly demonstrate that ASCL1 may be permissive

for generating inhibitory neurons but alone is clearly not

instructive. Its instructive function does require other fac-
(E) Immunostaining of hESC-iN cells with dendritic marker MAP2 (up
(bottom left), and expanded view of the dotted box (bottom right).
(F) Sample traces (left) and average values ± SEM (n = 10 for each co
puff-induced AMPAR-mediated EPSCs (i) or GABAR-mediated IPSCs (i
(G) AMPAR-mediated spontaneous EPSCs (top) with boxed time-cour
quency (ii), and event kinetics in terms of half-width, rise-tau (trise)
(H) Example trace of AMPAR-mediated EPSCs evoked by two consecut
visibility (i). Average values depicted as bar graphs (ii) representing m
pulse ratio (n = 5). Open circles represent values recorded from indiv
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tors that are present in the cellular context of a neural pro-

genitor cell.

Our study also sheds light into the intriguing functional

differences of the closely related proneural bHLH tran-

scription factors NGN2 and ASCL1.While genetic swap ex-

periments in vivo showed only modest factor-specific ef-

fects suggesting that both genes are functionally very

similar (Parras et al., 2002), as reprogramming factors the

two genes showed drastic differences. For example, in

mouse fibroblasts, ASCL1 is a powerful reprogramming

factor, but NGN2 alone is not able to induce neuronal

features, presumably due to insufficient induction of

Myt1l. In human ESCs, on the other hand, previous work

suggested that ASCL1 is incapable of efficient neuronal

reprogramming, whereas NGN2 and NEUROD1 are

extremely effective in generating mature neurons within

a matter of days (Pang et al., 2011; Zhang et al., 2013). It

was unclear whether this mutually exclusive role is depen-

dent of the species (mouse versus human) or the cell type

(fibroblasts versus pluripotent cells). In this paper, we have

clarified this question and come to the conclusion that the

different effects of ASCL1 versus NGN2 are cell-context

dependent. First, we report the totally unexpected finding

that ASCL1 alone can indeed convert human fibroblasts

to iN cells that are even able to fire mature APs. Second,

we tested ASCL1 and NGN2 side by side in murine ESCs

and observed that also in this condition ASCL1 induces

neurons slower (about 5 days for the first appearance of

neuronal morphologies) than NGN2 (about 2 days for

first neuronal morphologies) (see also: Thoma et al.,

2012; Yamamizu et al., 2013).

Finally, we also revised initial conclusions about the po-

wer of ASCL1 in human ESCs. Somewhat similar to the ef-

fects of ASCL1 in fibroblasts, if given more time and cocul-

ture with primary glia, ASCL1 also can induce perfectly

functional andmature iN cells in humanESCs. Surprisingly

though, the resulting iN cells were excitatory and based on

single-cell gene expression patterns indistinguishable from

NGN2-mediated ESC-iN cells. Therefore, the role of either

bHLH factor for ultimate lineage specification seems very

similar, but the power of proneural induction varies be-

tween the two factors depending on the cellular context.

Future studies will have to be performed to identify the
per left) and synaptic marker Synapsin (upper right), merged view
Scale bars, 50 mm.
ndition) of amplitude (middle) and total charge transfer (right) for
i).
se expanded (bottom) (i). Average values of event amplitude, fre-
, and decay-tau (tdecay) (iii) are depicted as means ± SEM (n = 13).
ive pulses (Dt = 100 ms); stimulus artifacts are omitted for better
eans ± SEM for peak amplitude of evoked EPSCs (n = 13) and paired-
idual cells.
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defining molecular features that are responsible for the

different properties of these closely related genes.

