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ABSTRACT: Deep learning provides new ideas for chemical
process fault diagnosis, reducing potential risks and ensuring safe
process operation in recent years. To address the problem that
existing methods have difficulty extracting the dynamic fault
features of a chemical process, a fusion model (CS-IMLSTM)
based on a convolutional neural network (CNN), squeeze-and-
excitation (SE) attention mechanism, and improved long short-
term memory network (IMLSTM) is developed for chemical
process fault diagnosis in this paper. First, an extended sliding
window is utilized to transform data into augmented dynamic data
to enhance the dynamic features. Second, the SE is utilized to
optimize the key fault features of augmented dynamic data
extracted by CNN. Then, IMLSTM is used to balance fault
information and further mine the dynamic features of time series data. Finally, the feasibility of the proposed method is verified in
the Tennessee-Eastman process (TEP). The average accuracies of this method in two subdata sets of TEP are 98.29% and 97.74%,
respectively. Compared with the traditional CNN-LSTM model, the proposed method improves the average accuracies by 5.18%
and 2.10%, respectively. Experimental results confirm that the method developed in this paper is suitable for chemical process fault
diagnosis.

1. INTRODUCTION
Chemical processes play a pivotal role in the development of the
world economy and in the lives of people. New technologies,
new equipment, and new materials are emerging, production
scales are expanding, processes are becoming more complex, and
operating environments are harsh, resulting in chemical process
risks everywhere. Once a safety accident occurs, it will bring
serious damage to people’s lives and health, the ecological
environment, social stability, and the enterprise economy.

Abnormal situation management (ASM) provides an early
warning for abnormal situations, timely diagnoses the causes,
and provides decision support for technicians to take measures
and restore the process to normal, which has made a great
contribution to improving process safety.1 Proper risk assess-
ment (RA) helps to control the risks before they occur. Fault
detection and fault diagnosis (FDD) means detecting whether
faults have occurred and, if so, classifying the fault. From a
process safety perspective, FDD, RA, and ASM can form a closed
loop. Among them, FDD is a key step to identify potential risks.
RA evaluates the risk margin based on fault information
provided by FDD and reports risk events to ASM. ASM makes
decisions to ensure process security based on the feedback.2

Khan et al.3 pointed out that process security could be improved
by integrating dynamic FDD with RA. Dai et al.4 proposed that
FDD is an effective way to control and mitigate process risks.

From the perspective of risk engineering, process safety usability
is to effectively detect and diagnose faults.5 Therefore, the
development of an intelligent and efficient FDD system is the
key to maintain the ideal performance of digital industrial
processes and safety in production.

The integration of FDD with process safety and risk
assessment is an interesting research area. Amin et al.6 proposed
a risk-based FDD method. This method carried out fault
detection and diagnosis in the monitored risk profile.
Experimental results showed that this method has better
diagnostic performance than PCA and transfer entropy. Bao et
al.7 proposed a risk-based process safety fault diagnosis
technology. The advantage of this method is to identify and
determine potential faults by risk index and realize the
development of fault diagnosis technology from single variable
to multivariable monitoring. Bhadriraju et al.8 designed an
operational adaptive sparse system recognition to solve the
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problem that an offline training model has difficulty capturing
the dynamic behavior of a process. The experimental result
showed that the process behavior prediction based on this
system can effectively predict faults and assess risks. From the
perspective of process safety, it is again clear that FDD is an
effective initiative to minimize risk and guarantee the safe
operation of complex industrial processes.

Data-driven FDD methods can avoid the dependence on a
complex process mechanism and mine the high-value
information hidden in process data. Data driven methods can
be further divided into multivariate statistical methods, machine
learning methods, and deep learning methods. Multivariate
statistical methods include principal component analysis (PCA),
independent component analysis (ICA), partial least-squares
(PLS), a Gaussian mixture model (GMM), and their variants.9

At present, multivariate statistical methods are mainly used for
fault detection. Deng et al.10 proposed two local kernel PCA
(KPCA) to solve the problem of missing local data information
on KPCA in the case of an early fault. The method has been
verified effectively in a continuous stirred tank reactor (CSTR).
For fault detection of complex processes, a single method is
usually not as superior as the detection results obtained by
hybrid methods.4 Han et al.11 adopted the hybrid fault detection
method of adaptive kernel PCA and gray correlation analysis,
which is superior to single kernel PCA and can provide a basis
for ASM. Fault detection based on multivariate statistical
learning methods usually depend on the threshold value of
calculation to judge whether the fault exists. If the threshold
value calculation slightly deviates, it may lead to the wrong result
of fault diagnosis and increase the process risk.

