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Abstract

Good knowledge of a peptide’s tertiary structure is important for understanding its function and its interactions with its
biological targets. APPTEST is a novel computational protocol that employs a neural network architecture and simulated
annealing methods for the prediction of peptide tertiary structure from the primary sequence. APPTEST works for both
linear and cyclic peptides of 5–40 natural amino acids. APPTEST is computationally efficient, returning predicted structures
within a number of minutes. APPTEST performance was evaluated on a set of 356 test peptides; the best structure predicted
for each peptide deviated by an average of 1.9Å from its experimentally determined backbone conformation, and a native or
near-native structure was predicted for 97% of the target sequences. A comparison of APPTEST performance with PEP-FOLD,
PEPstrMOD and PepLook across benchmark datasets of short, long and cyclic peptides shows that on average APPTEST
produces structures more native than the existing methods in all three categories. This innovative, cutting-edge peptide
structure prediction method is available as an online web server at https://research.timmons.eu/apptest, facilitating in silico
study and design of peptides by the wider research community.
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Introduction
Interest in peptide therapeutics has grown significantly in recent
years, motivated in part by the many advantages peptides pos-
sess compared to traditional small molecule chemical drugs [1,
2]. Peptide therapeutics are more selective, specific and effica-
cious than small molecule drugs and are degraded to amino
acids, which are less likely to exhibit undesirable drug–drug
interactions. Furthermore, peptides are less likely to accumulate
in tissues due to their short half-life, are less susceptible to the
development of drug resistance and are cost effective to produce
[3–6].

Peptides are an important and ancient element of the
immune response of all life forms, with host defense peptides
having been identified in all species, and found to be highly
conserved in vertebrate, insect and plant genomes [7, 8]. Peptide
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therapeutics are typically short, with a sequence length of
5–30 amino acids, and were initially isolated from plant or
animal secretions but are now also obtained from chemical
[9], genetic [10] and recombinant [11] libraries. Combined,
these libraries present a largely unexplored chemical space.
Peptides have been identified with antibacterial, antifungal,
antiparasitic, antiviral and anticancer properties. A limited
number of peptide drugs are currently available for treatment,
including bacitracin, boceprevir, enfuvirtide and leuprolide,
for treatment of pneumonia, hepatitis-C, HIV and prostate
cancer, respectively. Therapeutic peptides have been found to
possess α-helical, β-sheet and extended conformations in the
presence of membrane or membranomimetic environments
[12–17].

The quantity of sequence data available from sequencing
experiments has grown rapidly in recent years. The quantity of
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sequences with experimentally determined tertiary structures,
however, is lagging behind, as determining structures experi-
mentally is a cost and time-intensive task. Given that peptides’
bioactivities are dependent on their structure, being able to
easily obtain the peptides’ tertiary structure from their primary
sequence would facilitate an acceleration of the peptide drug
design pipeline.

The prediction of protein structures from their primary
sequences represents one of the most challenging problems in
bioinformatics today. Many attempts have been made at solving
the protein structure prediction problem, with many software
applications having been developed for this purpose, including
I-TASSER [18], Rosetta [19], HHpred [20], NovaFold and most
notably AlphaFold 2 [21] which recently performed excellently
in the CASP 14 experiment. The prediction of peptide structures,
which are distinguished from proteins by their short sequence
length, presents a similar challenge, which has not received
the same attention as the former, with only a limited number
of programs developed for the purpose of predicting peptide
tertiary structure. While programs like AlphaFold 2 can utilize
co-evolutionary information to predict inter-residue contacts,
the same is not always possible for peptides. A number of
attempts have been made in the past at accurate prediction
of peptide tertiary structure. Geocore, an ab initio filtering
algorithm, was developed for finding native-like structures
in small ensembles of conformations [22]. Later, PEPstr was
developed for the prediction of peptide tertiary structures from
predicted beta-turn and secondary structure information [23].
PEPstr has since been superseded by PEPstrMOD, which expands
the scope to include cyclic peptides and peptides with non-
natural residues [24]. Nicosia and Stracquadanio [25] employed
a generalized pattern search (Gps) algorithm, which uses search
and poll to find peptide conformation global energy minima.
PepLook explores the peptide conformational space using a
Boltzmann stochastic algorithm [26–28]. At a similar time,
Maupetit et al. developed PEP-FOLD, which has been updated
multiple times [29–33]. The most recent version combines a
structural alphabet with a hidden Markov model. Finally, Narzisi
et al. [34] employed a multi-objective evolutionary algorithm for
the exploration of the peptide conformational space.

