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ABSTRACT Melanoma spreads through metastasis, and therefore, it has been proved to be very fatal.
Statistical evidence has revealed that the majority of deaths resulting from skin cancer are as a result of
melanoma. Further investigations have shown that the survival rates in patients depend on the stage of the
cancer; early detection and intervention of melanoma implicate higher chances of cure. Clinical diagnosis
and prognosis of melanoma are challenging, since the processes are prone to misdiagnosis and inaccuracies
due to doctors’ subjectivity. Malignant melanomas are asymmetrical, have irregular borders, notched edges,
and color variations, so analyzing the shape, color, and texture of the skin lesion is important for the early
detection and prevention of melanoma. This paper proposes the two major components of a noninvasive
real-time automated skin lesion analysis system for the early detection and prevention of melanoma. The first
component is a real-time alert to help users prevent skinburn caused by sunlight; a novel equation to compute
the time for skin to burn is thereby introduced. The second component is an automated image analysis module,
which contains image acquisition, hair detection and exclusion, lesion segmentation, feature extraction, and
classification. The proposed system uses PH2 Dermoscopy image database from Pedro Hispano Hospital for
the development and testing purposes. The image database contains a total of 200 dermoscopy images of
lesions, including benign, atypical, and melanoma cases. The experimental results show that the proposed
system is efficient, achieving classification of the benign, atypical, and melanoma images with accuracy

of 96.3%, 95.7%, and 97.5%, respectively.
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I. INTRODUCTION

A. BACKGROUND AND MOTIVATION

Today, skin cancer has been increasingly identified as
one of the major causes of deaths. Research has shown
that there are numerous types of skin cancers. Recent
studies have shown that there are approximately three
commonly known types of skin cancers. These include
melanoma, basal cell carcinoma (BCC), and squamous cell
carcinomas (SCC). However, melanoma has been consid-
ered as one of the most hazardous types in the sense that
it is deadly, and its prevalence has slowly increased with
time. Melanoma is a condition or a disorder that affects
the melanocyte cells thereby impeding the synthesis of
melanin [1]. A skin that has inadequate melanin is exposed to

the risk of sunburns as well as harmful ultra-violet rays from
the sun [2]. Researchers claim that the disease requires early
intervention in order to be able to identify exact symptoms
that will make it easy for the clinicians and dermatologists to
prevent it. This disorder has been proven to be unpredictable.
It is characterized by development of lesions in the skin that
vary in shape, size, color and texture.

Though most people diagnosed with skin cancer have
higher chances to be cured, melanoma survival rates are
lower than that of non-melanoma skin cancer [3]. As more
new cases of skin cancer are being diagnosed in the U.S.
each year, an automated system to aid in the prevention and
early detection is highly in-demand [4]. Following are the
estimations of the American Cancer Society for melanoma
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in the United States for the year 2014 [5]:

o Approximately 76,100 new melanomas are to be

diagnosed (about 43,890 in men and 32,210 in women).

o Approximately 9,710 fatalities are expected as a result

of melanoma (about 6,470 men and 3,240 women).

For 30 years, more or less, melanoma rates have been
increasing steadily. It is 20 times more common for
white people to have melanoma than in African-Americans.
Overall, during the lifetime, the risk of developing melanoma
is approximately 2% (1 in 50) for whites, 0.1% (1 in 1,000)
for blacks, and 0.5% (1 in 200) for Hispanics.

Researchers have suggested that the use of non-invasive
methods in diagnosing melanoma requires extensive training
unlike the use of naked eye. In other words, for a clinician to
be able to analyze and interpret features and patterns derived
from dermoscopic images, they must undergo through exten-
sive training [6]. This explains why there is a wide gap
between trained and untrained clinicians. Clinicians are often
discouraged to use the naked eye as it has previously led to
wrong diagnoses of melanoma. In fact, scholars encourage
them to embrace routinely the use of portable automated real
time systems since they are deemed to be very effective in
prevention and early detection of melanoma.

B. CONTRIBUTION

This paper proposes the components of a novel portable
(smart phone-based) noninvasive, real-time system to assist
in the skin cancer prevention and early detection. A system
to prevent this type of skin cancer is being awaited and is
highly in-demand, as more new cases of melanoma are being
diagnosed in the U.S. each year. The proposed system has two
major components. The first component is a real-time alert to
help users to prevent skin burn caused by sunlight; a novel
equation to compute the time for skin to burn is thereby
introduced. The second component is an automated image
analysis which contains image acquisition, hair detection
and exclusion, lesion segmentation, feature extraction, and
classification, where the user will be able to capture the
images of skin moles and our image processing module will
classify under which category the moles fall into; benign,
atypical, or melanoma. An alert will be provided to the user
to seek medical help if the mole belongs to the atypical or
melanoma category.

