
ARTICLE OPEN

N-glycosylation of GDF15 abolishes its inhibitory effect on EGFR
in AR inhibitor-resistant prostate cancer cells
Rong Wang1,2, Piaopiao Wen3, Ganglong Yang3, Yanyan Feng1,4, Yuanyuan Mi4, Xiaoying Wang1, Shenglong Zhu1 and
Yong Q. Chen 1,2✉
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Castration-resistance of prostate cancer is one of the most challenging clinical problems. In the present study, we have performed
proteomics and glycomics using LNCaP model. Growth differentiation factor-15 (GDF15) level is increased in androgen receptor
(AR) inhibitor-resistant cells and the inhibitory effect of GDF15 on epithelial growth factor receptor (EGFR) pathway is relieved by
GDF15 N70 glycosylation. Interference of GDF15 (siRNA or N70Q dominant negative) or EGFR pathway (inhibitor or siRNA for EGFR,
SRC or ERK) decreases the resistant-cell survival in culture and tumor growth in mice. Our study reveals a novel regulatory
mechanism of prostate cancer AR inhibitor resistance, raises the possibility of AR/SRC dual-targeting of castration-resistance of
prostate cancer, and lays foundation for the future development of selective inhibitors of GDF15 glycosylation.
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INTRODUCTION
Androgen deprivation therapy (ADT) is a common practice for the
treatment of advanced prostate cancer (PCa) since its discovery by
Huggins and Hodges in 1941 [1], which involves surgical castration
such as bilateral orchiectomy or chemical castration such as
inhibition of androgen receptor (AR). This treatment is initially
effective, however, nearly all patients progress to castration-
resistant prostate cancer (CRPC) [2]. Despite significant efforts [3],
CRPC challenge is largely unmet.
Classical pathways of castration resistance have been studied

extensively [4, 5]. Additional mechanisms are being explored using
omics approach, for instance genomics [6–8], methylomics [9],
transcriptomics [10, 11], proteomics [10, 12], and glycomics
[13, 14]. Although both “AR-independent” and “AR-bypass”
scenario have been described, androgen signaling pathway plays
a critical role in CRPC. Dual-targeting tactic for CRPC is worthy of
exploring.
Growth differentiation factor-15 (GDF15)/macrophage inhibi-

tory cytokine-1 (MIC-1) is a member of the TGF-β superfamily [15].
GDF15 can suppress food intake and inflammation and thus is a
potential candidate to treat many metabolic diseases [16]. GDF15
may also play a part in cancer development and progression
depending upon cancer type, stage, and microenvironment [17]. It
has been shown that GDF15 blocks norepinephrine-induced
myocardial hypertrophy via inhibition of EGFR transactivation
[18]. EGFR is reported to be involved in CRPC [19–21], however, it
is unclear why clinical trials show insignificant benefit in CRPC
patients with EGFR inhibitors [22–24].
Here, we have performed proteomics and glycomics in LNCaP

culture model, discovered an important role of GDF15-EGFR

pathway in the development of AR inhibitor resistance, and
demonstrated its therapeutic potential. Our study may draw
research interests in GDF15 and clinical efforts on CRPC using SRC/
AR dual-targeting approach.

RESULTS
AR inhibitor-resistant prostate cancer cell model is established
To establish AR inhibitor-resistant prostate cancer (IRPC) cell
model, we treated LNCaP prostate cancer cells with enzalutamide
(ENZ) and EPI-001 (EPI) for 9 days (short-term or ST) and for
33 days (long-term or LT), at concentrations of 10 µM (ENZ) and
8 µM (EPI), respectively, based on IC50 values of cell survival rates
in normal FBS culture medium (Fig. 1A), which were used in all
drug-treatment experiments. As an androgen-deprived medium
condition, we found the IC50 values of DMSO+ ENZ and
DMSO+ EPI in culture medium of charcoal-stripped FBS (c-FBS)
were 0.12 µM and 0.07 µM, respectively. Furthermore, with the
artificial synthetic androgen methyltrienolone (R1881) manually
added in c-FBS cultured medium, the IC50 values of R1881+ ENZ
and R1881+ EPI were 8.5 µM and 10 µM (Figure S1A), respectively.
The results indicated that compared to the absence of androgen
in culture medium, a higher concentrations of AR inhibitors were
required to inhibit cell growth in the presence of androgen (either
manually added or raw contained androgen in culture mediums).
At the same time, cell proliferation was completely inhibited
during the ST period and the cell slowly regained some
proliferative capacity during the LT period, which indicated the
treated cells acquired drug-resistance in LT (Fig. 1B, C). The similar
phenomenon was observed in the cells with androgen-deprived
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culture medium (added the same doses of DMSO) or in the
manually added R1881 culture medium (Figure S1B, C).
We next examined markers of cell cycle checkpoint by Western