Machine learning techniques, including deep learning, have
previously been applied to other bioinformatic problems: DeepP-
PISP for the prediction of protein–protein interaction sites [35],
SCLpred and SCLpred-EMS for protein subcellular localization
prediction [36, 37], CPPpred for the prediction of cell-penetrating
peptides [38], HAPPENN for the prediction of peptide hemolytic
activity [39], ENNAACT for the prediction of peptide anticancer
activity, [40] and ENNAVIA for the prediction of peptide antiviral
activity [41]. Indeed, deep learning has been applied to the
prediction of protein secondary structures [42–44]. Herein, we
describe APPTEST, a novel protocol for the automatic prediction
of peptide tertiary structures. APPTEST utilizes one-dimensional
gated residual convolutional neural networks for the prediction
of distance and dihedral angle restraints, which are then input
to traditional NMR structure determination methods to obtain a
final ensemble of model structures.

Methods
The APPTEST protocol combines deep learning methodology
with traditional NMR structure determination methods to pre-
dict peptide tertiary structures. Figure 1 provides a graphical
summary of the APPTEST protocol, which is further detailed
henceforth.

Dataset

The proper construction of a reliable dataset is an important step
in a machine learning endeavor. Neural networks’ performance
scales with the size of the dataset available for training; it is
important, therefore, to construct a dataset encompassing as
many peptide structures as possible from multiple sources.

PDB structure codes were sourced from multiple peptide
databases: DBAASP [45, 46], APD3 [47], ADAM [48] and DRAMP
[49]. PDB structure codes were also extracted from the datasets
of PEPstrMOD [23] and PEP-2D [50]. Finally, the RCSB PDB [51] was
also searched for structures with a chain length between 5 and
40 amino acids.

Only structures with a sequence length between 5 and 40
were considered. To prevent the classifier from overfitting to
the training data, the dataset’s sequences were internally redun-
dancy reduced using CD-HIT [52–54], with a sequence identity
cut-off of 0.9. NMR structures with an internal backbone RMSD
greater than 2.50 Å were excluded.

Model validation

It is critically important to thoroughly validate machine learning
models. Ten-fold cross-validation and validation by an external
test set were employed to evaluate the performance of APPTEST.
A total of 2265 experimentally obtained peptide structures were
used for model training and internal 10-fold cross-validation.
The models trained under cross-validation were ensembled and
evaluated with the external test set, which consists of 356 previ-
ously unseen, redundancy reduced peptide sequences and their
corresponding experimentally obtained peptide structures.

Structure analysis

The Biopython [55] module Bio.PDB [56] was used to retrieve pep-
tide structures from the PDB and to calculate inter-residue dis-
tances, dihedral angles and root mean square deviation (RMSD)
values.

Peptide representation

A total of 186 amino acid scales were extracted from the AAindex
[57] and used to construct the matrix A, of shape (21, 186), where
the 1st 20 rows correspond to the twenty proteinogenic amino
acids, the last row corresponds to the non-natural amino acids
without known AAindex-scaled properties and the 186 columns
correspond to the 186 amino acid indices. AT is scaled using
the standard scaler, is dimensionality reduced with principal
component analysis [58] and scaled so its values have minimum
and maximum values of zero and one, respectively. The final
matrix A has shape (21, 15).