Machine learning methods include locality preserving
projection (LPP), naiv̈e bayes (NB), and support vector
machine (SVM). He et al.12 proposed a new discriminant LPP
algorithm (DLPP) combined with Monte Carlo sampling,
which not only solves the problem of high-dimensional process
data but also solves the problem that DLPP is limited by a small
sample size, thus effectively improving the fault diagnosis
performance of industrial processes. Zhang et al.13 proposed an
improved LPP and AdaBoost integration method. The
improved LPP based on the heat-kernel and cosine weights
can effectively extract the internal structure feature of data, so
high fault diagnosis accuracy can be achieved in two chemical
processes. Zhang et al.14 constructed a new farthest−nearest
distance neighborhood and locality projections method and
used it to reduce the dimension of high-dimensional process
data to extract discriminant features. NB was adopted as a
classifier for process fault diagnosis. Amin and Khan et al.15

proposed a hybrid diagnosis method of PCA and BN. This
method achieved good diagnostic performance in a continuous
stirred tank heater and binary distillation column because it used
the correlation dimension to select the principal component and
combined a vine copula and the BN theorem to capture the
nonlinear dependence of high dimensional process data. Deng et
al.16 proposed a fault detection method based on the integration
of the spatial compression matrix and NB, which reduces the
complexity of learning and helps to speed up the management of
production risks. Machine learning can achieve a better effect of
FDD when a small sample is used. However, the fault diagnosis
ability of these methods depends on the quality of feature
extraction, which has certain limitations on the dynamic feature
representation of process data.

Deep learning is widely regarded as an effective tool for fault
diagnosis in modern industrial applications. Diagnostic models

based on classical deep learning include convolutional neural
network (CNN), deep belief network (DBN), stacked
autoencoder (SAE), and long short-term memory network
(LSTM). Among them, CNN has achieved a more advanced
performance. In 2018, Wu et al.17 used deep CNN (DCNN) for
fault diagnosis of TEP. The time-frequency domain features of
process variables are converted into two-dimensional (2D)
matrices, which are input into DCNN to extract spatial features
of variables, and then fault classification is carried out. This
method has achieved 88.2% classification accuracy. Song et al.18

used matrix maps and multiscale CNN for chemical process fault
diagnosis, and the classification accuracy is 88.54%. For the
above models, process variables need to be converted into 2D
matrices or complex images as inputs of CNN, which leads to a
large consumption of computing resources. Yu et al.19 designed
a multichannel 1D CNN model (MC1-DCNN) on the basis of a
wavelet transform and applied it to batch-fed fermentation of
penicillin and TEP. The result shows that MC1-DCNN has the
ability to learn high-dimensional process signal characteristics
and a good performance of fault diagnosis. Yu et al.20 designed a
broad CNN with incremental learning ability, which is
characterized by self-renewal in the face of new faults.

In addition, LSTM has also attracted scholars’ attention in
industrial process fault diagnosis as a result of its stronger
adaptability in time series data analysis. Zhao et al.21 came up
with an end-to-end sequential fault diagnosis method based on
LSTM to address the problem that most conventional fault
diagnosis techniques cannot learn dynamic features from raw
data. Han et al.22 presented an optimized LSTM, which
improves the accuracy of diagnosis of single and multiple faults
in TEP by optimizing the number of hidden layer nodes of the
LSTM. Park et al.23 proposed an integration method of
convolutional LSTM and autoencoder to detect rare faults in
industrial processes. Gravanis et al.24 combined the feature
reduction method with LSTM and a time delay network,
respectively, to conduct FDD of nonlinear processes. The fault
diagnosis model based on the combination of CNN and LSTM
has become a research hotspot because of its ability to extract
spatial and temporal features of industrial data and improve
diagnosis performance. Shao et al.25 used a multichannel LSTM-
CNN (MCLSTM-CNN) fault diagnosis model. This method
inputs a data set into LSTM and then uses multiple parallel
convolution layers to mine the output features of the hidden
layer at the same time. The research indicates that the fault
diagnosis accuracy of applying MCLSTM-CNN to TEP is as
high as 92.06%. Wang et al.26 designed the feature extraction
method of the LSTM-CNN parallel structure and then fused
and compressed the features by MLP. This method can extract
the temporal and spatial features of process variables, so as to
improve the diagnostic performance. Yuan et al.27 used a
chemical process monitoring and fault diagnosis scheme based
on multiscale CNN-LSTM, with the purpose of mining high-
dimensional fault features in a multiscale and hierarchical
manner. Huang et al.28 transformed the process data into two-
dimensional data and input it into CNN-LSTM to extract the
spatial and delay characteristics of the data. This method
improved the diagnostic accuracy and noise sensitivity.
However, the following problems still exist in industrial process
fault diagnosis based on CNN, LSTM, or CNN-LSTM:

(1) CNN in the above literature is only a series of convolution
layers, connecting features in the channel dimension.
However, fault data is usually composed of many variables
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collected by many sensors in an industrial process. Each
variable provides a different degree of importance of
distinguishing features for fault diagnosis. Therefore, the
above research methods lack the proper mechanism to
reflect the correlation and importance of fault dynamic
characteristics between different channels.

