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A B S T R A C T   

Background: The accurate computational prediction of B cell epitopes can vastly reduce the cost and time 
required for identifying potential epitope candidates for the design of vaccines and immunodiagnostics. How
ever, current computational tools for B cell epitope prediction perform poorly and are not fit-for-purpose, and 
there remains enormous room for improvement and the need for superior prediction strategies. 
Results: Here we propose a novel approach that improves B cell epitope prediction by encoding epitopes as binary 
positional permutation vectors that represent the position and structural properties of the amino acids within a 
protein antigen sequence that interact with an antibody. This approach supersedes the traditional method of 
defining epitopes as scores per amino acid on a protein sequence, where each score reflects each amino acids 
predicted probability of partaking in a B cell epitope antibody interaction. In addition to defining epitopes as 
binary positional permutation vectors, the approach also uses the 3D macrostructure features of the unbound 
protein structures, and in turn uses these features to train another deep learning model on the corresponding 
antibody-bound protein 3D structures. This enables the algorithm to learn the key structural and physiochemical 
features of the unbound protein and embedded epitope that initiate the antibody binding process helping to 
eliminate “induced fit” biases in the training data. We demonstrate that the strategy predicts B cell epitopes with 
improved accuracy compared to the existing tools. Additionally, we show that this approach reliably identifies 
the majority of experimentally verified epitopes on the spike protein of SARS-CoV-2 not seen by the model during 
training and generalizes in a very robust manner on dissimilar data not seen by the model during training. 
Conclusions: With the approach described herein, a primary protein sequence and a query positional permutation 
vector encoding a putative epitope is sufficient to predict B cell epitopes in a reliable manner, potentially 
advancing the use of computational prediction of B cell epitopes in biomedical research applications.   

1. Introduction 

B-cell epitopes (BCEs) are clusters of surface accessible amino acids 
on a protein antigen, recognized by B cell secreted antibodies or B cell 
receptors (BCR) [1]. The B cell molecular recognition of BCEs by BCRs 
elicits humoral and cellular immune responses that are key in the fight 
against pathogenic threats. Knowledge of the precise coordinates of 
antibody epitope contact points in an antigen upon binding to an anti
body can be of tremendous value. Such BCE information can offer 
crucial guidance in vaccine design [2,3], therapeutic antibody engi
neering [2], in the streamlining of numerous diagnostic [4,5], and 
therapeutic applications in molecular medicine [4]. Hence, a variety of 
BCE mapping strategies have been developed to identify such clusters of 
BCE coordinates on antigens. Many of these are wet lab-based methods 

such as X-ray co-crystallography, cryogenic electron microscopy 
(cryo-EM) and numerous other assays [6]. However, there are innu
merable possible BCEs embedded on any given protein antigen 
sequence, and the experimental approaches to capture these are 
extremely time consuming, laborious, and expensive, and therefore not 
amenable to be applied on a large-scale for comprehensive BCE mapping 
and screening. The ability to accurately predict BCEs computationally 
would greatly facilitate the comprehensive mapping of complex anti
gens helping to speed up the development of monoclonal antibody based 
therapies, vaccines and immune-based diagnostics [6,7]. In recent years, 
numerous computational prediction algorithms have been developed to 
attempt the in-silico BCE mapping of protein antigens [7,8]. However, 
the accurate computational prediction of BCEs remains a daunting 
challenge as most of these prediction tools perform poorly in 
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comparative benchmarking studies [7,9,10] and are consequently not fit 
for purpose. Discotope3.0, for instance, uses surface exposure to identify 
potential epitopes, but has shown limited sensitivity in complex test 
cases [11]. CBtope predicts conformational epitopes based on sequence 
features alone, which can miss critical structural nuances [12]. 

Graphbepi incorporates graph-based methods, but often fails to account 
for the dynamic nature of protein-antibody interactions [13]. These and 
other limitations underline the need for more sophisticated approaches 
that can better capture the intricacies of epitope-paratope interactions. 
Methods that address and improve the current limitations in the 

Fig. 1. A top-level outline of the two-step innovative pipeline underlying BCE-Hunt. In step 1, depicted in Fig. 1A a BLSTM based deep learning predictor is trained 
based on all single 3D protein structures that are unbound (i.e., 3D protein structures not bound to any antibody or other ligand) in the PDB database. This predictor 
learns the 3D macrostructure determinants of 3D protein folding. Namely, RSA, UHSE and LHSE. The features used to train these 3D macrostructure models are 
derived from the unbound 3D protein structure sequences in addition to numerous other amino acid physiochemical and 3D protein structure sequences (see 
Table 1). In step 2, depicted in Fig. 1B a BLSTM based deep learning predictor is trained based on all of the relevant antibody-bound 3D protein structure complexes 
in the PDB. The features used in training are in essence the protein sequences of the antibody-bound protein structure and the predicted 3D macrostructure protein 
features for the unbound protein structure, predicted as described in Fig. 1A. The input at prediction for the main BCE model here is the target antigen protein 
sequence, and the query positional permutation vector (PPV) that defines the antibody BCE (sequence vector of 1′s and 0′s represents the protein sequence, where 1 
represents an amino acid contact point with the antibody and 0 represent not contact with the antibody). Full details are described in methods and the complete ML 
training pipeline outlined in Supplementary Figure 1. 
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computational prediction of BCEs have the potential to revolutionize 
vaccine and immunodiagnostics development [14]. 

Here we propose a novel approach to BCE prediction that signifi
cantly improves the predictive performance compared to the current 
state-of-the-art tools. Our approach encompasses several novel and 
distinguishing innovations that more accurately model the underlying 
biology of BCE/antibody recognition. These include, [1] the develop
ment of a set of Bidirectional Long Short-Term Memory (BLSTM) models 
that predict relevant 3D features of the protein antigen (we term here as 
"3D macrostructure" features) from its primary sequence, thereby cir
cumventing the need for experimentally derived or computationally 
predicted 3D protein structures, [2] predicting the aforementioned 3D 
macrostructure features based on the “unbound” rather than the anti
body “bound” protein antigen structure, and [3] defining or encoding 
the epitopes used for training as binary positional permutation vectors 
(PPVs) that represent the 3D physical interaction of the BCE with an 
antibody. 

Proteins often undergo conformational changes upon binding to 
other molecules, a phenomenon known as induced fit [15]. The induced 
fit model is also applicable in explaining the 3D conformational changes 
in a protein after antibody binding [16,17], and can alter the 3D 
structure significantly, potentially leading to inaccurate representations 
of the native epitope when using antibody bound structures. Therefore, 
we developed the BLSTM models that predict relevant 3D features of the 
unbound protein antigen. By leveraging unbound protein structures, our 
method avoids the inaccuracies associated with induced fit after the 
binding event, and captures the true native state of the protein prior to 
antibody binding. This leads to a significant improvement in the pre
diction accuracy of antibody epitopes. 

We propose a novel approach that improves B cell epitope prediction 
by encoding epitopes as binary positional permutation vectors (PPVs), 
which represent the position and structural properties of the amino acids 
within a protein antigen sequence that interact with an antibody. In 
addition to defining epitopes as binary PPVs, our approach also uses the 
3D macrostructure features of the unbound protein structures and in 
turn uses these features to train another deep learning model on the 
corresponding antibody-bound protein 3D structures, helping to correct 
for “induced fit” biases and inaccuracies in the training data. We 
demonstrate that this strategy, leveraging these novel approaches, pre
dicts B cell epitopes with improved accuracy compared to existing tools. 
Additionally, this approach reliably identifies the majority of experi
mentally verified epitopes on the spike protein of SARS-CoV-2 not seen 
by the model during training and generalizes robustly on dissimilar data. 