Each peptide can be represented by one-hot encoding its
primary sequence to give a vector h, where 0 represents an empty
position, 1–20 encode the natural, proteinogenic amino acids and
22 encodes a non-natural amino acid residue. Similarly, the one-
hot encoding can be represented by a sparse matrix P of shape
(50,21) exists, where Pij = 1 if the amino acid at sequence position
i is the jth of the 21 types of amino acid. Information about
cyclic restraints can be encoded in a sparse matrix C of shape
(50,50), where Ci,j = 1 if a cyclization exists between the ith and
jth residues. Finally, a matrix S of shape (50,15) which describes
the peptide’s amino acids’ physicochemical properties can be
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Figure 1. Graphical summary of the APPTEST protocol. Structures and corresponding peptide sequences are extracted from the Protein Data Bank; eligible sequences

are retained to form the APPTEST dataset. Peptide sequences are described on a per-amino acid basis, using one-hot embedding and amino acid scales. Neural networks

are trained using the described sequences as inputs and inter-residue distance and torsion angles as the prediction targets. Predicted structural restraints are used as

inputs to modeling programs XPLOR-NIH or CYANA, which use molecular dynamics simulations to yield an ensemble of predicted structures.

defined as follows:

S = P· A. (1)

Additionally, two masks can be defined. A vector m, of length
50, and a matrix M, of shape (50,50). mi = 1 if the ith position
of the peptide sequence space is occupied. Similarly, Mi,j = 1
if the ith and jth positions of the peptide sequence space are
occupied.

Data augmentation

In order to artificially increase the quantity of data available,
data augmentation is employed. Specifically, the peptides’
inputs to the neural networks are shifted along the input frame
of length 50. During training, each peptide is represented as 20
samples, each randomly shifted along the input frame. During
blind prediction, each peptide is represented as n samples, where
n is 50-(peptide length)+1. The neural networks’ outputs are
shifted back to the original frame and averaged.

Neural network architecture and implementation

Keras with a Tensorflow [59] backend was used for the con-
struction and training of the neural network. A randomized
grid search strategy was employed for the identification of the
optimal neural network architecture and hyperparameters.

First, h is input to an embedding layer with a dense embed-
ding dimension of 12. Each row of the dense embedding is then
multiplied by the mask vector m, resulting in a final tensor of
shape (50,12). This tensor is concatenated with A and C to yield a
final tensor of shape (50, 77), which is input to a one-dimensional

convolutional layer, with 128 filters and a window width of 7.
This is followed by batch normalization layer, the rectified linear
unit activation function, a one-dimensional spatial dropout layer
and two residual gated convolutional blocks.

Each residual gated convolutional block consists of three one-
dimensional gated convolutional layers [60], which also have 128
filters and a window width of 7. The 1st two are followed by a
batch normalization layer and a rectified linear unit activation
function, and the final has a spatial dropout applied to it. The
output of the spatial dropout layer is added to the block’s original
input, batch normalized, activated with the rectified linear unit
and has another spatial dropout layer applied. The output of the
2nd residual gated convolutional block is connected to a fully
connected layer with 1024 nodes, which is followed by a batch
normalization, a rectified linear unit activation and a dropout
layer. This layer is connected to three output layers, which have
2500, 2500 and 200 nodes, respectively. The 1st two are activated
with the rectified linear unit, and the third is activated with
the hyperbolic tangent function. When reshaped, and multiplied
with their respective masks, these output layers correspond
to the Cα-Cα and Cβ -Cβ distances and the cos and sin of the
peptide’s φ and ψ dihedral angles.

The mean squared error (MSE) function, commonly used for
regression tasks, is employed as the loss function in training the
neural network. It is defined as follows:

MSE = 1
N

N∑

i=1

[(yi − ŷi)2] (2)

where yi is the true value of the ith sample and ŷi is the predicted
value of the ith sample.
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Adaptive momentum with Nesterov momentum (Nadam)
was identified as the optimal optimizer [61].

The neural network was trained for 400 epochs, without
stopping criteria. The model with the lowest validation MSE
encountered during training was retained for each of the cross-
validation splits. The optimal learning rate parameter was found
to be 0.001.