(2) The above methods used LSTM to extract time series
characteristics of chemical process data. However, there
will be the problem of an unbalanced distribution of fault
dynamic information because of the special gating
mechanism. Therefore, the fault information on time
series data cannot be extracted efficiently.

The problems mentioned above can make it difficult for the
traditional CNN-LSTM network and other forms of this
network to extract dynamic fault features of chemical process
dynamic data. Therefore, this paper designs a model which
combines CNN, the SE attention mechanism, and improved
LSTM (CS-IMLSTM) for the fault diagnosis of TEP. First, the
time series of industrial process variables contains the dynamic
evolution process of the faults. Therefore, to enhance the
dynamic characteristics of sequential fault data, extended sliding
window preprocessing technology is proposed to obtain the
augmented dynamic data, which provide sufficient fault
diagnosis information for the proposed model. Second, aiming
at the problem that a single network CNN cannot automatically
select important channel features, a network architecture
combining the CNN and SE attention mechanism (CS) is
proposed, which makes the proposed model give more weight to
critical channel fault features and reduce attention to redundant
features. Finally, an improved LSTM is proposed to optimize the
gating mechanism of original LSTM and balance the character-
istic information on the industrial process in the time dimension.
It is helpful for the proposed model to further mine dynamic
information on industrial process fault data. The proposed
method can not only adaptively extract dynamic fault features,
weighting the features of different channels, but also balance
fault information. Cascaded CS-IMLSTM can simultaneously
extract the spatial and temporal dynamic features of process
data, so as to enhance the capabilities of industrial process fault
diagnosis. In terms of process safety, the proposed method can
minimize the risk of industrial process operation and improve
the safety of chemical process production.

2. RELATED THEORIES
2.1. Convolutional Neural Network. CNN has received

extensive attention in the field of industrial fault diagnosis. CNN
adaptively learns the spatial features of data by back-propagating
using multiple blocks such as the convolution layer and pooling
layer.29 The basic structure is shown in Figure 1.

The convolution layer is mainly used to mine the local
features of input. The mathematical expression for the
convolution layer is

= × +( )x f w x bi i i i( 1)
(1)

where i represents layer i of the network and xi denotes the
output of feature data at the layer i. Similarly, xi−1 is the input
data of layer i. bi denotes the bias of layer i, and ωi is the
convolution kernel. f(·) denotes activation function. LeakyReLU
is used as the activation function, and its mathematical model
can be represented as
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Here α is the fixed parameter, and α = 0.01.
The pooling layer can reduce data redundancy, preserving the

key elements of the feature map and controlling overfitting. The
mathematical model of pool operation can be expressed as

=x pool x( )m n m n, , (3)

where xm,n and xm′n′ respectively represent the values before and
after the pooling operation of the point (m, n) in the output
feature graph of the convolution layer.

The fully connected (FC) layer map features are extracted
from the convolutional layer and down-sampled by the pooling
layer to the sample label space. For specific information about
CNN, please refer to the literature.30

2.2. Squeeze-and-Excitation Attention Mechanism.
Recently, the benefits of attention mechanisms have been
demonstrated in a variety of tasks. However, the advantage of
the attention mechanism in chemical process fault diagnosis has
not been fully exploited. Therefore, this paper uses an attention
mechanism to mine important features of fault data. The
emergence of the SE block is to work out a loss problem caused
by different proportions of feature map channels in convolution
operation and improve the depth representation ability of the

Figure 1. Basic structure of the CNN.
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CNN. The SE block can model dynamic nonlinear depend-
encies between channels using global information learned by the
CNN. Thus, it can enhance feature information that is effective
for fault classification and suppress the ineffective feature
information. The structure of the SE block is presented in Figure
2. For the detailed process of the SE block, the reader is referred
to ref 31, and its brief process is as follows:

G i v e n t r a n s f o rma t i o n F t r , l e t U = F t r (X ) ,
× × × ×X U,H W C H W C . Assuming that Ftr is a con-

volution operator, the feature map of X can be expressed as U =
[u1, u2, ..., uC], and

= *u k Xc c (4)

where ×uc
H W and K = [k1, k2, ..., kC] represents the learned

filter kernels. * refers to the convolution operation.
In the squeeze operation, the spatial dimensionH ×W of U is

compressed by global average pooling to obtain the channel
statistic z C. The cth element in z can be expressed as

=z F u( )c sq c (5)

In the excitation operation, a gating mechanism with sigmoid
function is utilized to obtain the dependencies between
channels. The operation can be expressed as

=s F z W( , )ex (6)

Here, s C is the channel weight. W is a parameter that needs
to be learned. The final output X̃ = [x1̃, x̃̃2, ..., x̃C] of the SE block
is generated by the scaling operation

= =s sx F u u( , )c sc c c c c (7)

Here, × ×X H W C , Fsc(uc, sc) is channel-wise between scalar sc
and the feature map ×uc

H W .
2.3. Improved Long Short-Term Memory Network.