EXPERIMENTAL PROCEDURES

Cell Culture and Neuronal Induction

Generation of Fibroblast-iN Cells
All experiments were carried out with the approval of the Stanford

UniversityAdministrativePanelonLaboratoryAnimalCare (proto-

col 21565). MEFs or TTFs were derived from embryonic day 13.5

embryos of TauEGFP knockin mice or 4 day old WT C57/BL6

mice respectively, and cultured in MEF media for three passages,

as described previously (Vierbuchen et al., 2010). Cells were in-

fected with lentiviruses containing expression constructs of rtTA

(driven by ubiquitin promoter) and ASCL1-t2a-Puro (driven by

Tet-on promoter) in the presence of polybrene (8 mg/ml). For com-

parison with BAM iN cells (Figure 2), ASCL1-virus load was kept

constant andMEFcellswere coinfectedwith additional lentiviruses

overexpressing BRN2 andMYT1Lunder the sameTet-on promoter.

The next day,mediawas exchangedwith freshMEFmedia contain-

ing doxycycline (2 mg/ml). On day 3, media was replaced with N3

media (Dulbecco’s modified Eagle’s medium/F12 [Invitrogen], N2

[Invitrogen], and B27 [Invitrogen] supplemented with 12.5 mg of

insulin [Sigma] and penicillin/streptomycin [Invitrogen]). For syn-

aptic recordings or long-term culture (>7 days), cells were trypsi-

nized (with 0.25% trypsin), pooled (i.e., two 12-well dishes into

one), and replated on passage 3 mouse glia (derived from C57

pups, postnatal day 3; see Vierbuchen et al., 2010 for details) or pre-

establishedmouse primary hippocampal neurons (2 days in vitro).

Media was half-exchanged once a week.

Generation of MESC-iN Cells
A doxycycline-inducible flag-ASCL1 ESC line was established as

described previously (Wapinski et al., 2013). The cells were

expanded in mouse embryonic stem cell (mESC) media plus LIF

in the absence of feeders. Ten million cells were seeded on a

gelatin-coated 15 cm dish. The media was replaced with N3 plus

doxycycline the day after seeding.

Generation of HESC-iN Cells

H9 hESCs were maintained under feeder-free conditions in mTeSR

media (STEMCELL Technologies). Media was changed every day.

When cell density reached 70%–80% confluence, colonies were

dissociated using accutase (STEMCELL Technologies) and plated

onto Matrigel (BD Biosciences)-coated plates at a 1:6 dilution.

During passaging, the media was supplemented with 2 mM

thiazovivin overnight. For hESC-iN formation, dissociated single

cells were plated at a density of �2.5 3 105 cells per 35 mm2

well. Lentivirus infections (with an additional EGFP-expressing

virus) and transgene induction were performed similarly to as

described for the fibroblast-iN production, using N3 media.

Puromycin selection continued from day 2–6 postinfection, with

media changes every other day. On day 7, cells were dissociated

into single cells using PBS-EDTA (0.5 mM) and seeded onto mouse

glia. The next day, media was replaced with Neurobasal media

(Neurobasal [Invitrogen], L-glut [Invitrogen], B27 [Invitrogen],

penicillin/streptomycin [Invitrogen], doxycycline [2 mg/ml],

BDNF [10 ng/ml] [PeproTech], GDNF [20 ng/ml] [PeproTech],

and Ara-C). Media was half-exchanged every 3–4 days.
294 Stem Cell Reports j Vol. 3 j 282–296 j August 12, 2014 j ª2014 The Aut
Cell Quantification and Immunofluorescence
Reprogramming efficiency for MEF-iN cell generation was calcu-

lated as average percentages of TauEGFP cells per total number of

cells (calculated from DAPI stain) in a 203 field of view using an

inverted microscope (DMI6000B, Leica). For immunofluorescence

staining, cells were washed with PBS and then fixed with 4% para-

formaldehyde for 15–20 min at room temperature. Cells were per-

meabilized and blocked in 0.1% Triton X-100 (Sigma) and 5% cos-

mic calf serum (CCS) in PBS for 30 min. Primary and secondary

antibodies were diluted in a solution of PBS containing 5% CCS.