Simulated annealing protocols

Distance restraints

Cα −Cα and Cβ −Cβ distance restraints are derived from the neural
networks’ predictions, with the lower distance restraints being
calculated as mean − sd, and the upper distance restraints being
calculated as mean + sd. For a peptide with a sequence of length
n, a total of 2n(n − 1) distance restraints are generated.

Dihedral restraints

The predicted values for each dihedral angle’s cos and sin values
are averaged, and those average values are used to recover a
predicted dihedral angle value. The upper and lower dihedral
angle restraints are given as mean + 15◦ and mean − 15◦, respec-
tively. For a peptide with a sequence of length n, a total of 2(n −
1) dihedral restraints are generated, of which only predictions
where both the cos and sin standard deviations are below 0.10
are included as dihedral restraints. Consequently, the majority
of structural restraints used in the structure determination are
distance restraints.

XPLOR-NIH protocol

XPLOR-NIH 3.1 is used for simulated annealing and energy min-
imization, yielding a default of 100 structures [62, 63]. Struc-
ture coordinates are initiated from a preliminary structure con-
structed using PeptideBuilder [64], based on neural networks’
predicted dihedral angles. Upper and lower distance and torsion
angle restraints are loaded, and torsion angle dynamics are
performed, with an initial temperature of 2025 K and a final
temperature of 25 K. A temperature step of 25 K is employed,
with a tolerance factor of 100 for the annealing stage. Finally,
Cartesian angle minimization is performed.

CYANA protocol

Alternatively, CYANA 3.0 is also used for simulated annealing
[65]. The upper and lower distance and torsion angle restraints
are loaded, and by default, 100 random structures are created,
annealed for 20 000 steps and energy minimized for 20 000 steps.

Performance evaluation

The robustness of the predictions is evaluated by measurement
of the backbone RMSD (B-RMSD) between the predicted and
experimental structures. Results are reported for both the best-
predicted model and the ensemble’s prime model. The choice of
the ensemble’s prime model is dependent on the modeling soft-
ware employed: CYANA models are ordered by target function
value, while XPLOR-NIH models are by default ordered by total
energy. B-RMSD values are calculated for both the full structure
and the rigid core (RC). A structure is considered near native,
if the RC B-RMSD to the experimental conformation is <4Å, as
previously defined by Thévenet et al. [31].

Rigid core

As NMR model structures can exhibit significant structural
diversity, ensemble-level comparisons between the predicted
and experimental structures are performed for the peptides’
RCs as well as the full structures. RC regions were calculated
using the method described by Maupetit et al. [30] A peptide’s RC
is defined from the experimentally obtained structure as the set
of residues that exhibit a Cα-RMSD of <1.5 Å.

Comparison with existing methods

The predictive performance of APPTEST is compared with the
existing peptide tertiary structure prediction methods. The
structures selected for the comparison are those used for
similar comparison tables in the articles describing PEPstr [23],
PEPstrMOD [24], PEP-FOLD [29–32] and PepLook [28].

APPTEST is used with XPLOR-NIH to predict 100 structures.
The structures are sorted by their total energies. PEP-FOLD 3.5
is used to predict 100 structures. The PEP-FOLD structures are
sorted by the sOPEP energy, and all 100 structures are retained.
For cyclic peptides, PEP-FOLD 2.0 is used, as recommended by
the authors, with the recommended short simulation time
employed. PEPstrMOD only predicts a single structure for
each query. The simulation time used is 100 ps in a vacuum
environment. PepLook does not have an online interface that
can be used for structure prediction; consequently, it was
not possible to independently evaluate the PepLook method.
The results presented are reproduced directly from Beaufays
et al. [28].

Results and discussion
Model validation

In order to comprehensively evaluate the predictive ability of
APPTEST, predicted structures were calculated for the 356 pep-
tide sequences of the independent test set. The full set of results
is detailed in Supplementary Table 1. A summary of the struc-
tural statistics is given in Table 1.