C. PAPER ORGANIZATION

The rest of this paper is organized as follows: Section II
describes related work on skin cancer image recognition.
Section III explains the components of the proposed
system to assist in the skin cancer prevention and detection.
Section IV presents the dermoscopy images analysis in detail.
In Section V, we report the performance results. In Section VI,
we conclude the paper with future work.

Il. RELATED WORK
Skin image recognition on smart phones has become one
of the attractive and demanding research areas in the past
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few years. Karargyris et al. have worked on an advanced
image-processing mobile application for monitoring skin
cancer [7]. The authors presented an application for skin
prevention using a mobile device. An inexpensive accessory
was used for improving the quality of the images. Addition-
ally, an advanced software framework for image processing
backs the system to analyze the input images. Their image
database was small, and consisted of only 6 images of benign
cases and 6 images of suspicious case.

Doukas et al. developed a system consisting of a mobile
application that could obtain and recognize moles in skin
images and categorize them according to their brutality into
melanoma, nevus, and benign lesions. As indicated by the
conducted tests, Support Vector Machine (SVM) resulted in
only 77.06% classification accuracy [8].

Massone et al. introduced mobile teledermoscopy:
melanoma diagnosis by one click. The system provided
a service designed toward management of patients with
growing skin disease or for follow-up with patients requir-
ing systemic treatment. Teledermoscopy enabled transmis-
sion of dermoscopic images through e-mail or particular
web-application. This system lacked an automated image
processing module and was totally dependable on the
availability of dermatologist to diagnose and classify the
dermoscopic images. Hence, it is not considered a real-time
system [9].

Wadhawan et al. proposed a portable library for melanoma
detection on handheld devices based on the well-known
bag-of-features framework [10]. They showed that the most
computational intensive and time consuming algorithms of
the library, namely image segmentation and image classifica-
tion, can achieve accuracy and speed of execution comparable
to a desktop computer. These findings demonstrated that it is
possible to run sophisticated biomedical imaging applications
on smart phones and other handheld devices, which have
the advantage of portability and low cost, and therefore, can
make a significant impact on health care delivery as assistive
devices in underserved and remote areas. However, their
system didn’t allow the user to capture images using the smart
phone.

Ramlakhan and Shang [11] introduced a mobile
automated skin lesion classification system. Their system
consisted of three major components: image segmentation,
feature calculation, and classification. Experimental results
showed that the system was not highly efficient, achieving
an average accuracy of 66.7%, with average malignant class
recall/sensitivity of 60.7% and specificity of 80.5%.

Upon a careful review of literature, it is clearly observed
that regular users, patients, and dermatologist can benefit
from a portable system for skin cancer prevention and early
detection. Needless to say, one should note that at the
moment, the work presented in this paper is the only proposed
portable smart phone-based system that can accurately detect
melanoma. Moreover, the proposed system can also detect
atypical moles. Most of the prior work do not achieve
high accuracy, or are not implemented on a portable smart
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phone device, and mainly do not have any prevention feature.
This is where the need for a system including such features is
seen.

lll. PROPOSED SYSTEM

In our proposed system, the following components are
proposed, (a) a real time alert based on a novel equation
model to calculate the time for skin to burn to alert the user
to avoid the sunlight and seek shade to prevent skin burn,
(b) a real-time dermoscopy image analysis module to detect
melanoma and atypical lesions. The image analysis module
is explained in detail in the next Section.

A. REAL TIME ALERT

Sunburn is a form of radiation burn that affects skin which
results from an overexposure to ultraviolet (UV) radiation
from the sun [12]. Normal symptoms in humans include red,
painful skin that feels hot to the touch. Intense, repeated
sun exposure that results in sunburn increases the risk of
other skin damage and certain diseases. These include dry or
wrinkled skin, dark spots, rough spots, and skin cancers, such
as melanoma. It is important to note that unprotected expo-
sure to UV radiation is the most threatening risk factor for
skin cancer [13]. To help the users avoid skin burn caused by
sun exposure, and hence, to prevent skin cancer, our system
would calculate the time for skin to burn and the system will
deliver a real time alert to the user to avoid the sunlight and
seek shade to prevent developing skin cancer.

We created a model by deriving an equation to calculate the
time for skin to burn namely, “Time to Skin Burn” (TTSB).
This model is derived based on the information of burn
frequency level and UV index level [14].