2. Results 

2.1. Outline for a high performing B cell epitope predictor 

A top-level overview of the BCE-Hunt approach to epitope prediction 
is illustrated in Fig. 1. The high performance we report in the subsequent 
sections below, delivered by BCE-Hunt, is achieved by the two main 
innovations that distinguish this approach compared to the state-of-the- 
art BCE predictors. Firstly, the approach circumvents the need for 
experimentally derived 3D protein structures and/or computationally 
predicted 3D protein structures (which are not yet fit for purpose[18]), 
by using protein sequence features and numerous other physiochemical 
features to predict 3D macrostructure properties (see Table 1 for the 
complete list of features and their sources). The 3D macrostructure 
properties are defined here as the key determinants of protein surface 
exposure of the protein sequence regions, namely, relative solvent 
accessibility (RSA), upper half-sphere exposure (HSE), lower half-sphere 
exposure (LHSE), and secondary structure (SS), as outline in Fig. 1A. 
Critically, in this first innovation, the 3D macrostructure features are 
learned from the unbound protein structures (Fig. 1A). The pipeline 
trains distinct BLSTM deep learning models for each of the 3D macro
structure properties to predict these properties from all the relevant 

unbound single 3D protein structure features in the Protein Data Bank 
(PDB) [19]. The output at prediction time for each of these BLSTM 
models is a score for each amino acid of the input protein sequence for 
each of the 3D macrostructure properties, thereby negating the need for 
knowing or predicting the exact coordinates of each atom in each amino 
acid relative to each other offered by complete and accurate experi
mental 3D protein structure determination (see Fig. 1A). Secondly, the 
proposed strategy redefines the definition of an epitope, encoding each 
epitope as a binary PPV, whereby 1′s represents direct amino acid con
tact points on the 3D protein sequence with the antibody, and 0′s rep
resents amino acids on the protein sequence that are not interacting 
directly with the antibody (see Fig. 1B). This differs from the existing 
state-of-the-art predictors which primarily score each amino acid (AA) 
on a per AA basis for its potential contribution to the BCE interaction 
with the antibody. In the PPV definition of an epitope the entire BCE 
interaction structure is defined and predicted. Critically, in this second 
innovation, the BCE interaction structure is learned from the 
antibody-bound 3D protein complex structures in the PDB (Fig. 1B). 
These two unique innovations form the basis of the main BCE-Hunt 
predictor. As outlined in Fig. 1B, similar to the 3D macrostructure pre
dictors, the main BCE predictor model is also trained using BLSTMs. 
However, in this step the training data is based on all the 
antibody-bound protein structure complexes from the PDB using the 
prediction output of the 3D macrostructure features in Fig. 1A in addi
tion to the proteins sequence features (additional features are also used, 
see Table 1). At prediction time the input to the main BCE-Hunt 

Table 1 
Features used to train the 3D macrostructure predictors – Upper half sphere 
exposure (UHSE), Lower half sphere exposure (LHSE), Relative Solvent Acces
sibility (RSA), and secondary structure (SS). In addition to the features used to 
train the final main BCE prediction model, BCE-Hunt. The source information for 
each feature is referenced where relevant.  

UHSE, LHSE & RSA SS BCE-Hunt 

Polarity[45] Conformational 
parameter for coil[46] 

Bulkiness[47] 

Free energy of transfer 
from inside to outside 
of a globular protein 
[48] 

Average surrounding 
hydrophobicity[49] 

Polarity[45] 

Hydrophobicity[50] Conformational 
preference for total beta 
strand (antiparallel and 
parallel)[51] 

Molar fraction of buried 
residues[48] 

Membrane buried helix 
parameter[52] 

Normalized frequency for 
beta-sheet[53] 

Conformational parameter 
for beta-turn[54] 

Hydrophobicity[55] Conformational 
parameter for alpha helix 
[46] 

Average flexibility index 
[56] 

Transmembrane 
tendency[57] 

Side chain classes[58] Normalized frequency for 
beta-sheet[53] 

Proportion of residues 
buried[59] 

Normalized frequency for 
beta-turn[53] 

Normalized frequency for 
alpha helix[53] 

Mean fractional area loss 
[60] 

Binary representation of 
protein sequence 

Side chain classes[58] 

Conformational 
parameter for beta- 
sheet[54]  

Known Number of codon 
(s) coding for each amino- 
acid in universal genetic 
code[58] 

Conformational 
preference for total 
beta strand[51]  

Side chain polarity[58] 

Side chain classes[58]  Binary representation of 
protein sequence 

Surface accessibility[61]  Secondary Structure 
(internal algorithm) 

Side chain polarity[58]  Relative Solvent 
Accessibility (internal 
algorithm) 

Binary representation of 
protein sequence  

Positional Permutation 
Vectors  
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predictor model requires only the sequence, and the query PPV. The 
main output for BCE-Hunt is a score ranging from 0 to 1.0, representing 
the probability that the PPV for the primary protein sequence being 
queried is a true positive BCE. The BCE-Hunt complete pipeline work
flow for the prediction of both linear and conformational BCE by 
BCE-Hunt is outlined in Supplementary Figure 1. 

2.2. Evaluation metrics of the main BCE-Hunt BLSTM model: cross 
validation and independent tests 

For both the 3D macrostructure BLSTM models and the main BCE 
BLSTM model we used~ 80 % of the training data on 5-fold cross- 
validation (CV) to assess the performance of the models, and the 
remaining 20 % was used as an independent test against the trained 
models. All the models performed well, without overfitting, and 
demonstrated high performance for all of the selected evaluation met
rics. Moreover, all the models demonstrated high stability, with only a 
small variation observed between different CV runs. In particular, the 
model performance for the main BCE predictor is illustrated in Fig. 2. 
The model performed with a high precision-recall (PR) AUC of 0.8 
compared the no skill value of 0.03 (robust across all CVs in Fig. 2A-2E) 
and comparable to the independent test in Fig. 2F. This BLSTM model 
predicts conformational BCEs trained on the antibody-bound protein 3D 
structures, with input features from the 3D macrostructure models of the 
corresponding unbound protein 3D structures (depicted in Fig. 1A and 
Supplementary Figure 1B), with the epitope encoded as PPVs. Although 
all the BLSTM models had promising and robust CV runs, and model 
training and independent tests exhibited high and robust performance, 
we next proceeded to evaluate the models against existing state-of-the- 
art BCE predictors. 

2.3. Benchmark comparison of BCE-Hunt against state-of-the-art existing 
tools 

Although the BLSTM and pipeline architecture of BCE-Hunt is setup 
for both linear and conformational BCEs, the current version is trained 
on conformational BCEs only. Based on the relevance for conformational 
BCE predictions, and operational availability for comparisons, three 
existing state-of-the-art tools were used to compare against, namely; 
Graphbepi [13], Discotope3.0 [11] and CBtope [12]. Each of these three 
different tools have different scoring and predictions systems and the 
scores per AA was interpreted individually for each tool. The data set 
used in these comparisons was an independent test dataset, not used in 
the training for BCE-Hunt. For this independent test we kept aside 6 % of 
the most recent antibody-bound protein 3D structures in the PDB for 
subsequent testing, and used the remaining (older) 94 % of the PDB data 
for training (to avoid test overlaps with the other algorithms). 

Benchmarking against existing state-of-the-art conformational BCE 
tools is challenging for several reasons; [1] the tools use different ap
proaches to define the epitopes i.e. they use different Armstrong (Å) 
distances between the epitope and the paratope contact points on the 
antibody to “identify” the participating amino acids. and [2] the other 
state-of-the-art methods use a per amino acid (AA) BCE contribution 
prediction approach, compared to our PPV method. That is, in the 
existing conformational BCE prediction tools each AA in the query 
protein sequence is scored according to its potential to contribute to a 
BCE antibody interaction. However, our tool BCE-Hunt conceptually 
defines an epitope based on PPVs representing the protein sequence, 
whereby we predict the entire epitope’s direct contact points repre
sented as a permutation vector for each individual query protein 
sequence. In BCE-Hunt a probability for each protein sequence and 
single PPV is then outputted per query at prediction time. Therefore, for 
BCE-Hunt, the metrics are defined as predicting the entire epitope’s 
direct contact points and non-contact points with the antibody, whereby 
the existing tools assign a score for each AA on a protein sequence 
representing its potential contribution to participating in the BCE. This 

conceptual difference makes it challenging to directly compare 
BCE-Hunt against existing tools. However, to adjust for these conceptual 
differences, we made alterations to the architecture of BCE-Hunt such 
that in addition to outputting the probability scores of the PPV, the 
model also outputs a probability score per AA (to make comparisons 
against the existing tools possible). 