While APPTEST itself generates distance and dihedral
restraints, a molecular modeling program is required for the
creation of model structures based on these restraints. Two
molecular modeling packages are employed and compared in
this work: CYANA and XPLOR-NIH. The former benefits from
faster computation times, but requires a license for use, which
precludes us from integrating it with our web server. The web
server can create the required CYANA-format restraints which
the user can use for the creation of structures with their local
copy of CYANA or any server that supports CYANA. The latter,
while computationally slower, can be downloaded with a license
for free for academic use from the authors’ website.

The structure prediction results tabulated for the 356 pep-
tides in Table 1 show that APPTEST is a reliable method for the
prediction of structures of peptides of 5-40 amino acids. The
performance with both packages is comparable, although the
better performance is achieved with the XPLOR-NIH package,
with a mean best B-RMSD of 1.91 Å, compared to a B-RMSD of
2.10 Å when using CYANA for the 356 peptides. A mean B-RMSD
of just 1.57 Å is achieved for short peptides between 6-12 amino
acids in length, rising to just 2.50 Å for longer peptides with
between 34 and 40 amino acids. The best RMSD achieved was
0.23 Å for the structure 2mjr, which is 10 amino acids long, while
the worst RMSD was 8.38 Å for the structure 2ki0. An RMSD below
3.00 Å is achieved for 84% of the 356 structures tested, and an
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Table 1. APPTEST performances on the APPTEST independent test set, using CYANA and XPLOR-NIH for torsion angle dynamics and simulated
annealing. B-RMSD values are given for the best-predicted model, the model with the least distance restraint violations and the model with
the lowest energy (XPLOR-NIH only). Numbers in brackets are B-RMSD values for the peptides’ RCs only

Program CYANA XPLOR-NIH

LENGTH N BEST RESTR. BEST ENERGY RESTR.

6–12 123 1.85 (1.83) 2.43 (2.41) 1.57 (1.56) 2.30 (2.28) 2.45 (2.44)
13–19 83 2.07 (1.95) 2.63 (2.47) 1.93 (1.80) 2.70 (2.52) 2.71 (2.56)
20–26 44 2.57 (2.33) 3.25 (2.96) 2.39 (2.18) 3.05 (2.74) 3.12 (2.83)
27–33 52 2.21 (2.01) 2.71 (2.48) 2.07 (1.88) 2.69 (2.42) 2.65 (2.41)
34–40 41 2.59 (2.30) 3.00 (2.69) 2.50 (2.20) 3.07 (2.69) 3.36 (3.00)
All 356 2.10 (1.98) 2.65 (2.51) 1.91 (1.79) 2.61 (2.44) 2.70 (2.54)

Table 2. Performance comparison summary of APPTEST, PEP-FOLD, PepLook and PEPstrMOD B-RMSD values on short, long and cyclic peptides.
Results are reported for the best model and the prime (lowest energy) model, for both the full structure and the RC (given in brackets, where
applicable). APPTEST achieves the best performance on more peptides in each class than existing approaches and achieves the lowest mean
B-RMSD values. Most notably, considering cyclic peptides of 10-40 aa, APPTEST’s mean lowest energy structure B-RMSD is just 64% that of the
next best, PEP-FOLD

N L APPTEST PEP-FOLD PepLook PEPstrMOD APPTEST PEP-FOLD PepLook
PRIME PRIME PRIME ONLY BEST BEST BEST

SHORT 42 9–25 2.60 (2.24) 2.81 (2.38) – 4.66 (4.33) 1.96 (1.69) 2.05 (1.71) –
LONG 30 26–40 4.45 (3.36) 5.61 (4.30) – – 3.20 (2.44) 3.43 (2.58) –
CYCLIC 28 10–25 2.64 (2.26) 3.96 (3.56) 3.84* 4.62 (4.29) 1.96 (1.68) 2.50 (2.14) 3.71*
CYCLIC 34 10–40 2.68 (2.09) 4.18 (3.81) 4.23* – 1.99 (1.55) 2.71 (2.37) 4.02*
ALL 106 9–40 3.15 (2.48) 4.04 (3.31) – – 2.32 (1.92) 2.65 (2.17) –