[ UV + (UV x 0.85 x SN)+ ]
(UV x 0.00487804 x AL)+
(UV x 0.2 x SA)+
(UV x 0.4 x WSA) +
(UV x 0.2 x GR) +
(UV x 0.4 x WGR) +
(UV x 0.15 x BU) +
(UV x 0.5 x WA) —

(UV x0.5 x SH) —
| (UV x 0.2 x CL)

TTSB =TS/ x SPFW

ey

TS is the time-to-skin-burn based on skin type where
UV index equals to 1. Table 1 shows time-to-skin-burn
at UV index of Ifor all skin types [15]. In Equation 1,
UV is the ultraviolent index level ranging from 1 to 10,
AL is the altitude in feet, SN represents snowy
environment (Boolean value O or 1), CL represents
cloudy weather (Boolean), SA represents sandy environment
(Boolean), WSA represents wet sand environment (Boolean),
GR represents grass environment (Boolean), WGR represents
wet grass environment (Boolean), BU represents building
environment (Boolean), WA represent shady environment
(Boolean), SH represents water environment (Boolean) and
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TABLE 1. Time to skin burn at UV index of 1 for all skin types.

. Time to skin Burn at UV Index=1
Skin Type .
(minutes)
1 67
2 100
3 200
4 300
5 400
6 500

SPFW is the sun protection factor weight. Table 3 shows
SPFW for various sun protection factor (SPF) levels [16].

The Boolean values are chosen based on the existence (1)
or non-existence (0) of a certain weather condition or envi-
ronment. The environmental factors indicate the amount of
UV radiation that a particular weather condition or environ-
ment reflects [17], [18].

The environmental factors such as UV and AL, will be
automatically inserted into the model by detecting the user
location using the smart phone GPS. Other factors such as
skin type, SPF levels, etc. can be manually selected by the
user.

B. VALIDATION OF TIME-TO-SKIN-BURN MODEL

The proposed TTSB model can be validated by cross
checking the calculated TTSB values in Table 2 with
the information provided by the National Weather Service
Forecast [14]. Table 1 shows a sample of 10 cases, where
the TTSB values are calculated using our model based on
the UV index, skin type, environment variable and SPF level.
As shown in Table 2, the calculated TTSB fall in the range of
the data provided by the National Weather Service. To the best
of our knowledge, this is the first model proposed that calcu-
lates the time-to-skin-burn based on the given UV index, skin
type, environmental parameters and SPF, unlike [16]—[18]
that only take into account only UV index and skin type.

IV. DERMOSCOPY IMAGES ANALYSIS

Early detection of melanoma is one of the major factors
to increase the chance of the cure significantly. Malignant
melanomas lesions are asymmetrical and have irregular
borders with notched edges. A considerable amount of
research has been done in dermoscopy image analysis as we
explained in the related work, however, the work presented
in this paper is the only proposed system that can classify
the dermoscopy images into three classes (i.e. benign,
atypical and melanoma) using a two-level classifier, along
with a TTSB module, all integrated in a portable system.
In the dermoscopy image analysis component of the system,
a complete system module from image acquisition to classi-
fication is proposed. The users will be able to use the system
on their own smart phones by attaching a dermoscope to
the phone’s camera. The users will capture images of their
skin lesions using the smart phone camera. The system will
analyze the image and inform the user if it is a benign lesion,
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TABLE 2. Calculated TTSB values and data provided by the national weather service.

uv Skin Type Environment SPF TTSB National weather
index Level (minutes) service (minutes)
Case 1 3 Light Skin Snow 10 39 35-45
Case 2 9 Medium Light Skin Cloud None 22 18-28
Case 3 5 Fair light Skin Water (sailing) 30 58 50-60
Case 4 2 Medium Dark Skin Sand None 104 100-110
Case 5 8 Dark skin Grass (park) 15 128 125-135
Case 6 7 Light Skin Building (city) 20 46 40-50
Case 7 6 Deep Dark skin Sand 5 75 70-80
Case 8 1 Fair light Skin Snow 40 303 300-310
Case 9 4 Dark skin Cloud None 95 90-100
Case 10 10 Light Skin Building (city) 25 35 30-40

TABLE 3. SPFW for various (SPF) levels.