Blot (WB) and cell cycle distribution by fluorescence activated cell

sorter (FACS) analysis in ST and LT cells. WB results revealed that
P21 (G1 phase marker, cyclin-dependent kinase inhibitor) was
upregulated in ST and backed down in LT cells, and Cyclin E1 (G1-
S phase marker), CDC6 (G1-S phase marker), and CDC2 (G1-S and
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Fig. 1 AR inhibitor-resistant prostate cancer cell model is established. A 6*103 cells were plated in 96-well plates and treated with various
concentrations of ENZ and EPI for 48 h. The survival curve was detected by CCK8. B, C 1*106 LNCaP cells were plated and either untreated
(negative control; NC), treated with ENZ (10 µM) or EPI (8 µM) with normal FBS media change every 3 days for a total of 9 days (short-term
treatment, ST) and for 33 days (long-term treatment, LT). Representative microscopic images (B) and cell proliferation curve (C) are shown.
Data were expressed as mean ± std. of biological triplicates; Student’s t-test were performed; *p < 0.05. D Cells from NC, ST-EPI, ST-ENZ, LT-EPI,
and LT-ENZ were analyzed for cell cycle distribution by FACS. E Levels of cell cycle markers are quantified in NC, ST, or LT cells by WB. β-actin
protein is used as loading control. One-way ANOVA with Turkey test, p < 0.05. Data are expressed as mean ± std of biological triplicates.
F Levels of AR, AR target (TMPRS2, PSA), AR-V567, AR-Vs target (UBE2C, CDC20) proteins in NC, ST-EPI, ST-ENZ, LT-EPI, and LT-ENZ were
quantified by WB. GAPDH protein was used as loading control. One-way ANOVA with Turkey test, p < 0.05. Data are expressed as mean ± std of
biological triplicates.
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G2-M phase marker) were downregulated in ST and up again in
LT cells (Fig. 1E). Concomitantly, we found G0/G1 arrest in ST
which was recovered in LT cells (Fig. 1D).
Further, we determined ENZ/EPI effects on AR and its targets (PSA,

TMPRSS2), AR-Vs, and its targets (UBE2C, CDC20). WB results showed
that all markers were downregulated to various degrees in ST and
LT cells compared to NC (Fig. 1F) with exception of PSA in LT cells.
The androgen-deprived (with DMSO condition) and androgen
manually added (with R1881 condition) experiments in RNA level
also indicated similar results for above-mentioned targets, and the
growth markers including C-MYC, AKT1 were downregulated in ST
and up again in LT, which was consistent with the above cell
proliferation and cell cycle results (Figure S1D-E). These results
confirm the effectiveness of ENZ/EPI on the AR pathway at least in
the ST cells. Nest, our attention focused on discovering the vital
pathway(s) that regulated the cell re-growth in IRPC and exploring
the underlying mechanisms.

GDF15 is identified as a major glycoprotein in IRPC
To investigate potential association between IRPC and protein
glycosylation, we performed proteomics and N-glycosylation
glycomics analysis (Tables S1-S5) in untreated LNCaP (NC), ST-
EPI, LT-EPI, ST-ENZ, and LT-ENZ groups using Tandem Mass Tag
(TMT) labels by nanoscale liquid chromatography coupled to
tandem mass spectrometry (nanoLC-MS/MS). Pearson correlation
coefficients between groups were all greater than 0.80, indicating
a good reliability of experimental results (Fig. 2A). We identified
117 glycoproteins, 178 glycopeptides, 383 intact N-glycopeptides
(IGPs), and 79 N-glycan (Fig. 2B & Tables S2-S5). The bulk of
glycosylated peptides were of mannosylation (43%), followed by
fucosylation (30%) in mono- (12.7%), di- (5.2%), tri- (7.8%) and
≥quadri-fucosylated (4.3%) form, representing 60% of all N-
glycans identified (Fig. 2B).
Through quantitative analysis of glycoproteins, we found the

level of growth/differentiation factor 15 (GDF15) glycoprotein was
significantly upregulated in LT group, but not in ST group,
compared to NC with both EPI and ENZ treatment (Fig. 2C).
Increased GDF15 levels were reported to participate in the
pathogenesis of metabolic diseases such as nonalcoholic fatty
liver disease (NAFLD) and type 2 diabetes, cardiovascular disease
such as hypertrophy and atherosclerosis, and some type of
cancers such as PCa, breast cancer and gastric cancer [25–27].
Hence, we focused on the glycosylated GDF15 and its potential
role in IRPC.
Subsequently we examined tryptic peptide glycotypes and 79

identified glycans were quantified. Levels of the majority of
glycans, especially mannose-modified glycotypes, were down-
regulated, however, quantities of some complex glycan, such as
N3H4F3, N6H3F2, N8H9F3S1 and N6H7S2, were upregulated in LT
group compared to NC groups (Fig. 2D & Table S5). There were 13
glycoproteins modified by N3H4F3, 1 glycoprotein modified by
N6H3F2, 3 glycoproteins modified by N8H9F3S1, and 2 glycopro-
teins modified by N6H7S2 (Fig. 2E). Among the 18 glycoproteins,
only GDF15 was modified by two glycotypes, namely N3H4F3 and
N6H3F2 (Fig. 2E). Because of the biological roles of glycan in cell
signal transmission and molecular recognition, the two-glycan
modified GDF15 as a glycosylated protein may play an essential
role in the regulation of IRPC, which was further confirmed in the
following described experiments.