Hochreiter et al.32 proposed LSTM, which can maintain the
nondispersion of a data gradient over a long time span. LSTM

has recently been successful in various areas of sequence
modeling, including but not limited to speech recognition and
machine translation. The basic structure of LSTM is presented
in Figure 3a. Key elements in the LSTM layer include input gate
it, forget gate f t, output gate ot, and internal memory cell ct.
Moreover, each logic gate has its own parameters (U, W, b), so
that information can be filtered at the corresponding position,
the weight of useful information can be enhanced, and
redundant information can be effectively filtered.

(1) The forget gate f t is expressed by the following equation:

= + +f W x U h b( )t f t f t f1 (8)

where δ(·) is a sigmoid function and 0 < f t < 1.
(2) The input gate it can be expressed by the following

equation:

= + +i Wx Uh b( )t i t i t i1 (9)

= + +c W x Uh btanh( )t c t c t c1 (10)

where tanh(·) denotes the hyperbolic tangent activation
function and 0 < it < 1.

(3) The internal memory cell ct is expressed by the following
equation:

= +c f c i ct t t t t1 (11)

(4) The output gate ot can be expressed by the following
equation:

= + +o W x U h b( )t o t o t o1 (12)

=h o ctanh( )t t t (13)

The expression formula of the improved internal memory cell
ct is as follows:

= +g f i1/( )t t t (14)

Figure 2. Basic structure of the SE block.

Figure 3. Structures of the (a) LSTM and (b) IMLSTM.
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= +c f g c i g ct t t t t t t1 (15)

It can be seen from eqs 8−13 that the forgetting gate and input
gate of LSTM are independent of each other. However, the
values of f t and it respectively determine the degree of retention
for the previous moment internal memory cell ct−1 and current
moment memory cell in eq 11.22 This also means that when it is
applied to complex chemical process fault diagnosis, the internal
memory cell ct at the current moment will excessively rely on ct−1

or ct′ if f t or it approaches 1, which will lead to the problem of
unbalanced fault features of the chemical process.33

The internal memory cell ct of LSTM is improved to solve the

above problem. The structure of IMLSTM is shown in Figure

3b, where improved ct is shown in eqs 14 and 15. The

introduction of gt in ctmakes the degree of information retention

in ct−1 dependent on f t/( f t + it) and not only on f t. Similarly, the

degree of information retention in ct′ depends on it/( f t + it). By

balancing the information on forgetting and input gates,

IMLSTM can process the dynamic features of temporal data

more efficiently.

Figure 4. Extended sliding window mechanism schematic.

Figure 5. Fault diagnosis flow based on the CS-IMLSTM model.
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3. PROPOSED METHOD
3.1. Data Preprocessing. Data collected by industrial

processes are usually dynamic; that is, faults occurring at the
current moment may depend on changes in system state at the
previous moment.28 It is difficult to describe the change
characteristics of industrial processes accurately by establishing a
single global diagnostic model. In this paper, an extended sliding
window mechanism is introduced to transform raw data into
augmented dynamic data. The whole process is transformed into
a time-varying dynamic process, and a local model is established.
With the continuous change of the process, the model needs to
be constantly updated to adapt to this change, which can be
more accurate in the analysis of new samples and is more
conducive to the proposed model to mine the dynamic feature
information on time series data. The principle of the extended
sliding window mechanism is shown in Figure 4. Formula 16
represents raw data set X and its corresponding labels Y, where n
and m respectively refer to the number of observed samples and
variables and xt = (xt1, xt2, ...., xtm) denotes observed variables
collected by industrial process at moment t. Let the sliding step
of the sliding window be S (S ∈ N* and S ≤ L), and L is the
length of the sliding window. As shown in Formula 17, dynamic
data D and corresponding label Yd can be obtained by extended
sliding window operation on the raw data set, which is the input
of the proposed model.