SPF Level SPFW
0 1
5 1.3
10 2.4
15 3.7
20 4.5
25 4.8
30 7.5
35 8.2
40 9.5
45 11.3
50 12.4

50+ 13.7

atypical or melanoma. The image processing and classifi-
cations are done at the server side. The sever is located at
the University of Bridgeport (UB), D-BEST lab, and thus
the proposed system App does not require much processing
power on the portable device side; only internet connection
is needed to send the image to the server and receive the
classification results. The system is important in the sense that
it allows the users to detect melanoma at early stages which in
turn increases the chance of cure significantly. Figure 1 shows

Image Acquisition

 EE—
Hair Removal
e
—\
Lesion

Segmentation :
~ S
S
Feature Extraction
, R

D

Classification

—

FIGURE 1. Flowchart for the proposed dermoscopy image analysis
system.
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the flow chart of the proposed dermoscopy image analysis
system.

A. IMAGE ACQUISITION

The first stage of our automated skin lesion analysis system
is image acquisition. This stage is essential for the rest of the
system; hence, if the image is not acquired satisfactorily, then
the remaining components of the system (i.e. hair detection
and exclusion, lesion segmentation, feature extraction and
classification) may not be achievable, or the results will not
be reasonable, even with the aid of some form of image
enhancement.

FIGURE 2. The dermoscope device attached to the iPhone and sample of
images captured using the device.

In order to capture high quality images, the
iPhone 5S camera is used, equipped with 8 megapixels and
1.5u pixels. Using the iPhone camera solitary has some
disadvantages since first, the size of the captured lesions
will vary based on the distance between the camera and
the skin, second, capturing the images in different light
environments will be another challenge, and third, the details
of the lesion will not be clearly visible. To overcome these
challenges, a dermoscope is attached to the iPhone camera.
Figure 2 shows the dermoscope device attached to the iPhone.
The dermoscope provides the highest quality views of skin
lesions. It has a precision engineered optical system with
several lenses. This provides the right standardized zoom with
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e} {d)

(c) (d)

FIGURE 3. lllustration of two samples for hair detection, exclusion and reconstruction, (a) the original image, (b) the gray image before hair detection and
exclusion, (c) the hair mask (d) the gray image after hair detection, exclusion and reconstruction applied.

auto-focus and optical magnification of up to 20x directly
to the camera of the iPhone device. Its shape ensures sharp
imaging with a fixed distance to the skin and consistent
picture quality. Also, it has a unique twin light system with
six polarized and six white LEDs. This dermoscope com-
bines the advantages of cross-polarized and immersion fluid
dermoscopy. Figure 2 shows samples of images captured
using the dermoscope attached to iPhone camera.

B. HAIR DETECTION AND EXCLUSION

In dermoscopy images, if hair exists on the skin, it will appear
clearly in the dermoscopy images. Consequently, lesions can
be partially covered by body hair. Thus, hair can obstruct
reliable lesion detection and feature extraction, resulting in
unsatisfactory classification results. This section introduces
an image processing technique to detect and exclude hair
from the dermoscopy images as an essential step also seen
in [19]-[33]. The result is a clean hair mask which can be
used to segment and remove the hair in the image, preparing
it for further segmentation and analysis.

To detect and exclude the hair from the lesion, first, the hair
is segmented form the lesion. To accomplish this task, a set
of 84 directional filters are used. These filters are constructed
by subtracting a directional Gaussian filter (in one axis sigma
of Gaussian is high and in other axis sigma is low) from an
isotropic filter (sigma is higher in both axes). Later, these
filters are applied to the dermoscopy images. After segment-
ing the hair mask, the image is reconstructed to fill the hair
gap with actual pixels. To reconstruct the image, the system
scans for the nearest edge pixels in 8 directions, considering
the current pixel is inside the region to fill. These 8 edge pixels
of hair region are found and the mean value of these 8 pixels
is stored as pixel value of hair pixel [34]. Figure 3 illustrates
the process of hair segmentation and exclusion.

C. IMAGE SEGMENTATION

Pigmented skin lesion segmentation to separate the lesion
from the background is an essential process before starting
with the feature extraction in order to classify the

VOLUME 3, 2015

three different types of lesion (i.e. benign, atypical and
melanoma) as seen in [35]-[41]. The segmentation step
follow as: First, RGB dermoscopy image is read
(See Figure 4, Step 1) and converted to a gray scale image.
It is done by forming a weighted sum of the R, G, and B
components as 0.2989 x R+4-0.5870 x G+0.1140 x B. Then,
a two dimensional Gaussian low-pass filter is generated by
Equations 2 and 3 [42].
—(3+nd)
he(ni,np) = e 2° 2
hg("l , 12) 3)
an an hg

where £ is a 2-D filter of size ny, n» 9 x 9, and sigma is 0.5.
The filtered image is given in Figure 4, Step 2. After the
Gaussian filter is applied, a global threshold is computed
by Otsu’s method [43] to be used to convert an intensity
image to a binary image. Otsu’s method chooses the threshold
to minimize the intra-class variance of the background and
foreground pixels. This directly deals with the problem of
evaluating the goodness of thresholds. An optimal threshold
is selected by the discriminant criterion. The resulting image
is given in Figure 4, Step 3.