GDF15 is glycosylated at amino acid N70
To explore the interaction between the core modified residue
and complex glycans, the glycosylation pattern of GDF15 was
detailed characterized with glycomics analysis. We found that
both the N3H4F3 and N6H3F2 could attach to GDF15 N70, and
N6H3F2 glycosylation was prominently upregulated in IRPC cells
(Fig. 3A). In the presence of protein synthesis inhibitor
cycloheximide (CHX), the turnover rate for non-glycosylated

GDF15 was faster than their glycosylated ones. In addition,
glycosylation of GDF15 was completely inhibited when cells were
treated with the N-linked glycosylation inhibitor tunicamycin
(TM) (Fig. 3B). To further validate the result, peptide-N-
glycosidase F (PNGaseF) was employed. Glycans on glycosylated
GDF15 (~38 kDa) was entirely removed, indicating GDF15 was
modified by N-glycans (Fig. 3C). GDF15 immunoprecipitation and
WB with Canavalia ensiformis (ConA) and Aleuria Aurantia Lectin
(AAL) biotin antibody, which recognizes mannose and fucose
respectively, indicated that GDF15 was modified by both
mannose and fucose (Fig. 3D).

PI3K-AKT pathway is enriched in the proteoglycomics dataset
To explore potential mechanism involving in the development of
IRPC, pathway enrichment analysis of GO and KEGG was
performed using quantitative glycoproteins data (Table S2). We
found that biological process enrichments were mainly related to
cell adhesion and migration, that cellular component enrichments
were in membrane and extracellular exosome, and that molecular
function enrichments were mannose binding and integrin binding
(Fig. 4A). Corresponding KEGG pathway analysis showed enrich-
ments in lysosome and phosphatidylinositol 3-kinase (PI3K)-AKT
signaling pathway (Fig. 4B). It is worth mentioning that the PI3K-
AKT pathway including EGFR is reported to be activated in many
human cancer types [28–31] and whether GDF15 acts as a
suppressor or promoter related to EGFR expression in PCa remains
unresolved [18, 26]. Thus, GDF15 glycosylation may influence
drug-resistance through regulating its downstream PI3K-AKT
pathway according to the above results and will further validated
in Section 5.

N70 glycosylation of GDF15 relieves its inhibitory effect on
EGFR
It was reported that GDF15 could inhibit EGFR activity [18]. We
surveyed the expression patterns of GDF15, pEGFR (Y1068), EGFR,
SRC, pERK1/2 (T202/Y204), ERK1/2, pAKT (S473), and AKT proteins
in NC, ST-EPI, ST-ENZ, LT-EPI, and LT-ENZ groups (Fig. 5A). AR
inhibitors treatment increased total GDF15 protein in cells (Fig. 5A)
as well as in culture medium (Fig. 5B), but EGFR protein level
remained unchanged (Fig. 5A). Interestingly, pEGFR (Y1068) level
was significant reduced in ST cells but partially recovered in
LT cells, and SRC, pERK1/2 (T202/Y204), and pAKT (S473) levels
changed accordingly (Fig. 5A). These results suggested that AR
inhibitors may increase GDF15 level to block EGFR activation in ST,
whereas such inhibitory effect is lost in LT treatment leading to
drugs resistance.
To validate its role in regulating EGFR activity, we knocked

down GDF15 in LNCaP, ST, and LT cells (Figure S1F, G) with siRNA.
Silencing of GDF15 increased the survival of LNCaP and ST cells
(Fig. 5C) along with the level of pEGFR (Y1068), SRC, pERK1/2
(T202/Y204), and pAKT (S473) (Figure S1H–I), whereas decreased
the survival and the level of phosphoproteins in LT cells (Fig. 5D).
Overexpression of the wild-type GDF15 increased GDF15 glyco-
protein, pEGFR (Y1068), SRC, pERK1/2 (T202/Y204), and pAKT
(S473) level along with cell survival (Fig. 5E–G). However,
expression of N70Q, a glycosylation defective mutant, had
opposite effect compared to the wild-type GDF15 (Fig. 5E–G).
These data indicate that GDF15 inhibitory effect on EGFR and
proliferation is lost in IRPC, and that the loss of GDF15 function is
due to N70 site glycosylation.
To evaluate the role of GDF15 glycosylation in vivo, we used

22Rv1 cell (an ENZ-resistant cell line) in a xenograft model with
male BALB/c nude mice castrated 21 days prior. Tumor growth in
mice injected with cells expressing GDF15 N70Q mutant was
significantly reduced compared to that of mice injected with
control 22Rv1 cells (Fig. 5H, I). Thus, these results reveal that
inhibiting GDF15 glycosylation at N70 site can effectively impede
IRPC progression.