Cells were placed in the primary antibodies overnight at 4�C,
washed twice after 8–10 hr with PBS, and then incubated with

the secondary antibody for 30 min. The cells were washed three

more times with PBS after secondary incubation. Images were ac-

quired using an upright microscope (DM5500B, Leica). Antibodies

used were mouse anti-MAP2 (Sigma, 1:500), mouse anti-TUJ1 (Co-

vance, 1:1000), mouse anti-NEUN (Millipore, 1:100), E028 rabbit

anti-Synapsin (Südhof lab, 1:500), rabbit anti-vGLUT1 (Synaptic

Systems, 1:1000), mouse anti-vGAT (Synaptic Systems, 1:500),

chicken anti-GFP (Aves Labs, 1:1000) and Alexa 488- and Alexa

Fluor 555-conjugated secondary antibodies (Invitrogen).

Quantifications for vGLUT1-immunoreactivity were performed

using ImageJ software. Cells with vGLUT1/vGAT-immunofluores-

cence intensity >200-fold of background intensitywere considered

to be positively stained and were normalized to the total TauEGFP-

positive cell count for each 203 field view.

Electrophysiology
Electrophysiology experiments were performed similarly to those

described before (Chanda et al., 2013). In brief, Tau-EGFP-positive

MEF-iN cells, mESC-derived iN cells, or EGFP-infected TTF/HFF/

HPF/hESC-iN cells only with elaborate morphological complexity

were patched using internal solution containing (for voltage

clamp, in mM) 135 CsCl2, 10 HEPES, 1 EGTA, 1 Na-GTP, and 1

QX-314 (pH 7.4, 310 mOsm) or (for current clamp, in mM)

130 KMeSO3, 10 NaCl, 10 HEPES, 2 MgCl2, 0.5 EGTA, 0.16

CaCl2, 4 Na2ATP, 0.4 NaGTP, and 14 Tris-creatine phosphate (pH

7.3, 310 mOsm). The extracellular solution contained (in mM)

140 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 glucose, and 10 HEPES-

NaOH (pH 7.4). Current-clamp recordings for AP-generation ex-

periments were performed at around �60 mV by using a small

holding current to adjust the membrane potential accordingly.

Voltage-clamp recordings for AMPAR- and GABAR-mediated re-

sponses were made at a holding potential of �70 mV, whereas

NMDA-receptor-mediated EPSCs were measured at +40 mV. The

pharmacological agents were picrotoxin (50 mM, Tocris), CNQX

(25 mM, Tocris), TTX (a voltage-gated Na+-channel blocker, 1 mM;

Ascent Scientific), and tetraethylammonium and 4-aminopyridine

(TEA and 4AP, voltage-gated K+-channel blockers, 10 mM and

1 mM, respectively; Tocris). The puff application of 50 mM AMPA

(R-S AMPA hydrobromide, Tocris) and GABA (g-aminobutyric

acid, Tocris) was performed for 100 ms using a Picospritzer III

(Parker Instrumentation).

Data Presentation
All average data are presented as bar graphs indicating means ±

SEM (SD of parameter tested/square root of number of cells
hors
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recorded). In most cases, individual parameters measured from in-

dividual cells were plotted as color-coded open circles and pre-

sented along with average values. The number of cells qualita-

tively representing a population (a) among total number of cells

patched (b) is indicated as a/b, for example traces provided in Fig-

ures 4 and 5.

Quantitative RT-PCR
A total of 200 ng of total RNA was reverse transcribed into cDNA

using the first Strand cDNA Synthesis kit (Life Technologies)

with SuperScript II reverse transcriptase. Template cDNA was

amplified using SYBR Master Mix, and quantitative RT-PCR was

carried out on the AB7900HT (Life Technologies). Relative quan-

tity (RQ) values were calculated by the delta-delta Ct

ðRQ =2�½DCtsample�DCtcontrol�Þ method. Gapdh was used to normalize

the expression levels of each sample (DCt), and rtTA-infected

MEF samples were used as calibration control. Primer information

for individual assay is provided in Supplemental Information 1.

Single-Cell Gene Expression Analysis
Single-cell gene expression profiling was performed using the Flu-

idigmBiomark dynamic array according to themanufacturer’s pro-

tocol (Pang et al., 2011). Primers used were taken from Zhang et al.