In a first evaluation against the existing tools an experimental 
framework was devised that used a PPV/BCE-Hunt-like approach for 
defining the epitopes for the assessing performance (Fig. 3 A). Here, the 
entire epitope needs to be predicted positive for it to count in any of the 
tools being analyzed (meaning each AA that has been shown to 
contribute to the epitope experimentally has to be predicted correctly by 
the tool). For example, let us take a case where a true epitope in the test 
set is represented by the following permutation vector [1,0,0,1,0,1] 
(where the 1′s represent experimentally verified direct contact points 
with the antibody at a predefined Å distance, and 0′s represent no direct 
contact with the antibody in the experimentally verified 3D structure). 
In this example, if Discotope3.0, which defines an AA as positive if it has 
a score > 0.9 [11], generated the following set of scores [0.95,0.02,0.3, 
0.98,0.2,0.91], this output would be assigned as a successful TP pre
diction for the AUC calculations. 

. For this evaluation we allowed the existing tools to count a suc
cessful TP when some of the 0′s in the epitope defined by the permuta
tion vector above were also counted as positives. So, for example, based 
on the same > 0.9 threshold for Discotope3.0, the following set of 
outputted scores [0.95,0.99,0.91,0.98,0.93,0.91] would also be 
assigned as a successful TP prediction for the AUC calculations. In 
contrast, we used a much stricter approach for evaluating BCE-Hunt, 
whereby the failure to correctly predict a non-contact point i.e. a 0, 
led to the output being assigned as a false negative for the AUC calcu
lations. Since we only have true positives (TP) in the independent test of 
experimentally verified 3D antibody-bound protein structures, we used 
accuracy as the percentage of correct classifications (ACC) that each 
model in the comparison makes, as the evaluation metric (TP

P ). An 
explanation for how this evaluation metric is derived is outlined in the 
methods section. The outcome of this first evaluation is summarized in 
Fig. 3 A, where it is clearly demonstrated that BCE-Hunt significantly 
outperforms the existing tools, based on an evaluation framework that 
defines an epitope using a PPV/BCE-Hunt-like approach. 

In a second evaluation against the existing state-of-the-art tools an 
experimental framework was devised that used a “probability per AA- 
like” scoring approach for defining the epitopes for the assessing per
formance, which is conceptually similar to the approach adopted by the 
existing tools. 

That is, if one of the existing tools identifies an AA on the experi
mentally verified epitope, then that is assigned as a TP positive. 

For example, let us take a case where a true epitope in the test set is 
represented by the following permutation vector [1,0,0,1,0,1]. In this 
example, if Discotope3.0, which defines an AA as positive if it has a score 
> 0.9 [11] outputted the following set of scores [0.6,0.02,0.3,0.98,0.2, 
0.7], this output would be assigned as a successful TP prediction for the 
AUC calculations, even though it has predicted only one of the positive 
AAs correctly in the entire epitope. 

In contrast, we used a much stricter approach for evaluating BCE- 
Hunt, whereby all of the positive AAs experimentally verified to be 
physically participating in the interaction had to be be predicted 
correctly into be assigned as a true positive for the AUC calculations. 

. It was interesting to observe in Figs. 3B and 3 C, that although the 
relaxed criterion (applied to the second type evaluation) was more 
favorable to the per AA epitope predictors, BCE-Hunt continues to 
significantly outperform the existing tools based on both PR and ROC 
AUC metrics. 

For all the tools tested the threshold score for an AA was taken to be 
the default score as described in the respective published study for that 
algorithm [11–13]. The threshold for a true positive hit for an AA in an 
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Fig. 2. Panels A-E on this figure shows results for the precision-recall (PR) metric for cross validation runs 1–5, respectively. PR was chosen for this evaluation due to 
the unbalanced nature of the dataset in terms of positives and negatives in the training data (see methods). The BCE-Hunt model exhibited a very high performance 
when using the no-skill PR metric. The average PR AUC for each of the CV runs 1–5 (panel A-E) was 0.83 compared to an average no skill PR of 0.03. The CV models 
(A-E) were trained for 459 epochs and independent test (F) for 583. In panel F we demonstrate the performance of the BCE-Hunt model on an independent, left out 
and non-redundant, test data set of PDB antibody protein binding structures. The performance in panel F illustrates that the BCE-Hunt model performs well on data 
not seen during training of the BLSTM model, the PR AUC curve depicts a robust and comparable performance compared to the CV results shown in A-E. “No-BCE” on 
the graphs are models trained on random positive and negative data. 
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epitope for BCE-Hunt was very strict in these comparisons (for both 
types of evaluation); a probability score of being an epitope of > 0.96 
was required to be deemed positive (s = 1 − 1

31), given the 30X ratio of 
positive to negatives in the training data in BCE-Hunt. 

2.4. Validation based on experimentally verified SARS-CoV-2 spike 
protein antibody epitopes 

We next proceeded to assess the performance of the BCEP-Hunt 
model under a useful case example whereby artificial intelligence (AI) 
guided B cell antibody epitope mapping could potentially hold 

promising biomedical benefits. Specifically, we assess the ability of the 
model to identify bona fide epitopes on the spike protein of the SARS- 
CoV-2 virus. This was a highly relevant validation-case example due 
to the recent surge of studies that have characterized the neutralizing 
antibody interactions with the receptor binding domain of the spike 
protein since the declaration of the COVID-19 pandemic in March 2020. 
We extracted 177 spike protein-antibody complexes from experimental 
sources (such as X-ray crystallography or cryo-electron microscopy from 
the PDB, see Supplementary Table 1 for the list of PDB Ids tested). None 
of the PDB complex structures used in this test were present in the 
training data for BCE-Hunt. In turn we then extracted 312 epitopes from 

Fig. 3. 3A highlights the superior performance of BCE-Hunt in comparison to existing conformational BCE predictors, using a criterion for success conceptually 
similar as to how an epitope is defined as PPVs in BCE-Hunt. 3B and 3 C highlights the significantly improved performance of BCE-Hunt compared to existing tools 
when using the criterion for success as a measure of the existing tools capability to predict at least on AA in the epitopes, for ROC and PR AUCs respectively. In both 
types of analyses (in 3A and 3B/C) BCE-Hunt must, strictly, predict the entire epitope (each AA in the epitope must be predicted correctly for directly physically 
interacting with the antibody and not directly interacting). 

Fig. 4. (A) BCE-Hunt was successfully capable of recovering between 64 % to 75 % of bona fide epitopes experimentally validated antibody bound spike protein 
complexes (ranging from BCE-Hunt positive hit thresholds from 0.5 to 0.9). None of the antibody-spike protein complex in this test were included in the training data 
for BCE-Hunt, and the model needed to predict the epitope with a perfect match in the structural properties to be counted as a positive hit. (B) Using the same 
antibody bound SARS-CoV-2 spike test from the best performing state-of-the-art tools in Fig. 3, CBtope, it was clearly demonstrated that the current approaches to 
predict BCEs are not fit for purpose compared to the strategy outlined here. 
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these complexes. In Fig. 4 we demonstrate the ability of BCE-Hunt to 
correctly predict the majority of these 312 epitopes. At a very strict 
threshold score of 0.9 for BCE-Hunt we were able to successfully predict 
64 % of these epitopes, and 73 % at the more relaxed score of 0.5 
(Fig. 4 A). To gauge how the state-of-the-art existing tools would 
perform on the same data, we chose the best performing tool from the 
independent benchmarking in Fig. 3, CBTope [12], and demonstrated 
that it could only predict a mere 0.01 % of the BCEs (see Fig. 4B). In each 

epitope test, a strict criterion was forced on BCE-Hunt in that it had to 
predict the entire epitope as a perfect match. 