R. Wang et al.

3

Cell Death and Disease          (2022) 13:626 



SRC/AR inhibition significantly reduces tumor growth in
castrated mice
Since EGFR pathway is activated in IRPC, we treated LT cells with
EGFR, SRC, ERK inhibitor or siRNA. Pathway interference signifi-
cantly reduced LT cell survival, and together with AR inhibition

further decreased survival rate (Fig. 6A, B). Inhibition of SRC
seemed to be more effective than that of EGFR or ERK1. To
corroborate this observation, we performed rescue experiments
with the wild-type and kinase dead SRC. We found that
overexpression of the wild-type SCR rescued the inhibition
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whereas overexpression of the dominant-negative SRC (K296R/
Y528F) showed no relievable effect (Fig. 6B).
To further substantiate the therapeutic efficacy of SRC/AR dual

targeting, we conducted in vivo experiments. AR inhibitor-
resistant mice were generated using Hi-Myc mice [32] by
continuous treatment with ENZ for three months. Prostate weights
were reduced in the initial two-month exposure to AR inhibitor
ENZ and increased starting at month three of the treatment,
becoming castration-resistant (Fig. 6C). GDF15 glycosylation level
was increased in CRPC tumors (Fig. 6D), which is consistent with
LNCaP cell results. We then treated IRPC tumor with SRC inhibitor
bosutinib. Bosutinib treatment alone effectively inhibited IRPC
tumor growth, and treatment in combination with ENZ was
significantly more efficacious (Fig. 6E, F). Inhibitor treatment,
especially the bosutinib and ENZ combination, resulted in

destruction of tumor cellular structure (Fig. 6F). Hence, in vivo
results validate the in vitro observation.

High level of GDF15 glycoprotein expression is associated
with poor survival of cancer patients
To further support our observation, we investigated GDF15
expression in cancer patients. GDF15 level was significantly higher
in the serum of patients with localized PCa and metastatic
castration-resistant prostate cancer (mCRPC) (Fig. 7A). Although
the overall survival of PCa patients was not notably correlated with
GDF15 level, patients with high GDF15 expression had poor
survival rate at the late stage of disease progression (Fig. 7B).
Interestingly, the overall survivals of lower grade glioma (LGG),
mesothelioma (MESO), and uveal melanoma (UVM) patients were
significantly correlated with the GDF15 level (Fig. 7C).
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Fig. 3 GDF15 is glycosylated at amino acid N70. A Levels of N6H3F2 and N3H4F3 glycan at GDF15 N70 are increased in CRPC cells. SP, signal
peptide. Putative NQS motif in GDF15 is labeled in green. Numbers indicate amino-acid positions (left panel). MS spectrograms and fragment
ion features of IGPs are shown (right panel). For each N-glycosylation site, one representative higher-energy collision dissociation (HCD) MS2

spectrum is shown to exemplify its identification based on detection of b and y ion (defining its peptide sequence by fracture mode of HCD).
B Level of GDF15 protein is measured by WB in LNCaP cells in the presence or absence of 20 µm cycloheximide (CHX). Error bars indicate std.
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immunoprecipitant were used for lectin detection with Con A and AAL antibodies. Con A and AAL detect mannose and fucose, respectively.
Red arrows point to glycosylated GDF15 and blue arrows point to non-glycosylated GDF15.

R. Wang et al.

5

Cell Death and Disease          (2022) 13:626 



Together, our study indicates that EGFR pathway is inhibited by
GDF15 in untreated and short-term AR inhibitor treated LNCaP
prostate cancer cells. Long-term treatment, however, induces
GDF15 N70 glycosylation which relieves its inhibitory effect on
EGFR, consequently EGFR activation contributes to the develop-
ment of castration resistance (Fig. 7D).

DISCUSSION
Through proteomics and glycomics analyses, we identify GDF15
and show its regulation of EGFR pathway in PCa and importance
in the development of AR inhibitor resistance. GDF15, a stress-
induced cytokine, is known to have immunomodulatory functions
and its high expression is often associated with cancer progres-
sion. However, whether GDF15 acts as a suppressor or promoter in
prostate cancer remains unresolved [26]. Some evidence indicate
that PCa induces osteocytes to secrete GDF15 stimulating tumor
growth and invasion [33] and that over-expression of GDF15 leads
to increased metastasis of PCa cells [34]. Inversely, expression of
GDF15 in PCa cells inhibits cellular motility in vitro through a p53-
dependent mechanism [35] and GDF15 is a mediator of
nonsteroidal anti-inflammatory drugs (NSAIDs)-induced inhibition
of migration of PCa cells [36]. We find that GDF15 level increases

in the initial response of LNCaP cells to AR inhibitor treatment and
loses its inhibitory effect on EGFR pathway during long-term AR
blockade due to N-glycosylation. Our data suggest the importance
of N70 glycosylation in regulating GDF15 function and may
explain the controversial role of GDF15 in prostate cancer. PCa
patients with high GDF15 expression have poor survival rate at the
late stage of disease progression, which indicates GDF15,
especially the corresponding glycol-modified form, may be a
prognostic marker for late-stage prostate cancer.
Whether N70 glycosylation simply disables the ability of GDF15 to