After the extended sliding window operation, the raw data set
is transformed into an augmented dynamic data set, which
allows the proposed model to be able to capture the features of
small changes in observed variables and learn dynamic
information. Thus, the performance of fault diagnosis in an
industrial process can be greatly improved.
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3.2. Diagnostic Process of the Proposed Method. In
recent years, CNN, LSTM, CNN-LSTM, and their variants have
been widely used in the field of fault diagnosis, but these deep
learning methods have difficulty capturing the dynamic
characteristics of dynamic data in the process industry. In this
paper, we aim to build a diagnostic model of dynamic chemical
processes based on an optimized CNN-LSTM (CS-IMLSTM)
network. The fault diagnosis flowchart based on CS-IMLSTM is
shown in Figure 5. The convolution layer extracts spatial features
of data. The batch normalization (BN) layer improves the
training speed and mitigates the risk of overfitting. LeakyReLU
increases the network sparsity. The pooling layer reduces the
number of model parameters and optimizes the workload. The
SE block weights important channel features. The IMLSTM
balances the fault information and extracts the temporal
dynamic features of the data. The FC layer bridges all features

Figure 6. Flowchart of TEP.36 Reprinted with permission from ref 36. Copyright 2019 Elsevier.
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and feeds the output values into classifiers for classification. CS-
IMLSTM is an effective improvement of CNN-LSTM. It is
worth noting that the proposed method uses CS-IMLSTM
combined with the extended sliding window mechanism, which
can not only automatically extract spatial and temporal features
from the original industrial data but also perceive the deep
dynamic information, so as to realize the identification of
different fault types, optimize decision-making for risk assess-
ment and ASM, and help the process run safely and steadily for a
long period. The proposed method consists of the following five
core steps:

(1) Industrial process fault data and corresponding labels are
collected.

(2) The extended sliding window mechanism is used to
generate augmented dynamic data by setting the sliding
step S and sliding window length L.

(3) The training set and corresponding label are fed into the
CS-IMLSTM network. CS is used to extract spatial
features of data and enhance critical fault features. The
spatial feature vector of the data is transformed and input
to IMLSTM. IMLSTM is used to balance the fault
information and further extract dynamic features of
augmented industrial data.

(4) The extracted features are input into the classifier for fault
classification, and the trained model is saved.

(5) After extended sliding window processing, the test data
and corresponding label are input to the trained model to
prove the efficiency of the model.

4. EXPERIMENTAL VERIFICATION
4.1. Introduction to the Tennessee-Eastman Process.

TEP is a simulation process developed by Eastman Chemical
Company,34 which is basically the same as the actual production
process. Therefore, the TEP is often taken as a simulation
example to assess the feasibility of fault detection and diagnosis
methods for industrial processes. The flowchart of the TEP is
displayed in Figure 6. The TEP mainly consists of five operation
units: reactor, condenser, gas−liquid separator, vapor extraction
tower, and circulating compressor. The chemical reactions
occurring in the TEP involve a total of eight components, where
the reactants include gaseous substances A, C, D, and E and inert
catalyst B and the products include liquid products G and H and
byproduct F.

There are 52 variables in the overall process, including 11
control variables, 19 component measurement variables, and 22
continuous process variables. TEP can generate a data set of 1
normal state and 21 different fault states. Referring to the
literature,21 we select 10 representative faults and divide them

into two cases with the aim of verifying the generalization ability
and robustness of the proposed method. Generally, the selected
10 fault data have large overlap and are difficult to classify.14,35

The 10 fault types and descriptions are shown in Table 1. The
fault type in case 1 is affected by feed and flow, and case 2 is
affected by temperature. The faults in both cases occur under
different operating conditions. Therefore, industrial process
faults under different working conditions are diagnosed to verify
the feasibility of our method. Each fault state includes 480 raw
training samples and 800 raw test samples, respectively. Each
sample is sampled at a frequency of 3 min.
4.2. Application Research of the Proposed Method in

TEP Fault Diagnosis.With the goal of verifying the feasibility
of the proposed method, we tested two subdata sets of TEP, and
the accuracy of the test sets is taken as the effective performance
of the industrial process fault diagnosis. All experiments are
performed in Python 3.8 and Pytorch, running on Ubantu 18.04
with 64GB RAM and an NVIDIA Quadro P4000 GPU.
4.2.1. Experimental Setup. The extended sliding window

mechanism is adopted to convert the raw data set X into the
augmented dynamic data, and the sliding step S = 1 and the
sliding window length L = 20 are set to ensure that the
augmented data D has enough dynamic information for neural
network learning. Table 2 clearly reflects the number of samples

in the raw data set as well as the number of samples processed by
the extended sliding window. Thus, the total number of train
samples in each case is 461 × 5 = 2305, and the total number of
test samples is 781 × 5 = 3905. It is worth noting that here each
sample has 52 × 20 = 1040. In addition, we will draw 25% of data
from the training sets of each case as the validation set during
training.

In the training of the proposed model, the batch size is 32,
learning rate is 0.001, convolution kernel is 1 × 3, and max-
pooling kernel is set to 1 × 2. We choose Adam as the optimizer,
use a cross-entropy loss function to evaluate the performance of
the network, and use back-propagation to update the weights.
For the sake of verifying the superiority of the proposed method,
we set up five ablation comparison experiments. The hyper-
parameters of the models are approximately the same, and the
complexity is approximately equal. The structure and other
parameters of the different models are set as shown in Table 3.