Step 4 removes the white corners in the dermoscopy image.
In order to do this, the resulting image in the previous step is
masked by Mask1 that is defined in Figure 5. All white pixels
in the corners are replaced with black pixels.

After applying the threshold, the edges of the output image
become irregular. To smoothen the edges, morphological
operation is used. A disk-shaped structure element is created
by using a technique called radial decomposition using peri-
odic lines [44], [45]. The disk structure element is created to
preserve the circular nature of the lesion. The radius is spec-
ified as 11 pixels so that the large gaps can be filled. Then,
the disk structure element is used to perform a morphological
closing operation on the image. Step 5 in Figure 4 shows the
resulting image.

Next, the morphological open operation is applied to the
binary image. The morphological open operation is erosion

h(ny, np) =
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Step 9

Step 10

Ground
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(b)

FIGURE 4. Steps of the proposed dermoscopy image segmentation algorithm applied to two images (a) and (b).

L J .
A A

Mask 1 Mask 2

FIGURE 5. Mask 1 and Mask 2, used in the segmentation algorithm to
prepare the image for the initial state of the active contour and to remove
the corners.

followed by dilation; the same disk structure element that
was created in the previous step is used for both operations.
See Figure 4, step 6.

In the next step, an algorithm is used to fill the holes in the
binary image. A hole is a set of background pixels that cannot
be reached by filling in the background from the edge of the
image. Figure 4, step 7 shows the outcome image.

In the next step, an algorithm is applied based on active
contour [25] to segment the gray scale image, which is shown
in Figure 4, step 4. The active contour algorithm segments
the 2-D gray scale image into foreground (lesion) and back-
ground regions using active contour based segmentation. The
active contour function uses the image shown in Figure 4,
step 7 as a mask to specify the initial location of the active
contour. This algorithm uses the Sparse-Field level-set
method [46] for implementing active contour evolution.
It also stops the evolution of the active contour if the contour
position in the current iteration is the same as one of the
contour positions from the most recent five iterations, or if the
maximum number of iterations (i.e. 400) has been reached.
The output image is a binary image where the foreground is
white and the background is black, shown in Figure 4, stepS.

The next step is to remove the small objects. To do that,
first, the connected components are determined. Second, the
area of each component is computed. Third, all small objects
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that have fewer than 50 pixels are removed. This operation is
known as area opening. Figure 4, step 9 shows the outcome
image. Finally the disk structure element that was created in
the previous step is used to perform a morphological close
and open operation. After that, the resulting image is masked
with Mask2 to preserve the corners (Figure 5, Mask2).
Figure 4, step 10 shows the final binary mask that used to
mask the images.

D. FEATURE EXTRACTION

Feature extraction is the process of calculating parame-
ters that represent the characteristics of the input image,
whose output will have a direct and strong influence
on the performance of the classification systems as seen
in [32] and [47]-[49]. In this study, five different feature
sets are calculated. These are 2-D Fast Fourier Transform
(4 parameters), 2-D Discrete Cosine Transform
(4 parameters), Complexity Feature Set (3 parameters), Color
Feature Set (64 parameters) and Pigment Network Feature
Set (5 parameters). In addition to the five feature sets, the
following four features are also calculated: Lesion Shape
Feature, Lesion Orientation Feature, Lesion Margin Feature
and Lesion Intensity Pattern Feature.

1) 2-D FAST FOURIER TRANSFORM

The 2-D Fast Fourier Transform (FFT) [50] feature set is
calculated. The 2-D FFT feature set includes the first
coefficient of FFT2, the first coefficient of the cross-
correlation [51] of the first 20 rows and columns of FFT2,
the mean of the first 20 rows and columns of FFT2, and the
standard deviation of the first 20 rows and columns of FFT2.

2) 2-D DISCRETE COSINE TRANSFORM
A 2-D Discrete Cosine Transform (DCT) [52] expresses
a finite sequence of data points in terms of a sum of
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cosine functions oscillating at different frequencies. The
2-D DCT feature set includes the first coefficient of DCT2,
the first coefficient of the cross-correlation of the first 20 rows
and columns of DCT2, the mean of the first 20 rows and
columns of DCT2 and the standard deviation of the first
20 rows and columns of DCT?2.