inhibit EGFR pathway or even stimulates EGFR signaling is currently
unclear. It was reported that low-grade PCa had increased levels of
paucimannosidic-(glycans with low percentage of mannose) and
monoantennary-complex-type N-glycans compared to BPH, whereas
high-grade PCa showed enrichment in highly branched complex-
type N-glycans [14]. High mannose N-glycans reduce the contact
area of cells with its substrate and may change the physical
properties of cell membrane, promote migration of bone-marrow-
derived mesenchymal stromal cells [37]. N6H3F2 (high mannose
complex glycan) N-glycans possibly reduce the contact of GDF15
with EGFR, resulted in EGFR pathway activation. For instance, the
core component of Hippo pathway (YAP) is O-GlcNAcylated by
O-GlcNAc transferase (OGT) at S109, and YAP O-GlcNAcylation
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disrupts its interaction with upstream kinase LATS1, and activates its
transcriptional activity [38]. Some glycosylation enzymes (GALNT7,
GCNT1, TAP1, PGM3, etc.) are under the control of AR and link to the
synthesis of cancer-associated glycans such as sialyl-Tn (sTn), sialyl
LewisX (SleX) [39]. IRPC cells regain AR activity and would regulate
glycosylation transferases, consequently GDF15 glycosylation.

Therefore, how N70 glycosylation regulates GDF15 function warrants
further investigation.
Although N6H3F2 modification of GDF15 may be a biomarker or

therapeutic target for IRPC, selective drugs are not available.
Methods targeting the GDF15 downstream pathway can be
implemented. Breast cancer with high level of GDF15, especially in
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ErbB2 (HER2)-positive state, is sensitive to EGFR/ErbB2 inhibitor
Lapatinib [40]. We show SRC inhibitor bosutinib, either alone or in
combination with enzalutamide, is effective against IRPC. Clinical
study of bosutinib in breast cancer (NCT00880009, NCT00959946)
as EGFR pathway inhibitor or cyclin-dependent kinase (CDK)
inhibitor have been implemented. Despite clinical trials show
insignificant benefit in CRPC patients with EGFR inhibitors [22–24],
AR and SRC dual-targeting for CRPC deserves exploring.
In conclusion, the present study uncovers a novel regulatory

mechanism of IRPC, namely activation of the EGFR signaling
pathway via N-glycosylation of GDF15 at the N70 site, demon-
strates the validity of AR and SRC dual-targeting for IRPC, and lays
foundation in the future development of selective inhibitors of
GDF15 glycosylation for the management of CRPC.

METHODS
Cell culture
LNCaP (ATCC) cell and 22Rv1 (ATCC) cell were grown in phenol red free
Roswell Park Memorial Institute (RPMI)-1640 medium (Thermo Scientific,
CA, USA) containing 5% fetal bovine serum (FBS; ThermoFisher), or 5%
charcoal-stripped FBS (c-FBS; ThermoFisher) and 1% streptomycin-
penicillin at 37 °C with 5% CO2. The cell lines were authenticated by short
tandem repeat analysis and mycoplasma contamination was tested by the
PCR Mycoplasma Detection Set (Takara, Otsu, Japan). LNCaP cell was
treated with the ENZ (10 µM) or EPI (8 µM) at concentrations as reported
[41, 42]. ST cell was treated for 9 days, and LT cell was treated for 33 days
according to the method of Sharma et al. [43].

Chemicals
Enzalutamide (MCE, HY-70002, NJ, US), EPI-001 (Selleck, S7955, TX, US),
R1881 (Sigma, R0908, MO, US), Afatinib (Selleck, S1011, TX, US), Bosutinib
(Selleck, S1014, TX, US), PD98059 (Selleck, S1177, TX, US), Cycloheximide
(MCE, HY-12320, NJ, US), and Tunicamycin (MCE, HY-A0098, NJ, US) were
stored as stock solutions in DMSO (Sigma, MO, US).

Cell viability analysis
Cell viability was assessed by Cell Counting Kit (CCK-8; MCE, HY-K0301, NJ,
US) according to the manufacturer’s instructions. Briefly, cells were seeded
at a concentration of 6000 cells/200 µL/well into 96-well plates, incubated
overnight, changed to fresh medium with various inhibitors. Following
treatment, 10 µL CCK-8 solution were added and cells were incubated for
4 h at 37 °C. Optical density (OD) value was measured at 450 nm by a
microplate spectrophotometer (Thermo Fisher). IC50 concentrations of ENZ
and EPI were used in all drug treatment experiments. All experiments were
performed three times in triplicates.