B-RMSD, backbone root mean square deviation; N, number of peptides evaluated in each class; L, peptide length. APPTEST 1st model is that with the lowest XPLOR-NIH
energy. PEP-FOLD 1st model is the one with the lowest sOPEP energy value. PEP-FOLD 3.5 was used to predict short and long peptide structures; PEP-FOLD 2.0 was used
to predict cyclic peptide structures. PEPstrMOD only returns a single structure. PepLook results are taken from Beaufays et al. [4]

RMSD below 2.00 Å is achieved for 60% of the structures tested.
Furthermore, only 3% of peptides have a best B-RMSD greater
than 4.00 Å. A selection of some of the best APPTEST predicted
structures is illustrated in Figure 2.

Comparison with existing methods

To effectively benchmark the predictive performance of
APPTEST against PEP-FOLD, PEPstrMOD and PepLook, the
structures predicted by each method were compared to the
experimental structures and the B-RMSD values were measured.
Three benchmark sets of structures are used: short peptides
(9-25 aa), long peptides (26-40 aa) and cyclic peptides (10-30
aa). The results are detailed in Supplementary Tables 2–4 and
summarized in Table 2.

Short peptides

A total of 42 short (9-25 aa) peptides are predicted; the selected
peptides are those originally evaluated for the PEPstr program
[23]. Overall, APPTEST performs best, with its mean B-RMSD
values being lower than the corresponding PEP-FOLD and PEPstr-
MOD values. Closer inspection reveals that of the best full struc-
ture predictions, APPTEST scores best on 27 of the 42 structures
and PEP-FOLD 3.5 scores best on the remaining 15 structures. The
results for just the RCs are similar, with APPTEST scoring best on
26 structures and PEP-FOLD scoring best on 16 structures.

As the best structure is one of a hundred structures, the
1st structure, i.e., the one with the lowest energy, should also
be as close as possible to the experimental structure. Of the
42 structures investigated, APPTEST predicts the most-native
structure for 25 of the peptides, PEP-FOLD 3.5 for 14 peptides
and PEPstrMOD for the remaining 3. The RC results are similar,

with APPTEST, PEP-FOLD and PEPstrMOD scoring 25, 15 and 2,
respectively.

Long peptides

A total of 30 long (26-40 aa) peptides are predicted; the selected
peptides are those originally evaluated for the PEP-FOLD
program [32]. Prediction of peptide structures is increasingly
challenging as the sequence length increases, as evidenced by
APPTEST’s mean best full structure B-RMSD being 3.20 Å for long
peptides, compared to 1.96 Å for short peptides. Nonetheless,
APPTEST still outperforms PEP-FOLD 3.5 in this task, which has
a mean B-RMSD of 3.43 Å. PEPstrMOD, meanwhile, does not
facilitate predictions of peptides with a sequence length greater
than 25 amino acids.

APPTEST and PEP-FOLD 3.5 return the most-native predic-
tions for 16 and 14 of the 30 peptide structures included in this
benchmark when the full structure B-RMSD are considered; this
rises to 19 and 11 when only the structures’ RCs are considered.
When the comparison is restricted to consider only the lowest
energy structure returned by each method, APPTEST and PEP-
FOLD 3.5 return the most-native structure for 20 and 10 of the
peptides, respectively, for both the full structures and RC regions.

Cyclic peptides

The structures of cyclic peptides, such as those possessing disul-
fide bonds, have traditionally been challenging to predict. Nei-
ther PEPstr [23], the Gps algorithm [24] nor PEP-FOLD 1.0 [29]
facilitated the prediction of cyclic peptide structures.