2.5. Validation based on dissimilar experimentally verified antibody- 
bound protein 3D structures 

Whilst we believe that the significant improvement in performance 
demonstrated by BCE-Hunt compared to the current state-of-the-art 

Fig. 5. Each plot shows the true positive (TP) epitopes that are identified as such from the predictor, on the given probability threshold (BCE-Hunt positives, ranging 
from positive probabilities of 0.5 to 0.9), and the false negative (FN) epitopes that are not identified as such from the predictor, on the given probability threshold. 
The X-axis depicts the identify coverage % threshold cutoff of the test data. Each threshold on the X-axis represents the population of BCEs on experimentally verified 
antibody-bound protein structures that are below the given threshold, and both unseen by the model and dissimilar to all the protein sequences in the training data. 
This analysis demonstrates the ability of BCE-Hunt to generalize and successfully predict on unseen data in a robust manner. This performance was far superior to the 
best state-of-the-art tool analyzed in Fig. 3, CBTope. 
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tools demonstrated in the above study reflects the unique and dis
tinguishing innovations underpinning the approach, which more accu
rately model the underlying biology of BCE/antibody recognition. There 
is a counter-argument that the high performance could potentially be 
driven by the presence of “similar” antibody-bound spike protein 
structures from non-SARS-CoV-2 coronaviruses present in the BCE-Hunt 
training data (albeit, also likely for the existing state-of-the-art tools). 
Therefore, to investigate this potential issue we next assessed if BCE- 
Hunt can successfully predict experimentally validated BCEs that are 
not only unseen previously by the model as demonstrated in Fig. 4, but 
also dissimilar to the protein sequences that exist in the training or 
previous test data. To perform this strict test, we fetched all data from 
the PDB that was not present in any of our previously used training or 
test data sets. Global alignments on these sequences were performed 
using Needle-EMBOSS [20] to identify dissimilar proteins at various 
cutoffs of sequence coverage identity. A protein sequence was kept if its 
sequence identity was equivalent to or lower than at least one of the 
protein sequences in all the training data for the given threshold % 
identity coverage (see Supplementary Table 2 for the final list of 
antibody-bound 3D protein structures used for this test). Fig. 5 illustrates 
that BCE-Hunt can generalize and successfully predict on unseen and 
dissimilar data in a robust manner. For example, at the strictest 
threshold for the probability of being a positive BCE (>0.9), and at the 
strictest threshold of identity coverage (20 %); BCE-Hunt successfully 
predicted 51 % of the true positive epitopes (Fig. 5). The best performing 
existing state-of-the-art tool, CBTope, predicted only 2 % of the true 
positive epitopes at 20 % threshold for sequence identity. 

3. Discussion and conclusions 

A high performing machine learning (ML) model that accurately 
predicts BCEs can facilitate the identification of vaccine and diagnostic 
candidates for further experimental validation and development much 
faster and more efficiently than wet-lab based experimental approaches 
alone. Such models can vastly reduce the cost and time related to the 
BCE mapping process and streamline the identification of potential 
epitope candidates for further clinical investigations. 

Many approaches to predict BCEs have been attempted [7,10, 
21–25], but their performance is poor and there is significant room from 
improvement. Despite the development of several BCE predictors in 
recent years, computational BCE predictions have a long way to progress 
toward their practical use to guide the development of vaccines, 
antibody-based therapeutics and diagnostics. This was notable during 
the recent COVID-19 pandemic, whereby a wealth of additional ML 
training data became available due to the large burst of experimental 
studies on the spike protein from the SARS-COV-2 virus [24]. This 
increased volume of spike glycoprotein structures, including 
antibody-bound structures, together with the more than 20 years of 
development of BCE predictors, could have potentially contributed 
significantly to the AI accelerated design of vaccines or monoclonal 
antibody-based therapeutics, however, in the absence of reliable fit-for 
purpose tools the field reverted to 3D cryo-electron microscopy to 
guide the design of antibody-based therapeutics [26]. 

Clearly, there is ample scope for improvement of BCE predictors, and 
here we present a novel approach that encompasses several unique and 
distinguishing innovations that more accurately model the underlying 
biology of BCE/antibody recognition and improve performance. The 
first innovation is the use of a more structural and precise definition of 
the BCE which captures the entire protein antigen sequence and 
embedded epitope in a binary vector as positional PPVs. In a PPV, 1’s 
represent direct amino acid contact points on the 3D antigen structure 
with the antibody, and 0’s represent amino acids that do not interact 
directly with the antibody. The second innovation is the use of the un
bound 3D antigen structure (rather than the antibody-bound structure) 
as a source of features to capture the pertinent 3D structural properties 
of the antibody-BCE binding interaction (before the antibody binding 

event occurs) termed here as the 3D macrostructures. Proteins undergo 
conformational changes upon binding which are important to their 
biological function [15,17], therefore by focusing on unbound struc
tures, we provide the model with more accurate information regarding 
BCE/antibody recognition, consequently improving epitope prediction. 

A similar concept underlying the second innovation, i.e. the use of 
the unbound protein antigen 3D structure to capture features before the 
binding event, has been reported previously in the literature [27–32]. 
However, these previous antibody bound/unbound approaches used 
features captured from the unbound 3D protein antigen structure to 
directly train their respective BCE predictor models, and their definition 
of BCEs was on a per amino acid basis (not using PPV-based epitope 
definitions). In the approach proposed here, the unbound 3D protein 
antigen structures are used to train several distinct ML models that 
capture the 3D macrostructure of 3D folded proteins (e.g., RSA, HSE, 
and SS). Using the target antigen protein sequence alone, the outputs 
from the trained 3D macrostructure models are in turn used as features 
to train our main BCE predictor model. When combined, both in
novations outlined in the proposed approach, synergize to offer signif
icant performance improvements compared to current state-of-the-art 
approaches. One of the limitations of the proposed approach is the fact 
that the user must query an almost unlimited number of PPVs to fully 
map the complete BCE potential in any sufficiently large antigen 
structure. This problem is currently handled by using a brute force 
approach where a random selection of hundreds of thousands of 
candidate PPVs, guided by priors from empirical BCE data are used, 
which are hopefully relatively representative of the broader BCE po
tential. However, this approach will undoubtedly miss good candidates 
and in future versions of this tool, we intend to integrate deep rein
forcement learning (DRL) strategies to identify an even more represen
tative and optimized set of candiate PPVs to better map the complete 
BCE potential. In recent years, BLSTMs have been used to capture the 
global properties that may define the landscape of BCE in a protein [13, 
33]. The use of BLSTMs have a key advantage as they allow us to capture 
global relationships between distant amino acids which might constitute 
a conformational BCE. In contrast, other algorithms used in the other 
tools described earlier, segment the protein sequences and consequently 
risk losing these relationships. However, the previous BLSTM ap
proaches, and most other approaches limit the identification of BCEs on 
a protein to outputting a score on a per amino acid basis. The proposed 
advantage of the BCE as a binary PPV is that the structural properties of 
the epitope-paratope interactions can be captured with improved fi
delity. Even though, BCE-Hunt can also be adjusted to perform pre
dictions on a per amino acid basis (as performed in this study for 
benchmarking purposes), the PPV definition of a BCE is preferable as it 
encodes a high-resolution, more representative, definition of each amino 
acid that constitutes the epitope, leading to significantly higher perfor
mance as reported here. 