Western blotting
Cells were treated as described and then lysed by boiling for 10min in
sample buffer (2% SDS, 10% glycerol, 10% β-mercaptoethanol, bromphenol
blue and Tris-HCl, pH= 6.8). Lysates were fractionated on SDS-PAGE gels and
transferred to PVDF membranes (Millipore, IPVH00010, NH, US). The blots
were probed with specific antibodies followed by secondary antibody then
membranes were detected by ECL (Sigma, WBULS0500, MO, US). AR (22089-
1-AP; 1:1000), TMPRSS2 (14437-1-AP; 1:1000), PSA (60338-1-Ig; 1:2000), UBE2C
(66087-1-Ig; 1:2000), CDC20 (10252-1-AP; 1:500), P21 (60214-1-Ig; 1:1000),

Cyclin E1 (11554-1-AP; 1:1000), CDC6 (11640-1-AP; 1:2000), CDC2 (19532-1-
AP; 1:1000), SRC (11097-1-AP; 1:500), GDF15 (27455-1-AP; 1: 2000), AKT
(60203-2-Ig; 1: 5000), pAKT (66444-1-Ig; 4000), GAPDH (60004-1-Ig; 1:50000),
β-actin (66009-1-Ig; 1:10000), β-tubulin (10068-1-AP; 1:4000) antibodies were
purchased from Proteintech Group (IL, US). AR-V567es (ab200827; 1:1,000)
antibodies were purchased from Abcam (MA, US). EGFR (4267; 1:2000),
pEGFR (3777; 1:2000), ERK1/2 (9102; 1:2000), pERK1/2 (4376; 1:2000)
antibodies were purchased from Cell Signaling Technology (MA, US). ConA
(Canavalia ensiformis)-Biotin (C7401; 1:1000) antibody was purchased from
Sigma (MO, US). AAL (Aleuria Aurantia Lectin)-Biotin (B-1395-1; 1:1000)
antibody was purchased from Vector laboratories (CA, US).
Secondary antibodies were conjugated with HRP (Proteintech Group;

SA00001-2, SA00001-1; 1:10000). Uncropped WB are shown in Figure S2.

Cell cycle analysis
LNCaP-NC, ST, and LT cells were harvested and washed, and then fixed
with 70% ethanol solution (v/v) at 4 °C for more than 18 h. After washing
with pre-cold PBS, cells were stained with propidium iodide (PI) containing
RNase (PI/RNase Staining Solution, CST 4087, MA, US) for 15min in the
dark, and then subjected to cell cycle analysis on a flow cytometer. The cell
cycle data were analyzed using ModFit LT 5.0 software (Verity, ME, US).

Proteomics study
LNCaP-NC, ST-EPI, ST-ENZ, LT-EPI, and LT-ENZ cells were used for
quantitative proteomics analysis. Samples were lyzed with 8 M Urea
(pH= 8.0) and concentration was quantified using BCA kit (Beyotime,
P0012, Shanghai, China). Proteins were reduced with dithiothreitol (DTT)
and then alkylated with iodoacetamide (IAM) in dark. Sequencing-grade
trypsin (Promega, WI, USA) was added for overnight digestion. Peptides
were desalted and reconstituted in 0.5 M tetraethyl-ammonium bromide
(TEAB) and processed with TMT10 plexTM kit according to the manufac-
turer’s protocol (Thermo Scientific, CA, USA). Global-peptides were
resuspended in 2% acetonitrile (ACN) and 0.1% formic acid (FA) solution
and then analyzed using an EASY-nLC 1200 system (Thermo Scientific, CA,
USA) coupled with a high-resolution Orbitrap Fusion Lumos mass
spectrum (Thermo Scientific). Peptides were first separated with an RSLC
C18 column (1.9 µm × 100 µm × 20 cm) packed in house, then selected for
MS/MS using NCE setting as 28, and the fragments were detected in the
Orbitrap at a resolution of 17,500. A data-dependent procedure that
alternated between one MS scan followed by 20 MS/MS scans with 15.0 s
dynamic exclusion. Automatic gain control (AGC) was set at 5E4. Fixed first
mass was set as 100m/z.

Glycomics study
Intact glycopeptides (IGPs) were enriched as described previously [44].
IGPs were desalted, resuspended and then analyzed using nanoLC-MS
system. LC conditions and MS parameters for IGPs were described
previously [44]. Results were filtered based on the following criteria: (1) a
false discovery rate (FDR) less than 1% for glycoproteins and (2) each
peptide spectra matches (PSM) annotated by at least one N-linked glycan.

Glycoproteins and site analysis
The resulting MS/MS data were processed using Maxquant search engine
(v.1.5.2.8). Tandem mass spectra were searched against homo_Uniprot-
organism database (https://www.uniprot.org/taxonomy/9606) concatenated
with reverse decoy database. For IGPs identification, data were searched using
GPQuest 2.0 [45]. Parameters for analysis were described previously [44].

