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Abstract: This paper presents the development of a real-time cloud-based in-vehicle air quality
monitoring system that enables the prediction of the current and future cabin air quality. The
designed system provides predictive analytics using machine learning algorithms that can measure
the drivers’ drowsiness and fatigue based on the air quality presented in the cabin car. It consists
of five sensors that measure the level of CO2, particulate matter, vehicle speed, temperature, and
humidity. Data from these sensors were collected in real-time from the vehicle cabin and stored in
the cloud database. A predictive model using multilayer perceptron, support vector regression, and
linear regression was developed to analyze the data and predict the future condition of in-vehicle air
quality. The performance of these models was evaluated using the Root Mean Square Error, Mean
Squared Error, Mean Absolute Error, and coefficient of determination (R2). The results showed that
the support vector regression achieved excellent performance with the highest linearity between the
predicted and actual data with an R2 of 0.9981.

Keywords: internet of things (IoT); machine learning prediction; in-vehicle air quality; smart mobility;
smart city

1. Introduction

One of the main aims of smart cities is to reduce the fatalities and injuries due to
traffic accidents. According to transport statistics in Malaysia, the total vehicles that are
involved in road accidents increased yearly from 2008 to 2017. In 2017, the total road
accidents reported were 533,875 cases and the total casualties and damages caused by
traffic accidents were 16,589 cases [1]. The Royal Malaysia Police has stated that the leading
causes of a road crash are drivers in fatigued conditions and distracted drivers [2]. The
American Automobile Association (AAA) estimates that one out of every six deadly traffic
accidents as well as one out of eight crashes requiring hospitalization is due to drowsy
drivers [3]. In fact, the air inside the vehicle cabin has a significant impact on the cognitive
capability of the occupants without noticeable discomfort that would put them on alert [4].

Most indoor air quality studies are focused on the inside of a building. The main
components of indoor air contamination are carbon monoxide (CO), formaldehyde, ozone
(O3), total volatile organic compounds (TVOC), and particulate matter (PM) which can
highly affect human health [5]. A straightforward method of mitigating the hazardous
gases is by closing all windows and doors to prevent the pollutants from the outdoors.
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Furthermore, a similar indoor environment such as the vehicle cabin that has been
equipped with a heater, ventilation, and air conditioning system (HVAC) can be categorized
as an indoor space. HVAC systems use the recirculation mode (RC) that could mitigate
the penetration of pollutants such as particulate matter and hazardous gases from the
vehicle’s exhaust system [6,7]. Nonetheless, the human occupant inhales the oxygen
then replaces it with carbon dioxide (CO2) which acts as contamination known as the
human bio-effluent. The high concentration of CO2 reduces human cognitive ability,
causes drowsiness, dizziness, and fatigue [8,9]. These are dangerous consequences to the
occupants as well as potentially to other road users. Moreover, the vehicle speed might
affect the gas concentration inside the vehicle cabin [10]. The undesirable effect of this
condition is not limited to gas concentration only. The particle count (PM2.5 and PM10)
circulating within the air can also affect the occupant’s health status [11]. The diameter of
dust smaller than 2.5 µm can impact heart and lung health if inhaled by the occupants [12].

Thus, there is a clear need to perform an early prediction of the in-vehicle air quality
which can be used to alert the occupants before the air quality becomes worse and affects
the driver’s health condition while they are driving. Most of the previous studies only
focused on classifying the hazardous gasses without having the ability to predict the future
condition [13,14]. Furthermore, most studies are limited to a few hazardous gasses such
as carbon dioxide (CO2) and oxygen (O2). In this respect, there are several methods from
machine learning (ML) techniques such as artificial neural network (ANN) and regression
algorithms that are applicable for air quality predictions. Furthermore, since the current
reading of the air quality data depends on previous data, a time-sequence supervised
learning air quality data can be used as the input structure [15].