3) COMPLEXITY FEATURE SET

The complexity feature set includes the mean (Equation 4),
standard deviation (Equation 5), and mode based on the
intensity value of the Region of Interest (ROI).

n

M="= @)
[ ;w2
o= ':17 )

where M is the mean, o is the standard deviation, I; is the
intensity value of pixel i and n is the pixels count.

4) COLOR FEATURE SET

Color features in dermoscopy are important. Typical images
consist of three-color channels that are red blue and green.
Use of color is another method to assess melanoma risks.
Usually, melanoma lesions have the tendency to change color
intensely making the affected region to be irregular. For the
color feature set the 3-D histogram of the components of the
LAB color model is calculated. In order to get the 2-D color
histogram from the 3-D color histogram, all values in the
illumination axis are accumulated. As a result, 8 x 8 = 64
color bins are generated, each considered as one feature.

5) PIGMENT NETWORK FEATURE SET

Pigment network is produced by melanin or melanocytes
in basal keratinocytes. The pigment network is the most
important structure in dermoscopy. It appears as a network
of thin brown lines over a diffuse light brown background.
Dense pigment rings (the network) are due to projections
of rete pegs or ridges. The holes are due to projections of
dermal papillae. The pigment network is found in some

& A
n']

(a)

(b)

atypical and melanoma lesions. In some sites the network is
widened. It does not have to occupy the whole lesion [53].

To extract the pigment network feature, first, the network
is segmented from the lesion, to accomplish this task; a set of
12 directional filters is designed. These filters are constructed
by subtracting a directional Gaussian filter (in one axis sigma
of Gaussian is high and in other axis sigma is low) from an
isotropic filter (sigma is higher in both axes). Later, these
filters are applied to the dermoscopy images [34].

Figure 6 shows an example of pigment network detection
process for an atypical lesion. The feature set includes five
parameters that are calculated from the detected pigment
network as follows:

a: PIGMENT NETWORK AREA VS. LESION AREA RATIO (f;)

This feature compares the ratio between the pigment network

area and the lesion area where A(N) is the area of the detected

pigment network, and A(L) is the area of the segmented

lesion.

A= A(PN) .
A(L)

(6)

b: PIGMENT NETWORK AREA VS. FILLED NETWORK

AREA RATIO (f,)

This feature compares the ratio between the pigment network
area and the filled network area (Equation 7).

¢: TOTAL NUMBER OF HOLES IN THE PIGMENT

NETWORK (fs)

This feature computes the total number of holes in the
pigment network (Equation 8):

fh= A(PN) @
> T A(FNY
f=>H ®)
where H represents the hole in the pigment network.
d: TOTAL NUMBER OF HOLES IN THE PIGMENT
NETWORK VS. LESION AREA RATIO (f,)
This feature compares the ratio between the total

number of holes in the pigment network and the lesion area
(Equation 9).

fc)

FIGURE 6. Example of a pigment network detection process, (a) the original image, (b) the result image after applying the directional filter, (c) the result

image after removing the small objects.
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e: TOTAL NUMBER OF HOLES IN THE PIGMENT NETWORK
VS. FILLED NETWORK AREA RATIO (fs)

This feature compares the ratio between total number of
holes in the pigment network and the filled network area
(Equation 10):

_XH
fa = AL ©)
_XH
5= AN’ (10)
Lesion Boundary

FIGURE 7. The irregularity of the lesion shape is estimated by the
variation between the lesion boundary and corresponding best-fit ellipse.

6) LESION SHAPE FEATURE

The best-fit ellipse is used to approximately portray the
lesion shape and is considered as the baseline for calculating
the degree of irregularity as shown in Figure 7. For any
pixel pi(x;,y;) on the lesion boundary, a crossing
pixel p2(x2, y2) on the best-fit ellipse is found by a beam that
starts at the center of best-fit ellipse. The variation between
p(x1, y1) and p>(x2, ¥2) is then calculated by their distance:

DP) =\ (62 — 11 + (32 — ¥1)? ()

Then, the lesion shape feature is calculated by the varia-
tion between the lesion shape and the best-fit ellipse as the
following:

>_D(p)
LBy

where P is any pixel on the lesion boundary and LBy repre-
sents the total number of pixels on the lesion boundary.

L(S) = (12)

7) LESION ORIENTATION FEATURE

The orientation of the lesion is measured by the angle of the
main axis of the above best-fit ellipse as shown in Figure 8.
The range of lesion orientation is defined between 0 and 5 as
the following:

T
if 0<6<—
0 i =0=7
T
T—6 if 5<6§n
L(O) = ) 31 (13)
0 —m if 7T<9§7
3
2 —6 if 7ﬂ<9_2n.
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FIGURE 8. The orientation of the lesion measured by the angle of major
axis of best-fit ellipse.