The 34 cyclic peptides in this benchmark set are between 10
and 30 amino acids in length and were originally used to evaluate
the PEP-FOLD 2.0 and PepLook programs [28, 31]. As PEPstrMOD
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Figure 2. Selection of some of the best APPTEST predicted structures (green)

aligned with the peptides’ corresponding experimental conformations (blue). (A)

Hongotoxin 1 (1hly) is a 39 amino acid mixed-structure peptide, which has both

α-helical and β-sheet structures [66]. The best APPTEST structure has a B-RMSD

of 1.44 (1.38) Å to the experimental conformation. (B) Jingzhaotoxin-XI (2a2v) is

a 34 residue peptide with two β-sheets [67]. The best APPTEST structure has a

B-RMSD of 1.46 (1.31) Å to the solution NMR structure. (C) Optimized PPa-TYR

(6gwx) is a 36 residue rationally designed miniprotein with a polyproline-II helix

and an α-helix motif [66]. The best APPTEST structure has a B-RMSD of 1.75 (1.74)

Å to the experimentally determined structure. (D) The hydrophobic analogue of

winter flounder antifreeze protein (1j5b) is a 37 amino acid α-helical structure.

The APPTEST predicted structure with the lowest energy is the best-predicted

structure, with a B-RMSD of just 0.86 Å to the experimental conformation [68].

only facilitates predictions of peptides up to 25 amino acids in
length, mean RMSD values are reported for the subset of 28
peptides with a sequence length of 10–25 amino acids, as well as
for the entire set of 34 peptides. As the PepLook web server is no
longer available, the B-RMSD values that follow are taken from
the PepLook article [28]. Unfortunately, the values presented are
for only the full structure or only the RC, and so the comparison
with PepLook is consequently not fully comprehensive. As per
the instructions on the PEP-FOLD web server, PEP-FOLD 2.0 is
used instead of the newer PEP-FOLD 3.5 for the prediction of
cyclic peptide structures.

Comparing the performance of the four methods on the
cyclic dataset, it is clear that APPTEST outperforms the exist-
ing methods, with a mean best full structure B-RMSD value of
1.96 Å, compared to the 2.50 Å, 3.71Å and 4.62 Å of PEP-FOLD,
PepLook and PEPstrMOD, respectively. This is further exempli-
fied by inspecting predictions of individual structures: APPTEST
returns the most native structure for 26 of the 34 peptides in the
benchmark, and PEP-FOLD 2.0 returns the most native structure

for the remaining 8 peptides. Considering only the RC regions,
APPTEST returns the most accurate structure for 30 of the 34
peptides, with PEP-FOLD 2.0 scoring better on the remaining 4
peptides. Restricting the comparison to only consider the prime
structure returned by each method, APPTEST achieves the best
performance on 23 of the structures, with the remaining 6, 4 and
1 structures being best predicted by PEP-FOLD 2.0, PepLook and
PEPstrMOD, respectively. The results when considering only the
RC region are similar, with APPTEST, PEP-FOLD 2.0 and PepLook
achieving the best performance for 25, 7 and 2 of the 34 struc-
tures, respectively.

Key Points
• A novel protocol was developed for the prediction of

peptide tertiary structures from their primary struc-
ture.

• An artificial neural network model was constructed
and trained for the prediction of structure distance
and torsion angle restraints.

• Traditional NMR structure calculation software was
used to obtain final ensembles of model structures
from the generated restraints.

• APPTEST was evaluated using a redundancy-reduced
external test set of 356 peptide sequences.

• APPTEST outperforms the current best-in-class meth-
ods for peptide tertiary structure prediction.