This paper presents the design and development of low-cost sensor hardware for
an in-vehicle air quality monitoring system with cloud-based storage and prediction on
the current and future air quality. ML prediction methods are developed using several
approaches such as multi-layer perceptron (MLP), support vector regression (SVR), and
linear regression algorithms. These algorithms are compared to determine which is the best
model by considering six inputs including the vehicle speed, CO2, temperature, humidity,
PM2.5, and PM10. The contribution of this paper is the prediction system that includes the
development of sensor hardware and cloud-based predictive analysis for an in-vehicle
air quality monitoring system. The system is essential for future smart cities and smart
mobility applications which can help to reduce fatality and injuries due to road accidents.

This paper is organized as follows. Section 2 discusses the related studies on air
quality and prediction applications using ML algorithms. Section 3 describes the system
development of an in-vehicle air quality monitoring system. Section 4 introduces the
methods of collecting data. Section 5 shows the procedures of the data processing and
Section 6 presents the proposed ML methods applied to the in-vehicle air quality data and
the process flow of the ML analysis. The predicted result is then discussed in Section 7.
Finally, the last section of this paper is the conclusion of the research.

2. Related Works

The literature studies have shown that humans spend up to 70%–90% of the time
inside an environment with closed air circulation daily, including vehicle cabins [16,17]. The
studies have shown that the air quality inside the vehicle cabin possibly contains polluted
air [18–20]. They have also determined existing hazardous gases inside the cabin such
as VOC, CO, CO2, nitrogen dioxide (NO2), sulphur dioxide (SO2), and other pollutants.
What is worse is that the concentration level of those gases might be higher than the
standards established by the World Health Organization (WHO) and other governmental
health organizations. The effect might cause occupants to experience immediate health
issues, including impaired vision and coordination, nose and throat irritations, headaches,
dizziness, drowsiness, and fatigue to the occupants [8]. The combinations of these effects
on the occupants’ health are not ideal for operating a vehicle.
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The fresh air mode of the HVAC system triggered inside a vehicle can introduce air
pollution from the outside environment such as: PM, NO2, SO2, and CO into the vehicle
cabin. This can happen regularly especially in the urban and industrial areas. The RC
mode significantly helps to reduce air pollution by circulating the air inside the vehicle
cabin and increasing the passengers’ comfort experience. However, the RC mode can build
up the CO2 concentration and accumulate rapidly due to the existence of the passengers.

Moreover, a statement has been declared by the Malaysian industry code of practice
on the indoor environment that the CO2 concentration limit should not exceed 1000 ppm at
any time. One study found that if the concentration of CO2 reached 2500 ppm in a room the
size of 50.78 m3, the occupants’ decision-making capability on primary activity, initiative,
information usage, breadth of approach, and basic strategy fall into a range of marginal and
dysfunctional [16]. An average sedan vehicle’s interior space is around 2.72 m3 which is
18 times smaller than the experiment environment. A high CO2 concentration will reduce
the O2 concentration and can cause permanent damage to organs, including the brain and
heart [21].

In this paper, we focus entirely on the RC ventilation mode to operate inside the
vehicle cabin. The primary pollutant source inside a cabin is the occupant. So, the CO2
concentration level is the main parameter to be observed as well as the PM concentration
level. The fact of the matter is that different countries and organizations have different
standards of the air quality index, even for the same type of pollutant. Some critical pollu-
tants such as SO2 are not even taken into consideration in the air quality index for certain
countries [22]. In addition, no established standard has showed the breakpoint concentra-
tion that is specifically for the in-vehicle air quality environment. Hence, Table 1 shows the
combined in-vehicle air quality index breakpoints of the Environmental Protection Agency
(EPA) standard, indoor air quality guideline in Malaysia [23], Occupational Safety and
Health Administration (OSHA) [24], and the experiment that had been done by [16].

Table 1. Breakpoint concentration of the in-vehicle air quality.