(2013). Sequence information for additional primers used (SYB1

and SYB2) is provided in Supplemental Information 1. To ensure

the specificity of the amplification, titrations of total human brain

RNA were included in each experiment, and only primers that

demonstrated a linear amplification were analyzed. We collected

the cytoplasm of single iN cells (28–45 days after transduction)

growing on coverslips in 24-well plates by aspiration into patch

pipettes. Cytoplasmwas ejected into 2X cells-direct buffer (Invitro-

gen), flash frozen, and kept at �80�C until processing. Thawed

cytoplasm was subjected to target-specific reverse transcription

and 18 cycles of PCR preamplification with a mix of primers spe-

cific to the target genes (STA). STA products were then processed

for real-time PCR analysis on Biomark 96:96 Dynamic Array inte-

grated fluidic circuits (Fluidigm). We used custom-designed prime-

time assays (IDT) to detect specific transcripts. Primers were vali-

dated by performing quantitative RT-PCR via Fluidigm platform

on different RNA concentrations to generate standard curves for

each primer set. Primer efficiency was calculated by the following

formula: efficiency = (10�1/slope)�1 3 100. Primers within the ef-

ficiency range of 85%–115% and slopes between �3.0 and �3.7

were used. Clustering analysis was performed with DCt values

(CtGAPDH�Ctgene) of corresponding genes using the statistical soft-

ware R.

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures and Information

1 and can be found with this article online at http://dx.doi.org/10.

1016/j.stemcr.2014.05.020.
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Neurons generated by direct conversion of fibroblasts reproduce

synaptic phenotype caused by autism-associated neuroligin-3 mu-

tation. Proc. Natl. Acad. Sci. USA 110, 16622–16627.

Clarke, L.E., and Barres, B.A. (2013). Emerging roles of astrocytes in

neural circuit development. Nat. Rev. Neurosci. 14, 311–321.

Fode, C., Ma, Q., Casarosa, S., Ang, S.L., Anderson, D.J., and Guil-

lemot, F. (2000). A role for neural determination genes in speci-

fying the dorsoventral identity of telencephalic neurons. Genes

Dev. 14, 67–80.

Guillemot, F., Lo, L.C., Johnson, J.E., Auerbach, A., Anderson, D.J.,

and Joyner, A.L. (1993). Mammalian achaete-scute homolog 1 is
ell Reports j Vol. 3 j 282–296 j August 12, 2014 j ª2014 The Authors 295

http://dx.doi.org/10.1016/j.stemcr.2014.05.020
http://dx.doi.org/10.1016/j.stemcr.2014.05.020


Stem Cell Reports
ASCL1-Induced 1F-iN Cells
required for the early development of olfactory and autonomic

neurons. Cell 75, 463–476.

Han, S.S.,Williams, L.A., and Eggan, K.C. (2011). Constructing and

deconstructing stem cell models of neurological disease. Neuron

70, 626–644.

Helms, A.W., Battiste, J., Henke, R.M., Nakada, Y., Simplicio, N.,

Guillemot, F., and Johnson, J.E. (2005). Sequential roles for

Mash1 and Ngn2 in the generation of dorsal spinal cord interneu-

rons. Development 132, 2709–2719.

Jaenisch, R., and Young, R. (2008). Stem cells, the molecular cir-

cuitry of pluripotency and nuclear reprogramming. Cell 132,

567–582.

Johnson, J.E., Birren, S.J., and Anderson, D.J. (1990). Two rat ho-

mologues of Drosophila achaete-scute specifically expressed in

neuronal precursors. Nature 346, 858–861.

Kim, E.J., Battiste, J., Nakagawa, Y., and Johnson, J.E. (2008). Ascl1

(Mash1) lineage cells contribute to discrete cell populations inCNS

architecture. Mol. Cell. Neurosci. 38, 595–606.

Ladewig, J., Mertens, J., Kesavan, J., Doerr, J., Poppe, D., Glaue, F.,
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