Fig. 5 N70 glycosylation of GDF15 relieves its inhibitory effect on EGFR. A Levels of GDF15, pEGFR (Y1068), EGFR, SRC, pERK1/2 (T202/
Y204), ERK1/2, pAKT (S473), and AKT proteins were measured by WB in NC, ST-EPI, ST-ENZ, LT-EPI, and LT-ENZ cells. β-tubulin protein was used
as loading control. One-way ANOVA, p < 0.05. B Level of GDF15 in culture media was detected by ELISA in NC, ST-EPI, ST-ENZ, LT-EPI, and LT-
ENZ cells. One-way ANOVA, p < 0.05. C Effect of GDF15 silencing on cells survival was detected by CCK8 in Parental, ST, and LT cells. D Levels of
GDF15, pEGFR (Y1068), EGFR, SRC, pERK1/2 (T202/Y204), ERK1/2, pAKT (S473), and AKT proteins in corresponding samples were assessed by
WB. E Lectin level was gauged by GDF15 immunoprecipitation-ConA and AAL WB in LT cells transfected with the wild-type GDF15 or N70Q
mutant. F Cells survival rate was evaluated by CCK8 in corresponding treatments. G Levels of GDF15, pEGFR (Y1068), EGFR, SRC, pERK1/2
(T202/Y204), ERK1/2, pAKT (S473), and AKT proteins in corresponding samples were measured by WB. β-tubulin protein was utilized as loading
control. H 22Rv1-WT (GDF15 overexpression) and 22Rv1-N70Q (GDF15 N70 site mutation) cells suspended in matrigel were injected into the
right flank of BALB/c-nude mice. One week after injection, the tumor-bearing mice were castrated and following with tumor size monitoring.
After 21 days, the mice were euthanized. The tumors were dissected, and representative images of six mice per group were illustrated (n= 6).
Sanger sequencing results showed GDF15 with N70Q site mutation (AAC mutated into CAG) was successfully constructed in 22Rv1 cells. I The
corresponding tumor weights were shown in the graph for clarity. Data represents the mean ± std. Student’s t-test, *p < 0.05.
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Functional annotation and enrichment analysis
Gene Ontology (GO) annotation glycoproteome was derived from the
UniProt-GOA database (https://www.uniprot.org/uniprot/A0A178W639).
Firstly, identified protein IDs were converted to UniProt ID and then
mapped to GO IDs by protein ID. If some identified proteins were not

annotated by UniProt-GOA database, InterProScan (https://www.ebi.ac.uk/
interpro/about/interproscan) would be used to annotated protein’s GO
functional based on protein sequence alignment method. Then proteins
were classified by Gene Ontology annotation based on three categories:
biological process, cellular component, and molecular function. For
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Fig. 6 SRC/AR inhibition significantly reduces tumor growth in castrated mice. A LT cells were treated with Afatinib (EGFR inhibitor),
Bosutinib (SRC inhibitor), and PD98059 (ERK inhibitor) or in combination with EPI or ENZ. B LT cells were treated with siRNAs (si-neg, si-EGFR,
si-SRC, and si-ERK1), dominant negative SRC (DNsrc), and overexpression SRC or in combination with EPI or ENZ. Survival rates are shown.
Error bars indicate mean ± std of biological triplicates. C Prostate weights in NC and ENZ treatment groups were shown in graph. 5 mice per
group. Student’s t-test, *p < 0.05. D GDF15 was immunoprecipitated and then levels of mannose and fucose were quantified with ConA and
AAL antibodies. β-tubulin protein was employed as input control. E Prostate weight was showed in graph. n= 5 mice per group. Student’s t-
test, *p < 0.05. F Representative images of mouse prostate glands (up panel), prostate lobes (mid panel), and histopathological sections from
NC, ENZ, Bosu, and Bosu+ ENZ groups. NC negative control, ENZ Enzalutamide treatment, Bosu Bosutinib treatment, Bosu+ENZ, Bosutinib
and Enzalutamide combined treatment. Data are expressed as mean ± std. of biological repetitions.

R. Wang et al.

9

Cell Death and Disease          (2022) 13:626 

https://www.uniprot.org/uniprot/A0A178W639
https://www.ebi.ac.uk/interpro/about/interproscan
https://www.ebi.ac.uk/interpro/about/interproscan


enrichment of pathway analysis, Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (https://www.genome.jp/kegg/) was used to
identify enriched pathways by a two-tailed Fisher’s exact test to detect the
enrichment of differentially expressed protein against all quantitative
glycoproteins. Pathways with a corrected FDR ≤ 0.05 were considered
significant, and classified into hierarchical categories. Furthermore,
proteins in selected pathways were visualized by a heat map using the

“pheatmap” function from the “pheatmap” R-package (https://www.r-
project.org/).

Quantitative real-time PCR
LNCaP Cells were cultured with c-FBS for 5 days before treatment with
DMSO+ ENZ/EPI or R1881+ ENZ/EPI for 12 h. Total RNA was extracted
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using TRIzol (Takara, Japan) according to the manufacturer’s instructions.
One µg of total RNA was used for complementary DNA synthesis using a
cDNA reverse transcription kit (Takara, Japan). Real-time PCR was
performed in triplicate using gene-specific primers on a Bio-Rad CFX96
PCR system. The gene-specific primers are listed in Table S7.

Immunoprecipitation (IP)
Cells were lyzed in IP buffer (Beyotime, P0013, Shanghai, China). Protein
samples were quantified using BCA kit (Beyotime, P0012, Shanghai, China) and
precleared with A+G magnetic beads (MCE, HY-K0202, NJ, US). Immunopre-
cipitation was performed with GDF15 antibody (Abcam, ab206414, MA, US)
overnight at 4 °C. Protein A+G magnetic beads were added, mixed for 4 h at
4 °C, captured with magnetic frame, washed 3 times, and then boiled in
sample buffer. Supernatants were used for WB detection using GDF15, anti-
Con A (Sigma, C7401) and AAL antibodies (Vector laboratories, B-1395-1).