8) LESION MARGIN FEATURE

The distance map is used to capture the undulation and
the angular characteristics of the lesion margin. For any
pixel P(x,y) in the ROI, its eight neighbors are defined as
the following.

NS(P) = {('x_ 17y_1)a (x,y_ 1)5 (x+17y_1)’
(—x_ I,Y),(x‘i‘ls)’),(x_ 1,)’+1)7
x,y+ 1D, x+1,y+ D} (14)

The distance from P to the lesion boundary is recursively
defined as the following,

D(P) = Min{D(N3(P))} + 1 15)

where Min{D(Ng(P))} denotes the minimum of known
distance in P’s eight neighbors.

9) LESION INTENSITY PATTERN FEATURE
The average gray intensity of the lesion is used to represent
the intensity pattern feature. The average gray intensity
pattern L(IP) is defined as:

> 1P
PEROI

L(IP) = Nror

(16)

where I(P) is the gray intensity of lesion pixel P and Ngoy
represents the number of lesion pixels.

10) LESION VARIATION PATTERN FEATURE

The variation on pixel P is estimated by the gradient
magnitude. According to the definition of neighbors
in Equation 8, the Sobel gradients [54] on x-direction and
y-direction of pixel P(x, y) are respectively defined as:

GP)=Ix—-1,y—D+2Ix—1L,)+Ix—1,y+1)
—Ix+1,y—D-=-2Ix+1,y)—Ix+1,y+1)
(17)
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FIGURE 9. Proposed framework for dermoscopy image classification.
And

GP)=1Ix—-1,y—-D+2x,y—D+Ix+1,y—1)
—I(x—1,y+D)—=2I(x,y+1) —I(x+1,y+1)
(18)

Then, the gradient magnitude on P is defined as:

G(P) = /Gx(P)* + G,(P)? 19)

Finally, the average variation pattern is calculated as:

Y. G(P)

PeROI

L(VP) = Nror

(20)

E. CLASSIFICATION

Lesion classification is the final step. There are several
existing systems that apply various classification methods
as seen in [47], [55], and [56]. A framework of the pro-
posed work is illustrated in Figure 9. In this framework,
three types of classifiers are proposed, i.e. one level classifier
(classifier A) and two-level classifiers (classifier B and C).
The first stage of this framework is to perform image process-
ing to detect and exclude the hair, after that the ROI of the skin
lesion is segmented. Then, the image features are extracted.
Next, the extracted features are fed to the classifiers.

1) CLASSIFIER A

This classifier is a one level classifier; one classifier is
proposed to classify the image into three categories, benign,
atypical or melanoma. All extracted features are fed into this
classifier in order to classify the input image.

2) CLASSIFIER B

This classifier is a two level classifier, two classifiers are
proposed, i.e. classifier I and classifier II. Classifier I
classifies the image into benign or abnormal, and classifier II
classifies the abnormal image into atypical or melanoma.

VOLUME 3, 2015

3) CLASSIFIER C

This classifier is a two level classifier, two classifiers are
proposed, i.e. classifier I and classifier II. Classifier I detects
melanoma and classifies the image into melanoma or (benign
and atypical), and classifier II classifies the images into
benign or atypical.

The two-level classifiers approach gives better results
compared to the one level classifier, as explained in the exper-
imental results section. Support Vector Machines (SVM)
classifier is used in all classifiers. The SVM was devel-
oped by Vapnik [57] and has become a popular classifier
algorithm recently because of its promising performance on
different type of studies. The SVM is based on structural
risk minimization where the aim is to find a classifier that
minimizes the boundary of the expected error [58]. In other
words, it seeks a maximum margin separating the hyper-
plane and the closest point of the training set between two
classes of data [59]. In the experiments the publicly available
implementation LibSVM [60] is used with radial basis func-
tion (RBF) kernel since it yielded higher accuracies in the
cross-validation compared to other kernels. The grid search
procedure is used to determine the value of C and gamma for
the SVM kernel.

V. EXPERIMENTAL RESULTS

In the proposed system, the PH2 dermoscopic image database
from Pedro Hispano hospital is used for the system develop-
ment and for testing purposes [61]. The dermoscopic images
were obtained under the same conditions using a magnifi-
cation of 20x. This image database contains of a total of
200 dermoscopic images of lesions, including 80 benign
moles, 80 atypical and 40 melanomas. They are 8-bit
RGB color images with a resolution of 768 x 560 pixels.
Because the database is anonymous and is used for training
purposes, no IRB approval was required for this study. The
images in this database are similar to the images captured
by the proposed system. We decided to use this database
for implementation and test plan since it is verified and
established by a group of dermatologists. Figure 10 shows
an example of images from the PH2 database and images
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FIGURE 10. Sample of images from PH2 database (first column), and
images captured by the proposed device (second column).

captured by the proposed system. In the experiments, 75% of
the database images are used for training and 25% are used
for testing.