Another, advantage of the approach we describe herein is that it 
circumvents the need for an experimentally validated 3D structure to be 
available at the input stage, which is required by other approaches 
described earlier such as the DiscoTope family of BCE prediction tools 
[11,34,35]. A recent development [11] in the BCE prediction field to 
address the limitation of requiring the PDB 3D protein structure as input, 
is to integrate the input query with the input 3D protein structure ob
tained from databases such as the Alphafold protein structure database 
[36]. Although the Alphafold method [37] is indeed a ground-breaking 
advancement in 3D protein structure prediction, and serves as an 
important hypothesis generator, 3D protein structure predictions are 
arguably not yet a direct placement for experimental structure deter
mination [18]. Therefore, strategies such as BCE-Hunt described herein, 
are advantageous in that they only require the protein sequence to 
perform reliable BCE predictions. As mentioned above, BCE-Hunt by
passes they need for the experimentally derived 3D protein structure or 
potentially unreliable predicted 3D protein structure at prediction-time, 
by capturing the key 3D macrostructure properties of the protein from 
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the unbound protein antigen during ML training in the pipeline. We 
demonstrated in this study that the precise coordinates of each atom in 
each amino acid relative to each other the 3D protein structure is not 
necessary to be known with fidelity to capture accurate BCE antibody 
interactions. The determinants of the 3D protein structure captured by 
the 3D macrostructure predictors from the unbound protein antigen are 
sufficient. 

Given the failure of the existing tools to reliably predict BCEs on the 
spike protein of the SARS-Cov-2 virus [7], the validation case study we 
report herein on unseen SARS-Cov-2 antibody bound spike protein 
structures suggests that the approach proposed in this study offers an 
important advancement in the field and may help pave the way towards 
a future where computational BCE prediction is routinely used in a wide 
range biomedical research applications and to help design future vac
cines and immunodiagnostics. 

4. Methods 

4.1. Pretraining techniques 

For ensuring reproducible results and avoiding the need of random 
seed in the networks used in our BLSTM models, we used auto-encoders 
(AEs). AEs are types of neural networks which mirror their inputs. More 
specifically, an AE takes an input at layer number i = 0. 

and processes it through an arbitrary number of layers, say i = 1, …, 
N, which constitute the encoder part. It then processes it back through a 
mirrored structure of the encoder part, called the decoder part. Finally, 
it returns the output which is the same as. 

the input. The intermediate layers might reduce or expand the di
mensions of the input, as the main use of AEs was indeed dimensionality 
reduction. Firstly, we randomly generated 10000 protein sequences of 
length between 50 to 1000 amino acids. The actual amino acids used 
was random as well. We then pre-trained each layer of the neural 
network as an individual AE on the whole generated data. The pre- 
training was done for maximum 1000 epochs for each AE, with the 
possibility of early stopping if the loss did not decrease after 10 epochs. 
The weights of the outer layers were copied to deeper AEs after pre- 
training and were also kept constant during the pre-training of those. 
The last layer of the model (output) was not pre-trained at all. This 
procedure was done once, and the same pre-trained weights were used 
on all the validation procedures. This procedure was faster, it used much 
more data to pre-train and the same initial weights were used for all 
downstream analyses. 

4.2. BLSTMs 

Bidirectional long short-term memory networks (BLSTMs) consist of 
two LSTMs, each one scanning the time-steps sequence from either di
rection. That is, one LSTM scans the forward and one the backward 
sequence of time-steps. This allows the network to capture relationships 
between past and future time-steps at once. For predicting conforma
tional BCEs, we use BLSTMs models. This allowed us to model the whole 
protein sequences as one observation, without the need of segmenting it. 
Therefore, distant amino-acid relationships should be able to get 
captured by the model. Moreover, the use of BLSTMs allows us to train 
different protein lengths simultaneously. 

4.3. Data preparation for the 3D macrostructure features (unbound 3D 
protein structure data preparation) 

Proteins are dynamic molecules that often undergo significant 
conformational changes upon binding to other molecules, a process 
known as induced fit [17]. This phenomenon is fundamental to protein 
function and influences many biological processes. By extracting fea
tures from unbound protein structures in the machine learning training 
steps, we captured the native state of the protein, providing a more 

accurate representation of potential antibody binding sites. Learning 
from the 3D structure of proteins after the binding event might result in 
capturing artifacts of the induced fit, leading to potentially incorrect 
information. Therefore, our BLSTM models to learn 3D macrostructures 
were trained on unbound structures to ensure high fidelity in epitope 
prediction. 

To accurately predict the 3D macrostructure features (SS, RSA, UHSE 
and LHSE) from a native protein sequence, we used 3D protein struc
tures from the PDB [19] from all available organisms. The goal of those 
models was to predict the surface and structural characteristics of pro
teins that are not affected by any other protein, including antibodies 
(Abs). Therefore, we kept only structures that are not bound by any 
other structure or molecule. Structures containing more than one copy 
of the same molecule, but slightly different conformation, are kept in the 
data. We filtered the structures and kept only those with ≤ 3◦A resolu
tion, ensuring that every atom of each amino-acid is mapped with co
ordinates, and with protein chains longer than 200 amino-acids. After 
filtering, the database consisted of 41592 total structures (per 
20/12/2019). Those structures contained 70489 protein sequences 
which resulted in 53524 unique sequences. Subsequences of longer se
quences were kept as different data points. The reason for that is that 
their conformational characteristics might be different because of their 
shorter length. 

The DSSP algorithm was used to compute the SS and the RSA for each 
molecule in each structure file [38]. DSSP computes the following sec
ondary structure classes for a protein sequence; α-helix, 310-helix, 
π-helix, isolated β-bridge, β-strand, turn, bend and coil. We merged 
those classes into three super-classes; Helices (α-helix, 310-helix and 
π-helix), Strands (isolated β-bridge and β-strand) and Coils (turn, bend 
and coil). Finally, the BioPython package [39] was used to compute the 
UHSE and LHSE. At the end of the filtering, each amino acid in the data 
base was assigned a value for the RSA, UHSE, LHSE and a class for the 
SS. To create a unique data base, the mean per amino-acid was taken for 
RSA, UHSE, LHSE among identical sequences. Finally, amino-acids of 
identical sequences but with different SS classes, were assigned to the 
coil class. 

4.4. BLSTM prediction model for RSA and HSE (3D macrostructure 
features) 

We chose to create a single BLSTM model for predicting all surface 
features. More specifically, the model predicts RSA, UHSE and LHSE 
from a primary protein sequence. Although LHSE might not give useful 
information about the surface position of an. 

amino acid, it might help predicting UHSE more accurately, since 
both together are actually forming a prob around each amino-acid. This 
is a BLSTM model which takes as inputs a batch of features, each 
computed per amino-acid from each input sequence, and. 

predicts a three-way output. For each protein sequence given as 
input, a value for each RSA, UHSE and LHSE are predicted per amino- 
acid. For all the three outputs the individual losses were the mean 
square error (MSE). The global model loss was the weighted sum of the 
individual losses with weights: 50, 100 and 125 for RSA, UHSE and 
LHSE, respectively. The weights were decided by first training the model 
without them and see the differences in the magnitude of the three 
losses. The weights contribute in such a way that the three losses give the 
same contribution to the global model loss. Supplementary Figure 2 A 
shows the network architecture of the model, and Table 1 outlines the 
features used to the train the BLSTM model. 

4.5. BLSTM prediction model for secondary structure (3D macrostructure 
features) 

We also chose to create a BLSTM model for predicting a three class 
output for SS.The model uses the categorical cross-entropy loss in order 
to assign one of the following classes to each amino-acid in an input 
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sequence; Helices, Strands and Coils. Supplementary Figure 2B shows 
the network architecture of the model, and Table 1 outlines the features 
used to the train the BLSTM model. 