Enzyme-linked immunosorbent assay (ELISA)
GDF15 were quantified using human cell culture supernatant with ELISA kit
from Mlbio (ml024335-2, Shanghai, China), according to the protocols
provided by the manufacturers.

Small-interfering RNA (siRNA)- mediated gene knockdown
EGFR siRNA (si-EGFR; 5′-CGCAAAGUGUGUAACGGAAUATTUAUUCCGUUACA-
CACUUUGCGTT-3′), SRC siRNA (si-SRC; 5′-GACAGACCUGUCCUUCAAGAAT-
TUUCUUGAAGGACAGGUCUGUCTT-3′), MAPK3 siRNA (si-ERK1; 5′-
ACCUGCUGGACCGGAUGUUAATTUUAACAUCCGGUCCAGCAGGUTT-3′), and
GDF15 siRNA (si-GDF15; 5′-CUAUGAUGACUUGUUAGCCAATTUUGGCUAACAA-
GUCAUCAUAGTT-3′) were made by Jiangsu Saisofi Biotechnology Co., Ltd
(Wuxi, China), and Negative/GAPDH siRNA (si-neg; 5′-UUCUCCGAACGUGU-
CACG UTTACGUGACACGUUCGGAGAATT-3′/si-pos; 5′-UGACCUCAACUACAUG-
GUUTTAACCAUGUAGUUGAGGUCATT-3′) were used as negative/positive
control. The siRNAs were transfected into Parental, ST, and LT cells using
Polyplus-transfection (jetPRIME, NY, US) according to the manufacturer’s
instructions. Successful knockdown was verified by quantitative real-time PCR
(qRT-PCR) and WB.

Plasmid- mediated overexpressing and gene mutation
Overexpression plasmids of pcDNA3.1(+)-GDF15 and pcDNA3.1(+)-SRC
plasmids were constructed. Plasmids of pcDNA3.1(+)-GDF15/N70Q and
dominant negative SRC (DCsrc)/K296R/Y528F were constructed. All
plasmids were transiently transfected using Fugene HD transfection
reagent (Promega, WI, USA).

Animal study
For hypodermic CRPC xenografts, male BALB/c-nude mice (age of
8–9 weeks) were anaesthetized and then 1*106 22Rv1-WT or 22Rv1-
N70Q stably transfected cells suspended in 30 µL 50% matrigel were
surgically injected. One week after injection, the tumor-bearing mice were
castrated and the tumor size was monitored weekly using vernier caliper.
After 21 days, the mice were euthanized, tumors were dissected,
photographed, and weighed. The experimental protocol was approved
by the Animal Ethics Committee of Jiangnan University, China
(JN.No20190630b2120101[190]).
Hi-Myc transgenic prostate cancer mice (gifted from George V. Thomas

laboratory) [32] were used and all experimental protocols were approved by
the Animal Ethics Committee of Jiangnan University, China
(JN.No20190630t1360101[191]). To define temporal development of castra-
tion resistance, four-month-old male mice were randomly assigned to control
(NC) and ENZ (10mg/Kg) group, treated with drug by intragastric
administration (i.g.) every 3 days for required months. The mice were then
euthanized every month, and the prostate (anterior lobes, dorsal lateral lobes,
and ventral lobes) were dissected, photographed, and weighed. After an
initial decrease in prostate weight, regaining of prostate growth was
considered as the emergence of castration resistance. Six-month old
(4 months plus 2 months treatment) mice were randomly assigned to NC
(saline solution i.g.), ENZ (10mg/Kg i.g.), Bosutinib (10mg/Kg i.g.), and
Bosutinib+ ENZ groups. Mice were treated every 3 days, euthanized every
month. Prostate were dissected, photographed, weighed and then subjected
to histopathological and WB analysis. Blood samples were collected from the
orbital sinus and sera were separated, filtered, and stored at −80 °C until use.

Tissue staining
Briefly, after deparaffinization and rehydration, 5 µm thick longitudinal sections
were stained with hematoxylin solution for 22 s, dipped in 1% hydrochloric
acid ethanol, rinsed with distilled water, stained with eosin solution for 30 s,
dehydrated with graded alcohol and cleared in xylene. Mounted slides were
scanned using an Pannoramic Scanner (3DHISTECH, Budapest, Hungary).

Clinical study
Human peripheral blood samples were collected from the Affiliated
Hospital of Jiangnan University. All patients signed informed consent. The
study was approved and authorized by the Ethics Committee of the
Affiliated Hospital of Jiangnan University (Approval document number:
LS202128). The patients’ information is listed in Table S6.

Statistical analysis
Student’s t-test was used to compare means of two groups. One-way
ANOVA was used to compare means of 3 or more groups (GraphPad, CA,
USA). Turkey test was used to perform multiple comparison (IBM SPSS, NY,
USA). Data were presented as mean ± std of biological repetition. P < 0.05
was considered as significant in all of the tests.

DATA AVAILABILITY
All data supporting the findings of this study are available with the article, or from the
corresponding author upon reasonable request. Data are also available via
ProteomeXchange with identifier PXD030036.
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