Table 1. Fault Modes of Case 1 and Case 2

case fault fault cause fault type

Case 1 1 A/C feed ratio fluctuates, B feed is stable Step
2 B feed fluctuates, A/C feed ratio is stable Step
6 A material leak Step
7 Feed C inlet pressure loss: availability reduction Step
8 A, B, C feed composition fluctuation Random variable

Case 2 4 Temperature disturbance at reactor cooling water inlet Step
5 Temperature disturbance at reactor cooling water inlet Step

10 C feed temperature disturbance Random variable
11 Inlet temperature fluctuation of reactor cooling water Random variable
12 Inlet temperature fluctuation of condenser cooling water Random variable

Table 2. Sample Size of Raw Data and Augmented Dynamic
Data

fault
data
set

sample size of raw
data

sample size of augmented
dynamic data

Each fault Train 480 461
Test 800 781
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All experiments are repeated 10 times with the same terms.
Finally, we use the accuracy of the test sets to evaluate the fault
diagnosis capabilities of the different models.
4.2.2. Results and Discussion. The case 1 and case 2 training

sets after extended sliding window processing are input to
different models for training. After five epochs, the average
training loss curve of 10 times obtained by each model are
presented in Figure 7. From Figure 7a,b, it can be seen that the

models with LSTM structure or improved LSTM structure have
a stronger convergence ability compared with the CS-CNN
models. It shows that LSTM or improved LSTM can handle the
time series data problem of TEP very well. From Figure 7, it can
be observed that the proposed model has the most stable
training loss value and the strongest convergence ability in both
case 1 and case 2. Besides, from Figure 7 and Figure 8, the
convergence ability of the proposed model is significantly better

Table 3. Model Structure and Parameter Settings

model structurea

CS-IMLSTM CONV(32)-SE(32)-CONV(64)-SE(64)-CONV(64)-SE(64)-FC*(512)-IMLSTM(1024)-FC(5)
CNN-IMLSTM CONV(32)-CONV(64)-CONV(64)-FC*(512)-IMLSTM(1024)-FC(5)
CS-LSTM CONV(32)-SE(32)-CONV(64)-SE(64)-CONV(64)-SE(64)-FC*(512)-LSTM(1024)-FC(5)
CNN-LSTM CONV(32)-CONV(64)-CONV(64)-FC*(512)-LSTM(1024)-FC(5)
LSTM Lstm1(1024)-lstm2(1024)-lstm3(1024)-lstm4(1024)-FC(5)
CS-CNN CONV(32)-SE(32)-CONV(64)-SE(64)-CONV(64)-SE(64)-FC*(512)-CNN(512)-FC(5)

aFor convenience, the CONV(@) module is used to denote Conv1d(@)-BN(@)-LeakyReLU-maxpooling(@), where @ denotes the output
channel. * indicates FC layer with dropout rate of p = 0.5.

Figure 7. The 10 times average training loss curves of (a) case 1 and (b) case 2 on different models.

Figure 8. The 10 times average validation loss curves of (a) case 1 and (b) case 2 on different models.
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than the traditional CNN-LSTM in terms of training loss and
validation loss. Therefore, the proposed model has the strongest
convergence and generalization ability compared to other
models such as CNN-LSTM. This is mainly because SE can
give more weight to the key channel features from CNN, and
IMLSTM can balance historical fault information and adaptively
capture the dynamic features of fault data through the updated
gating mechanism.

The trained model is utilized to classify test sets and obtain
classification accuracy. Table 4 shows the classification accuracy
of each fault in the best results of each model. The best results
are highlighted in bold in the table. From Table 4, the accuracy
of the proposed method in case 1 and case 2 is more than
93.85%. The recognition accuracies of CS-LSTM, CNN-
IMLSTM, CNN-LSTM, LSTM, and CS-CNN are more than
90.01%, 88.35%, 86.94%, 47.25%, and 83.99%, respectively. In
the proposed model, fault 2, fault 4, and fault 7 can achieve 100%
prediction accuracy. Compared with the other five models, fault
5, fault 10, fault 11, and fault 12 can get the best prediction
accuracies, which are 99.23%, 99.49%, 93.85%, and 98.21%,
respectively. The performance of LSTM in case 2 is not as good
as that in case 1, which shows that the generalization
performance of the LSTM model for chemical process fault
diagnosis is poor. It is difficult for LSTM to mine the spatial
information on industrial data without the assistance of CNN.
Therefore, it is shown again that the fusion model CS-IMLSTM
can pay attention to the important characteristics of industrial
process fault data and adaptively process the dynamic
information on data. From Table 4, the fault identification

results of other models are not as stable as those of the proposed
model, indicating that the proposed model can learn more
advanced features from extended dynamic data and improve the
level of risk perception.