4.6. Data preparation for the conformational BCE predictor (BCE-Hunt) 

For modelling conformational BCEs (CBCE) we downloaded non- 
obsolete protein complexes from the PDB[19]. We allowed structures 
of any resolution and organisms, if they had at least three different 
protein chains. The reason for this is that two of the chains might be the 
variable fragment heavy (VH) and variable fragment light (VL) chains of 
an antibody (Ab), and the third chain might be an antigen (Ag). Of 
course, there might be multiple Abs or Ags in one PDB structure. We 
created a local database using all immunoglobulin V-, D- and J-region 
genes from the international ImMunoGeneTics information system 
(IMGT)[40]. Those genes were downloaded for both VH and VL chains, 
from all the available organisms, that is, human, mouse, rhesus monkey, 
rabbit, and rat. The IMGT genes not only provide information about the 
VH and VL chains of an Ab, but its paratope regions as well, that is, the 
complementarity-determining regions (CDR) and framework regions 
(FR) of each chain. To identify the Abs, we used IgBlast [41] for protein 
sequences on the IMGT database. For identifying the paratope in a chain 
we used the Kabat system that the IgBlast provides [42]. We considered 
VH and VL chains as valid, only if at least their CDR1 and CDR2 were 
found by IgBlast. Since CDR3 is more difficult to map [43], we allowed it 
to be missing. We blasted all the protein chains of each structure to that 
database. Structures were filtered out if they did not have at least one 
chain mapped as valid VH and one as valid VL. Any other chain that was 
not mapped as VH or VL was assumed to be an Ag chain. 

We considered as valid Ag chains those chains that were longer than 
100 amino acids and were not bound by any other chain other than a VH 
or VL chain. Finally, only structures including at least one VH, VL and Ag 
chains were taken to further analyses. We paired VH and VL chains in 
each structure to recreate valid Abs. In case there were multiple VH and 
VL chains in one single structure, we measured the mean distance from 
every atom on each VH to every atom on each VL chain. VH and VL 
chains with the minimum mean atom distance were assigned as pairs 
and assumed to belong to one single Ab. Stand-alone VH or. 

VL chains were not considered on the downstream analysis as they 
could not define a complete Ab. A paratope analysis provided infor
mation about the contacts formed with each Ag. Two amino acids were 
assumed to be in contact if any of their atoms were located within a 
certain probe distance from each other. We computed the total number 
of Ag amino acids that form contacts with each paratope’s parts, using 
probe distances of 4, 6 and 8◦A. Most of the contacts are made with 
CDR1 and CDR2 of the VHs and CDR1 and CDR3 of the VLs. The absence 
of CDR3 on VHs might be due to the difficulty of identifying it using 
IgBlast. Moreover, the FR regions do not seem to form as many contacts 
as the CDR regions, as expected. Additionally, the standard deviation of 
the total contacts per amino acid and paratope part was relatively low, 
indicating that similar number of contacts are made between different 
Ags and Abs. This could be an indication of the possibility of predicting 
CBCEs without any further information about the actual Abs. For each 
VH and VL chain pair we defined a single CBCE. This was done by first 
identifying atoms on any Ag whose distance from the CDRs regions of 
any VH and VL chain pair was ≤ 4◦A. The amino acids that those atoms 
belonged to were defined as contacts between the Ag and the Ab, that is, 
they defined the CBCE. Multiple CBCEs from different Abs could be 
defined on the. 

same Ag. Finally, structures that did not define any CBCE within the 
4◦A distance were discarded. Observed CBCEs were also mapped to 
similar Ag. Undiscovered CBCEs could increase the false negative rate of 
the prediction models. To decrease the possibility of assigning undis
covered CBCEs as negative data, we copied observed CBCEs to. 

similar Ags. First, we identified clusters of similar Ags using BlastPlus 
[44] with > 90 % similarity and at most two gaps. CBCEs were copied 

from an Ag in a cluster to all the other Ags in the same cluster if their 
corresponding position and distancing was the same based on the 
mapping from BlastPlus. Lastly, we created a unique Ags database. 
Duplicated Ags were removed from the data. Second, Ag sequences that 
were sub-sequences of longer Ags were kept in the data and treated as 
different observations. The resulting database consisted of 1003 Ag se
quences in fasta format and 12968 CBCEs from which 6986 were unique. 
Each Ag sequence was associated with at least one CBCE. 

4.7. B cell epitope definition as a positional permutation vector 

A positional permutation vector (PPV) is defined here as a binary 
vector used to encode the interaction between a protein antigen and an 
antibody. Each position in the vector corresponds to an amino acid in the 
protein sequence. A value of ’1’ in the PPV indicates that the amino acid 
at that position directly contacts the antibody, while a ’0’ indicates that 
the amino acid does not interact directly with the antibody. This 
encoding captures the spatial arrangement of contact points, allowing 
the model to learn and predict the interaction sites accurately. 

4.8. BLSTM prediction model for the conformational BCE predictor (BCE- 
Hunt) 

The models utilize input features that include, among others, a 
permutation vector, also known as a positional permutation vector 
(PPV). Every sequence in the data is associated with at least one true 
CBCE, those CBCEs are turned into binary 2D vectors and are given as 
input to the models. The model’s primary output is a probability, which 
essentially addresses the query: "Does this particular permutation vector 
within the given specific sequence accurately constitute a true CBCE?". 
The second output of the model is the permutation vector itself. This part 
of the model works as an AE, where it returns a probability per amino 
acid. This output can be seen as a contribution of each amino acid in the 
sequence to the specific CBCE in question. The goal was to predict CBCEs 
before the binding event took place. The dataset used comprises linear 
protein sequences and the true CBCEs. Therefore, it lacks information 
concerning the structural or surface characteristics of these protein se
quences. However, an understanding of the pre-binding secondary 
structure and surface of each protein is crucial for our analysis. There
fore, we used our prediction models for RSA, UHSE, LHSE and SS (3D 
macrostructure features) to predict those characteristics in every protein 
in the dataset. Supplementary Figure 2 C shows the network architec
ture of the BCE-Hunt model, and Table 1 outlines the features used to the 
train the BLSTM model. 

The BCE AA output is the actual permutation output, where binary 
cross-entropy loss was used. The BCE perm output is a probability vector 
indicating if the input permutation is a true CBCE (second position on 
vector) or not (first position on vector). The input features were 
computed per amino acid as they are, not averaged by windows. The 
BCE perm output is computed from amino acid values. The last layer of 
the output is a Dense layer with sigmoid activation. Such that, for each 
protein sequence, a value in ∈ [0,1] is returned per amino-acid. Then a 
2-class probability vector is computed for that sequence as. 

1 −

∑N
i=0

Xi

N ,

∑N
i=0

Xi

N 
where N is the length of the sequence and Xi is the dense layer output 

on amino-acid at position i on the sequence. This 2-class probability 
vector is then used in the binary cross-entropy loss. 

4.9. Negative data generation for the conformational BCE predictor 
(BCE-Hunt) 

We applied three different negative data generating methods. For 
each sequence in the training and validation data we generated 30 
completely random permutations, 10 from each method, and assumed 
that they are not true CBCEs. In the first method we generated 
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completely random permutations. For each sequence in the training and 
validation data we generated 10 completely random permutations and 
assumed that they were not true CBCEs. Both the total number of amin 
-acids and the placement of those in the given sequence were random. 
New permutations were generated on each epoch. The advantage of this 
method is that because of the complete randomness, it is quite unlikely 
that any generated CBCE permutation will be false negative. However, 
the disadvantage is that the randomly generated CBCE permutations 
might be extremely different than the true CBCE permutations. In that 
case, the algorithm might learn to separate only based on the permu
tation input. The second and third methods correct for this disadvan
tage, which we also applied on every true CBCE of the given protein 
sequence and generated on each epoch. The second method kept the first 
and last amino acid of a given true CBCE at the correct position, while it 
randomly shuffled the internal CBCE amino acids indicators inside the 
region. The third method kept the total amount of amino acids of a true 
CBCE, as well their linear distance, constant. It then randomly shifted 
the whole true CBCE on other parts of the protein. The advantage of this 
method is that the randomly generated CBCE permutations cover both 
extremely similar and extremely different true CBCE permutations. This 
is likely to result in an algorithm that is more robust to both positive and 
negative data. Conversely, a drawback of the method is the potential for 
a substantial rise in false negatives, which could lead to diminished 
performance when applied to novel data sets. 