The proposed framework compared three types
of classifiers. Consequently, Classifier B outperform
classifiers A and C. Classifier A was able to classify the
benign, atypical and melanoma images with accuracy of
93.5%, 90.4% and 94.3% respectively. On the other hand, the
two-level Classifier B was able to classify the dermoscopy
images with accuracy of 96.3%, 95.7% and 97.5% respec-
tively. This is while the two-level Classifier C was able to
classify the dermoscopy images with accuracy of 88.6%,
83.1% and 100% respectively. Table 4 shows the confusion
matrix results for Classifier A. Table 5 shows the confu-
sion matrix for Classifier B (classifier I and classifier II).
Table 6 shows the confusion matrix results for Classifier C
(classifier I and classifier II).

TABLE 4. Confusion matrix for classifier A.

Predicted class (%)
Benign | Atypical | Melanoma
Benign 93.5 6.5 0
Actual | Atypical 9.6 90.4 0
Class "Melanoma 0 5.7 94.3

The smart-phone application for the proposed model has
been developed and is fully functional. In addition, a pilot
study on 100 subjects has been conducted to capture lesions
that appear on the subjects’ skin. This study contains of
a total of 160 dermoscopic images of lesions, including
140 benign moles, 15 atypical and 5 melanomas. They are

4300212

TABLE 5. Confusion matrix for classifier B (classifier 1 and classifier II).

Classifier 1
(%) Classifier 11
B Ab (%)
Benign (B) | 96.3 | 3.7

Atypical

Abnormal (AD)

™M)

TABLE 6. Confusion matrix for classifier C (classifier I and classifier I).

Classifier I
(%) .
M | BrAt Classolﬁer 11
(%)

Melanoma 100 0
(W10)
Benign +
Atypical 8.5 Benign (B) |
(B+At) Atypical (At) | \

8-bit RGB color images with a resolution of 768 x 560 pixels.
Because the database is anonymous and is used for train-
ing purposes, no IRB approval was required for this study.
The results have been validated by a physician from the
health sciences department at the University of Bridgeport,
adding to the effectiveness and feasibility of the
proposed integrated system. In this experiment we were
able to classify the benign, atypical and melanoma images
with accuracy of 96.3%, 95.7% and 97.5% respectively.
The experimental results show that the proposed system
is efficient, achieving very high classification accuracies.
A video for the developed smart-phone application can be
found at http://youtu.be/ahlY3G_ToFY.

VI. CONCLUSION AND FUTURE WORK

The incidence of skin cancers has reached a large number
of individuals within a given population, especially among
whites, and the trend is still rising. Early detection is vital,
especially concerning melanoma, because surgical excision
currently is the only life-saving method for skin cancer.

This paper presented the components of a system to aid in
the malignant melanoma prevention and early detection. The
proposed system has two components. The first component
is a real-time alert to help the users to prevent skin burn
caused by sunlight. In this part, a novel equation to compute
the time-to-skin-burn was introduced. The second component
is an automated image analysis module where the user will
be able to capture the images of skin moles and this image
processing module classifies under which category the moles
fall into; benign, atypical, or melanoma. An alert will be
provided to the user to seek medical help if the mole belongs
to the atypical or melanoma category. The proposed auto-
mated image analysis process included image acquisition,
hair detection and exclusion, lesion segmentation, feature
extraction, and classification.
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The state of the art is used in the proposed system for
the dermoscopy image acquisition, which ensures capturing
sharp dermoscopy images with a fixed distance to the skin
and consistent picture quality. The image processing tech-
nique is introduced to detect and exclude the hair from the
dermoscopy images, preparing it for further segmentation
and analysis, resulting in satisfactory classification results.
In addition, this work proposes an automated segmentation
algorithm and novel features.

This novel framework is able to classify the dermoscopy
images into benign, atypical and melanoma with high accu-
racy. In particular, the framework compares the performance
of three proposed classifiers and concludes that the two-level
classifier outperforms the one level classifier.

Future work would focus on clinical trials of the proposed
system with several subjects over a long period of time
to overcome the possible glitches and further optimize the
performance. Another interesting research direction is to
investigate the correlation between skin burn caused by
sunlight and neural activity in the brain.
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