The work is repeated 10 times with the same terms, and the
max accuracy, min accuracy, average accuracy, and standard
deviation (std) are calculated. The diagnostic results are
presented in Figure 9. The bold black text represents the
average accuracy, and the bold red text represents the std. CS-
IMLSTM achieved the highest average accuracy in both case 1
and case 2 test data sets with 98.29% ± 0.0014 and 97.74% ±
0.0018, respectively. The results demonstrate that the proposed
model has high prediction accuracy and an excellent general-
ization performance. Specifically, the minimum accuracy
obtained by the proposed model in case 1 is 1.15% higher
than the maximum accuracy of CNN-IMLSTM, while the
minimum accuracy obtained by the proposed model in case 2 is
0.85% higher than the maximum accuracy of CNN-IMLSTM.
This indicates that the SE attention mechanism can focus on
important channel features and boost the fault diagnosis
performance of the model. The minimum accuracy obtained
by the proposed model in case 1 is 0.46% higher than that of CS-
LSTM, while the minimum accuracy obtained by the proposed
model in case 2 is 1.13% higher than that of CS-LSTM. This
indicates that IMLSTM can balance the fault information on
industrial process data and capture the dynamic features of the
temporal data more adequately than LSTM. The minimum
accuracy obtained by the proposed model in case 1 is 3.15%
higher than the maximum accuracy of CNN-LSTM, while the

Table 4. Classification Accuracy of Each Fault in Each Model

case fault proposed model (%) CS-LSTM (%) CNN-IMLSTM (%) CNN-LSTM (%) LSTM (%) CS-CNN (%)

Case 1 1 99.36 99.35 98.85 99.36 99.74 97.57
2 100.0 99.74 99.87 99.62 99.62 99.49
6 99.23 99.87 99.87 100.0 98.98 99.74
7 100.0 90.39 97.95 86.94 94.88 84.76
8 94.24 94.37 88.35 88.99 85.53 92.70

Case 2 4 100.0 99.74 100.0 99.87 95.26 97.95
5 99.23 97.70 98.98 98.72 91.93 97.18

10 99.49 97.95 96.41 92.70 73.24 83.99
11 93.85 90.01 91.17 90.78 47.25 89.88
12 98.21 96.67 96.93 97.18 70.04 97.06

Figure 9. Classification results of (a) case 1 and (b) case 2 under each model.
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minimum accuracy obtained by the proposed model in case 2 is
1.69% higher than the maximum accuracy of CNN-LSTM. This
indicates that the organic combination of the SE attention
mechanism, IMLSTM, and CNN can more fully exploit the
feature information on augmented dynamic industrial data,
achieve efficient flow of information, and improve the security of
the process.

In the confusion matrix, the row stands for predicted fault
labels, the column stands for actual fault labels, and the diagonal
line indicates that predicted results are consistent with the real
labels. Figure 10 provides the confusion matrix of the worst

result of the proposed method in case 1, and its prediction
accuracy is 98.13%. From Figure 10, fault 1, fault 2, and fault 6
are correctly predicted with 773 samples and above, while 760
samples are correctly predicted and 21 samples are incorrectly
predicted as fault 8 in fault 7. Only 741 samples are correctly
predicted, and 40 samples are misclassified as fault 2 in fault 8. In
addition, we analyze the positive predictive value (PPV), true
positive rate (TPR), and F1_Score37 of this confusion matrix. It
is worth noting that F1_Score here returns the score for each
fault category. MacroF1_Score is the simple arithmetic mean of
F1_ Score. The results are presented in Table 5. The proposed

method has high PPV, TPR, and F1_Score, and MacroF1_Score
is 98.13%, which indicates that CS-IMLSTM can adequately
extract the dynamic features of the data, thus enhancing the
effectiveness of the fault diagnosis, improving the safety risk
status of process industrial processes, guaranteeing process
safety production, and increasing the economic efficiency of
enterprises.

Figure 11 shows the confusion matrix for the worst result of
the proposed method in case 2, and its prediction accuracy is
97.54%. All samples of fault 10 were correctly predicted. A total
of 778 and 777 samples were correctly predicted for faults 4 and

5, respectively. Fault 11 and fault 12 are inlet temperature
fluctuations of the reactor and condenser cooling water,
respectively, and are consistent with the fault descriptions of
fault 4 and fault 5, respectively. Fault 11 and fault 12 are random
variable types, and fault 4 and fault 5 are step variable types.
Therefore, faults 11 and 12 are easily confused with faults 4 and
5, respectively. As can be seen from the figure, 45 samples of fault
11 are misclassified as fault 4, and 10 samples of fault 12 are
misclassified as fault 5. Similarly, PPV, TPR, and F1_Score of the
confusion matrix are analyzed, respectively. The analysis results
are shown in Table 6. The method has high indicated PPV, TPR,
and F1_Score, and MacroF1_Score is 97.52%, which indicates
the effectiveness of using CS-IMLSTM for fault diagnosis.