4.10. Evaluation metrics 

For the evaluations against the existing state of the art tools in 
Fig. 3A, ACC was used as the metric, which was derived here as the true 
positive rate (TPR) TP

P . This was derived due to ACC = TP+TN
P+N . For those 

comparisons, we only used scientific verified antibody binding epitopes 
from the PDB. For that reason, and because we did not want to assume 
negative epitopes and risk FP rates, both the TN and N are zero. The ACC 
therefore in effect becomes the true positive rate (TPR), TPR = TP

P =

ACC. 
For AUC calculations we assume that the 0′s representing AAs in the 

PPV are negative which allowed us to capture the TN rate in addition to 
the TP rate to perform the evaluations illustrated in Fig. 3B and C. 

Author statement 

We hereby declare that all authors have read and approved the 
revised version of the manuscript. 

CRediT authorship contribution statement 

Richard Stratford: Writing – review & editing, Project administra
tion, Investigation, Formal analysis. Trevor Clancy: Writing – review & 
editing, Writing – original draft, Supervision, Project administration, 
Methodology, Investigation, Funding acquisition, Formal analysis, 
Conceptualization. Irantzu Anzar: Writing – review & editing, Formal 
analysis. Boris Simovski: Writing – review & editing, Methodology, 
Formal analysis. Ioannis Vardaxis: Writing – review & editing, Writing 
– original draft, Validation, Software, Project administration, Method
ology, Investigation, Formal analysis, Data curation, Conceptualization. 

Declaration of Competing Interest 

All authors are employees at the company NEC OncoImmunity AS. 

Acknowledgements 

The study was funded by the Research Council of Norway (Grant 
Number: 282216). 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.csbj.2024.06.005. 

References 

[1] Getzoff ED, Tainer JA, Lerner RA, Geysen HM. The chemistry and mechanism of 
antibody binding to protein antigens. Adv Immunol 1988;43:1–98. 

[2] Van Regenmortel MH. Immunoinformatics may lead to a reappraisal of the nature 
of B cell epitopes and of the feasibility of synthetic peptide vaccines. J Mol 
Recognit 2006;19(3):183–7. 

[3] Dudek NL, Perlmutter P, Aguilar MI, Croft NP, Purcell AW. Epitope discovery and 
their use in peptide based vaccines. Curr Pharm Des 2010;16(28):3149–57. 

[4] Ahmad TA, Eweida AE, Sheweita SA. B-cell epitope mapping for the design of 
vaccines and effective diagnostics. Trials Vaccinol 2016;5:71–83. 

[5] Leinikki P, Lehtinen M, Hyoty H, Parkkonen P, Kantanen ML, Hakulinen J. 
Synthetic peptides as diagnostic tools in virology. Adv Virus Res 1993;42:149–86. 

[6] Potocnakova L, Bhide M, Pulzova LB. An introduction to B-cell epitope mapping 
and in silico epitope prediction. J Immunol Res 2016;2016:6760830. 

[7] Cia G, Pucci F, Rooman M. Critical review of conformational B-cell epitope 
prediction methods. Brief Bioinform 2023;24(1). 

[8] Zheng D, Liang S, Zhang C. B-cell epitope predictions using computational 
methods. Methods Mol Biol 2023;2552:239–54. 

[9] Blythe MJ, Flower DR. Benchmarking B cell epitope prediction: underperformance 
of existing methods. Protein Sci 2005;14(1):246–8. 

[10] Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA. Fundamentals and methods 
for T- and B-cell epitope prediction. J Immunol Res 2017;2017:2680160. 

[11] Hoie MH, Gade FS, Johansen JM, Wurtzen C, Winther O, Nielsen M, et al. 
DiscoTope-3.0: improved B-cell epitope prediction using inverse folding latent 
representations. Front Immunol 2024;15:1322712. 

[12] Ansari HR, Raghava GP. Identification of conformational B-cell epitopes in an 
antigen from its primary sequence. Immunome Res 2010;6:6. 

[13] Zeng Y, Wei Z, Yuan Q, Chen S, Yu W, Lu Y, et al. Identifying B-cell epitopes using 
AlphaFold2 predicted structures and pretrained language model. Bioinformatics 
2023;39(4). 

[14] Caoili SEC. Comprehending B-cell epitope prediction to develop vaccines and 
immunodiagnostics. Front Immunol 2022;13:908459. 

[15] Koshland DE. Application of a theory of enzyme specificity to protein synthesis. 
Proc Natl Acad Sci U S A 1958;44(2):98–104. 

[16] Keskin O. Binding induced conformational changes of proteins correlate with their 
intrinsic fluctuations: a case study of antibodies. BMC Struct Biol 2007;7:31. 

[17] Rini JM, Schulze-Gahmen U, Wilson IA. Structural evidence for induced fit as a 
mechanism for antibody-antigen recognition. Science 1992;255(5047):959–65. 

[18] Terwilliger TC, Liebschner D, Croll TI, Williams CJ, McCoy AJ, Poon BK, et al. 
AlphaFold predictions are valuable hypotheses and accelerate but do not replace 
experimental structure determination. Nat Methods 2024;21(1):110–6. 

[19] Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The 
protein data bank. Nucleic Acids Res 2000;28(1):235–42. 

[20] Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, et al. Search and 
sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res 2022; 
50(W1):W276–9. 

[21] Backert L, Kohlbacher O. Immunoinformatics and epitope prediction in the age of 
genomic medicine. Genome Med 2015;7:119. 

[22] Sun P, Guo S, Sun J, Tan L, Lu C, Ma Z. Advances in In-silico B-cell epitope 
prediction. Curr Top Med Chem 2019;19(2):105–15. 

[23] Lundegaard C, Lund O, Kesmir C, Brunak S, Nielsen M. Modeling the adaptive 
immune system: predictions and simulations. Bioinformatics 2007;23(24): 
3265–75. 

[24] Bukhari SNH, Jain A, Haq E, Mehbodniya A, Webber J. Machine learning 
techniques for the prediction of B-cell and T-cell epitopes as potential vaccine 
targets with a specific focus on SARS-CoV-2 pathogen: a review. Pathogens 2022; 
11(2). 

[25] Sun P, Ju H, Liu Z, Ning Q, Zhang J, Zhao X, et al. Bioinformatics resources and 
tools for conformational B-cell epitope prediction. Comput Math Methods Med 
2013;2013:943636. 

[26] Taylor PC, Adams AC, Hufford MM, de la Torre I, Winthrop K, Gottlieb RL. 
Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol 
2021;21(6):382–93. 

[27] da Silva BM, Myung Y, Ascher DB, Pires DEV. epitope3D: a machine learning 
method for conformational B-cell epitope prediction. Brief Bioinform 2022;23(1). 

[28] Ren J, Liu Q, Ellis J, Li J. Positive-unlabeled learning for the prediction of 
conformational B-cell epitopes. BMC Bioinforma 2015;16(Suppl 18):S12 (Suppl 
18). 

[29] Dalkas GA, Rooman M. SEPIa, a knowledge-driven algorithm for predicting 
conformational B-cell epitopes from the amino acid sequence. BMC Bioinforma 
2017;18(1):95. 

[30] Zhang W, Niu Y, Zou H, Luo L, Liu Q, Wu W. Accurate prediction of immunogenic 
T-cell epitopes from epitope sequences using the genetic algorithm-based ensemble 
learning. PLoS One 2015;10(5):e0128194. 

[31] Zhang J, Zhao X, Sun P, Gao B, Ma Z. Conformational B-cell epitopes prediction 
from sequences using cost-sensitive ensemble classifiers and spatial clustering. 
Biomed Res Int 2014;2014:689219. 