Conclusion
To conclude, knowledge of a peptide’s tertiary structure is
an important component in thoroughly understanding its
biological activity. Elucidating tertiary structure is a non-trivial,
time-intensive task that requires specialized equipment. This
work briefly reviewed the history of peptide structure prediction
and compared the most recent methods for peptide tertiary
structure prediction. Furthermore, in order to facilitate a more
accurate de novo prediction of peptide tertiary structure, the
authors have developed a computational protocol that combines
the predictive power of neural networks with existing structural
biology software programs XPLOR-NIH and CYANA. Neural
networks were trained on experimentally obtained model
structures from the PDB to predict structural restraints, which
are used in restrained molecular dynamics simulations to yield
a final ensemble of structures. A test set of 356 peptides was
used to evaluate the protocol’s performance, with mean B-RMSD
values of 1.91 and 2.10 Å achieved when using XPLOR-NIH and
CYANA, respectively. Additionally, the model’s performance was
benchmarked against existing methods, PEP-FOLD, PEPstrMOD
and PepLook, on sets of short, long and cyclic peptides. APPTEST
achieved state-of-the-art performance on all three peptide
sets, demonstrating that the combination of a neural network
architecture with traditional structure determination methods
is capable of accurately predicting peptide tertiary structure.
Nonetheless, the proposed protocol possesses limitations: the
sequence length is limited to 40 residues, which must be natural
amino acids. These limitations may be overcome in future
iterations of this work. This work extends a suite of existing
in silico methods developed by the authors, which includes
methods for the prediction of peptide hemolytic, anticancer,
antiviral and anti-coronavirus activities [39–41]. The authors
trust that the results of this work, in combination with the
aforementioned classifiers, will facilitate improved in silico
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design of novel peptide-based therapeutics, thereby lowering
reliance on specialized equipment and reducing the time and
cost required for the design phase, helping to drive medicinal
chemistry into an unprecedented revolution.

Availability
Web server

APPTEST is available as an easy to use web server online at
https://research.timmons.eu/apptest, for the benefit of the
wider scientific community. The web server is capable of predict-
ing peptides’ tertiary structure based on the primary sequence
and cyclic restraints. Input peptide sequences are restricted
to the 20 natural amino acids; support for the prediction of
peptides containing non-natural amino acids is not currently
available. Users may choose to only predict the distance and
angle restraints or to also conduct simulated annealing to
produce an ensemble of model structures. Simulated annealing
can be carried out only using XPLOR-NIH on the web server, as
the authors’ CYANA license does not extend to usage in a web
server context.

Standalone

APPTEST is also available as a standalone executable program
for Linux. This program has been tested to work with Ubuntu
20.04 LTS and Debian 10. The program can be downloaded
from https://research.timmons.eu/apptest or alternatively can
be requested from the authors. The standalone program is
recommended for users who intend to carry out a large number
of structure predictions.

Data Availability

Datasets employed during this study are available for down-
load at https://research.timmons.eu/apptest.

Funding

University College Dublin (to P.B.T.).

References
1. Albericio F, Kruger HG. Therapeutic peptides. 2012;4(12):

1527–1531.
2. Otvos L. Peptide-based drug design: here and now. Methods

Mol Biol 2008; 494:1–8.
3. Vlieghe P, Lisowski V, Martinez J, et al. Synthetic therapeutic

peptides: science and market. Drug Discov Today 2010; 15
(1–2): 40–56.

4. Yeaman MR, Yount NY. Mechanisms of antimicrobial pep-
tide action and resistance. Pharmacol Rev 2003; 55(1):
27–55.

5. Guilhelmelli F, Vilela N, Albuquerque P, et al. The various
mechanisms of action of antimicrobial peptides and of
bacterial resistance. Front Microbiol 2013; 4:353.

6. Holohan C, Van Schaeybroeck S, Longley DB, et al. Cancer
drug resistance: an evolving paradigm. Nature Reviews Cancer
2013;13(10): 714–26.

7. Mahlapuu M, Håkansson J, Ringstad L, et al. Antimi-
crobial peptides: an emerging category of therapeutic

agents. Frontiers in Cellular and Infection Microbiology 2016;6:
194.

8. Hancock REW, Diamond G. The role of cationic antimicrobial
peptides in innate host defences. Trends Microbiol 2000; 8(9):
402–10.

9. Furka Á, Sebestyén F, Asgedom M, et al. General method for
rapid synthesis of multicomponent peptide mixtures. Int J
Pept Protein Res 1991; 37(6): 487–93.

10. Sohrabi C, Foster A, Tavassoli A. Methods for generat-
ing and screening libraries of genetically encoded cyclic
peptides in drug discovery. Nat Rev Chem 2020; 4(2):
90–101.
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