4.2.3. Comparison with Existing Advanced Methods. To
further verify the superiority of the proposed method in
extracting dynamic features of the chemical process industry,
this paper compares it with dynamic PCA-SVM (DPCA-SVM)
and transformer neural network. In DPCA-SVM, DPCA is a
classical method for extracting dynamic features of data, and
SVM is used for fault identification. The dynamic order h of
DPCA is 2, and the contribution rate of the principal component
is 0.99. The kernel function of SVM is RBF. Transformer is a
neural network based on a pure attention mechanism to reflect
the global dependence between input and output and has good
identification performance in chemical process fault diagnosis.38

Transformer’s network architecture and hyperparametric
references39 take the enhanced dynamic data as the input, and
the size of the input subsequence is 20. Similarly, all experiments
are repeated 10 times under the same conditions, and the
average accuracy is taken as the experimental result.

The results are shown in Table 7. The proposed method
achieves the best performance in both case 1 and case 2.
Compared with DPCA-SVM, the average accuracies of the

Figure 10. Confusion matrix for worst case prediction in case 1.

Table 5. Analytical Results of the Worst Confusion Matrix in
Case 1

indicator fault 1 fault 2 fault 6 fault 7 fault 8

PPV (%) 100 95.13 100 98.96 96.74
TPR (%) 99.49 100 98.98 97.31 94.88
F1_Score (%) 99.74 97.50 99.49 98.13 95.80
MacroF1_Score (%) 98.13

Figure 11. Confusion matrix for worst case prediction in case 2.

Table 6. Analytical Results of the Worst Confusion Matrix in
Case 2

indicator fault 4 fault 5 fault 10 fault 11 fault 12

PPV (%) 94.53 98.10 95.71 100 99.87
TPR (%) 99.62 99.49 100 90.78 97.82
F1_Score (%) 97.01 98.79 97.81 95.17 98.84
MacroF1_Score (%) 98.13
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proposed method in case 1 and case 2 are improved by 8.56%
and 36.91%, respectively. Compared with the results of
Transformer, the average accuracies of the proposed method
in case 1 and case 2 are improved by 1.06% and 19.23%,
respectively. Experimental results show that, compared with
these advanced fault diagnosis methods, the proposed method
can extract the dynamic features of process data better and has
the highest fault diagnosis results and the best generalization
performance.

From all the above results and analysis, it can be concluded
that the proposed method has the most desirable fault diagnosis
performance compared to all comparison experiments. This is
mainly because, before classification, the extended sliding
window is used to generate expanded dynamic data. The CS-
IMLSTM model is used to learn spatial, channel, and temporal
information on industrial process data and deeply excavates the
dynamic information on the data. Therefore, the classification
performance is improved.

5. CONCLUSION
In this paper, the CS-IMLSTM model is designed for chemical
industrial process fault diagnosis, which solves the problem that
the traditional CNN-LSTM model and other forms of this
model have difficulty extracting dynamic fault features of
chemical processes. The contributions are specified as follows:

(1) In terms of data preprocessing, an extended sliding
window mechanism is proposed. The mechanism
provides raw data with strong dynamic information for
the proposed model and lays a foundation for the highest
accuracy of the proposed model on the TEP data set.

(2) In terms of feature extraction, the CS-IMLSTM model is
proposed. We introduce he SE attention mechanism into
the CNN, which can adaptively assign more weight to key
fault features to optimize fault features. In addition, we
propose an IMLSTM, which alleviates the excessive
dependence of LSTM on the current or previous fault
information, so that LSTM can pay more attention to the
features of industrial data in the time dimension, balance
the fault information, and adaptively extract the dynamic
information of the data. Finally, CS-IMLSTM is
constructed by integrating the CS network and IMLSTM,
which can extract the spatial and temporal dynamic
characteristics of process industry data simultaneously.

(3) The effectiveness of the proposed method is verified in
TEP. Compared with five comparison experiments
including CNN-LSTM, CS-IMLSTM obtain the highest
average accuracies of 98.29% ± 0.0014 and 97.74% ±
0.0018 in both subdata of the TEP. The simulation results
verify the feasibility of the proposed method

The proposed method can better capture the dynamic fault
information of a chemical process and enhance the performance
of fault diagnosis. Therefore, CS-IMLSTM can provide RA and
ASM with a more favorable decision-making basis based on the
dynamic fault information of chemical processes and deploy

remedial actions and implement safety measures in time to
minimize process risks and avoid safety accidents.

The extended sliding window mechanism and deep learning
network need to occupy a large amount of computer memory
resources. Therefore, in future research, from the perspective of
data preprocessing, it is an effective approach to improve the
data quality by variable screening of multivariable industrial
process data. In terms of network architecture design, network
quantization, network decomposition, and lightweight network
design are worthy of future research.
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