I. Vardaxis et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/j.csbj.2024.06.005
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref1
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref1
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref2
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref2
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref2
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref3
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref3
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref4
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref4
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref5
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref5
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref6
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref6
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref7
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref7
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref8
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref8
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref9
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref9
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref10
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref10
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref11
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref11
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref11
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref12
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref12
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref13
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref13
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref13
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref14
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref14
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref15
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref15
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref16
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref16
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref17
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref17
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref18
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref18
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref18
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref19
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref19
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref20
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref20
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref20
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref21
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref21
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref22
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref22
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref23
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref23
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref23
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref24
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref24
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref24
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref24
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref25
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref25
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref25
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref26
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref26
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref26
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref27
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref27
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref28
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref28
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref28
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref29
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref29
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref29
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref30
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref30
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref30
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref31
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref31
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref31


Computational and Structural Biotechnology Journal 23 (2024) 2695–2707

2707

[32] Zhang W, Xiong Y, Zhao M, Zou H, Ye X, Liu J. Prediction of conformational B-cell 
epitopes from 3D structures by random forests with a distance-based feature. BMC 
Bioinforma 2011;12:341. 

[33] Lu S, Li Y, Ma Q, Nan X, Zhang S. A structure-based B-cell epitope prediction model 
through combing local and global features. Front Immunol 2022;13:890943. 

[34] Haste Andersen P, Nielsen M, Lund O. Prediction of residues in discontinuous B-cell 
epitopes using protein 3D structures. Protein Sci 2006;15(11):2558–67. 

[35] Kringelum JV, Lundegaard C, Lund O, Nielsen M. Reliable B cell epitope 
predictions: impacts of method development and improved benchmarking. PLoS 
Comput Biol 2012;8(12):e1002829. 

[36] Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. 
AlphaFold protein structure database: massively expanding the structural coverage 
of protein-sequence space with high-accuracy models. Nucleic Acids Res 2022;50 
(D1):D439–44. 

[37] Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly 
accurate protein structure prediction with AlphaFold. Nature 2021;596(7873): 
583–9. 

[38] Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition 
of hydrogen-bonded and geometrical features. Biopolymers 1983;22(12): 
2577–637. 

[39] Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely 
available Python tools for computational molecular biology and bioinformatics. 
Bioinformatics 2009;25(11):1422–3. 

[40] Manso T, Folch G, Giudicelli V, Jabado-Michaloud J, Kushwaha A, Nguefack 
Ngoune V, et al. IMGT(R) databases, related tools and web resources through three 
main axes of research and development. Nucleic Acids Res 2022;50(D1): 
D1262–72. 

[41] Ye J, Ma N, Madden TL, Ostell JM. IgBLAST: an immunoglobulin variable domain 
sequence analysis tool. Nucleic Acids Res 2013;41(Web Server issue):W34–40. 

[42] Johnson G, Wu TT. Kabat database and its applications: 30 years after the first 
variability plot. Nucleic Acids Res 2000;28(1):214–8. 

[43] Lefranc M.-P., Lefranc G. The immunoglobulin factsbook. San Diego: Academic 
Press; 2001. xiv, 457 p. p. 

[44] Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST 
+: architecture and applications. BMC Bioinforma 2009;10:421. 

[45] Grantham R. Amino acid difference formula to help explain protein evolution. 
Science 1974;185(4154):862–4. 

[46] Deleage G, Roux B. An algorithm for protein secondary structure prediction based 
on class prediction. Protein Eng 1987;1(4):289–94. 

[47] Zimmerman JM, Eliezer N, Simha R. The characterization of amino acid sequences 
in proteins by statistical methods. J Theor Biol 1968;21(2):170–201. 

[48] Janin J. Surface and inside volumes in globular proteins. Nature 1979;277(5696): 
491–2. 

[49] Manavalan P, Ponnuswamy PK. Hydrophobic character of amino acid residues in 
globular proteins. Nature 1978;275(5681):673–4. 

[50] Guy HR. Amino acid side-chain partition energies and distribution of residues in 
soluble proteins. Biophys J 1985;47(1):61–70. 

[51] Lifson S, Sander C. Antiparallel and parallel beta-strands differ in amino acid 
residue preferences. Nature 1979;282(5734):109–11. 

[52] Mohana Rao JK, Argos P. A conformational preference parameter to predict helices 
in integral membrane proteins. Biochim Biophys Acta 1986;869(2):197–214. 

[53] Levitt M. Conformational preferences of amino acids in globular proteins. 
Biochemistry 1978;17(20):4277–85. 

[54] Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their 
amino acid sequence. Adv Enzym Relat Areas Mol Biol 1978;47:45–148. 

[55] Miyazawa S, Jernigan RL. Estimation of effective interresidue contact energies 
from protein crystal structures: quasi-chemical approximation. Macromolecules 
1985;18(3):534–52. 

[56] Bhaskaran R, Ponnuswamy Pk. Positional flexibilities of amino acid residues in 
globular proteins. Int J Pept Protein Res 1988;32(4):241–55. 

[57] Zhao G, London E. An amino acid "transmembrane tendency" scale that approaches 
the theoretical limit to accuracy for prediction of transmembrane helices: 
relationship to biological hydrophobicity. Protein Sci 2006;15(8):1987–2001. 

[58] Cooper GM, Hausman RE. The Cell: A Molecular Approach. ASM Press,; 2007. 
[59] Chothia C. The nature of the accessible and buried surfaces in proteins. J Mol Biol 

1976;105(1):1–12. 
[60] Rose GD, Geselowitz AR, Lesser GJ, Lee RH, Zehfus MH. Hydrophobicity of amino 

acid residues in globular proteins. Science 1985;229(4716):834–8. 
[61] Emini EA, Hughes JV, Perlow DS, Boger J. Induction of hepatitis A virus- 

neutralizing antibody by a virus-specific synthetic peptide. J Virol 1985;55(3): 
836–9. 

I. Vardaxis et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref32
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref32
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref32
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref33
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref33
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref34
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref34
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref35
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref35
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref35
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref36
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref36
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref36
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref36
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref37
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref37
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref37
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref38
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref38
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref38
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref39
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref39
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref39
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref40
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref40
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref40
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref40
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref41
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref41
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref42
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref42
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref43
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref43
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref44
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref44
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref45
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref45
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref46
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref46
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref47
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref47
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref48
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref48
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref49
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref49
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref50
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref50
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref51
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref51
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref52
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref52
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref53
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref53
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref54
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref54
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref54
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref55
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref55
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref56
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref56
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref56
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref57
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref58
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref58
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref59
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref59
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref60
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref60
http://refhub.elsevier.com/S2001-0370(24)00200-9/sbref60

	Deep learning of antibody epitopes using positional permutation vectors
	1 Introduction
	2 Results
	2.1 Outline for a high performing B cell epitope predictor
	2.2 Evaluation metrics of the main BCE-Hunt BLSTM model: cross validation and independent tests
	2.3 Benchmark comparison of BCE-Hunt against state-of-the-art existing tools
	2.4 Validation based on experimentally verified SARS-CoV-2 spike protein antibody epitopes
	2.5 Validation based on dissimilar experimentally verified antibody-bound protein 3D structures

	3 Discussion and conclusions
	4 Methods
	4.1 Pretraining techniques
	4.2 BLSTMs
	4.3 Data preparation for the 3D macrostructure features (unbound 3D protein structure data preparation)
	4.4 BLSTM prediction model for RSA and HSE (3D macrostructure features)
	4.5 BLSTM prediction model for secondary structure (3D macrostructure features)
	4.6 Data preparation for the conformational BCE predictor (BCE-Hunt)
	4.7 B cell epitope definition as a positional permutation vector
	4.8 BLSTM prediction model for the conformational BCE predictor (BCE-Hunt)
	4.9 Negative data generation for the conformational BCE predictor (BCE-Hunt)
	4.10 Evaluation metrics

	Author statement
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supporting information
	References