CO2 (ppm) PM2.5 (µg/m3) d PM10 (µg/m3) d IV-AQI Five Bands of
IV-AQI

Clow–Chigh Clow–Chigh Clow–Chigh Ilow–Ihigh
340–600 a 0.0–12.0 0–54 0–50 Good

601–1000 b 12.1–35.4 55–154 51–100 Moderate

1001–1500 35.5–55.4 155–254 101–150 Unhealthy for
sensitive group

1501–2500 a 55.5–150.4 255–354 151–200 Unhealthy
2501–5000 c 150.5–250.4 355–424 201–500 Very unhealthy

a: Associations of the cognitive function scores with carbon dioxide, ventilation, and volatile organic com-
pound exposures in office workers: A controlled exposure study of green and conventional office environments
(USA) [16]. b: Industry code of practice on indoor air quality 2010 (Malaysia) [23]. c: Occupational safety and
health administration (OSHA): carbon dioxide in workplace atmospheres (US) [24]. d: Environmental protection
agency (EPA) [25].

The US EPA has introduced the individual pollutant index, also known as the air
quality index (AQI) as in Equation (1). The AQI acts as an indicator of reporting the air
quality of the targeted environment. Equation (1) calculates each observed parameter in a
time series. The highest individual index among other air parameters for pollutants will
stand as the air quality of the vehicle’s cabin.

Ip =
IHi − ILo

BPHi − BPLo

(
Cp − BPLo

)
+ ILo (1)

where,

Ip = index for pollutant p
Cp = the rounded concentration of pollutant p
BPHi = the breakpoint that is greater than or equal to Cp



Sensors 2021, 21, 4956 4 of 16

BPLo = the breakpoint that is less than or equal to Cp
IHi = the AQI value corresponding to BPHi
ILo = the AQI value corresponding to BPLo

With respect to prediction systems, artificial intelligence algorithms are widely used
in smart city applications for classification prediction and regression prediction such as
human activity classification [26,27], transportation [28], and air quality prediction [29–32].
In [33] the authors applied the ML algorithms to predict the air quality by using the data
from 750 observations with 0.95 accuracy and their prediction was successful. [34] focused
on predicting air pollution in Canada using an MLP, and the prediction model performed
on PM2.5 had 4.5 of MAE.

Meanwhile, [35] have addressed the challenges in real-time air quality predictions,
namely, the aspect of realistic real-time air quality monitoring devices, online systems,
and predictive models in a review paper perspective. The real-time air quality system
should provide an online user interface that allows the user to observe the air quality from
anywhere. The support vector regression (SVR) is one of the most successful prediction
models with a low root mean squared error (RMSE) (0.939) in forecasting the air quality
in Japan [36,37] collected different types of gases and sent them to the cloud database.
However, the authors addressed that the ML is used only for sensor calibration, not for
in-vehicle air quality prediction. All these research studies are focused on indoor or outdoor
air quality prediction, but not targeted for the air quality inside the vehicle cabin.

The research gap of this work is implementing the classification of the in-vehicle air
quality together with the prediction of future conditions to monitor drivers’ dizziness and
fatigue while they are driving. Hence, this work will be focused on system development
and regression prediction for an in-vehicle air quality system.

3. System Design and Development

Based on the related works, the essential element to integrate a gas sensor into the
hardware system is the type of sensor selection and targeted gas [38–42]. CO2 was found to
be the most critical pollutant in the vehicle cabin with the RC ventilation mode. Moreover,
the CO2 concentration is affected by the speed of the vehicle [43,44]. Thus, an integrated
in-vehicle air quality monitoring system was developed for this work. The developed
system has an integrated GPS tracking device as well as a CO2 gas sensor. Additional
sensors such as particulate matter, temperature, and humidity are also embedded into
the system. The overall system architecture of the in-vehicle air quality is illustrated in
Figure 1. The system design is separated into four parts which are hardware development
(device node), cloud database, software development (user interface), and an in-vehicle air
quality prediction model. An IoT-oriented transportation system is applied in this system
by connecting the device node to the internet in order to push real-time data into the cloud
database [45].

The SIM808 (GPRS/GSM) communication module was chosen for this application. It
not only provides better wireless regional coverage for up to 70 km but also has the feature
to provide GPS coordinates. The raw GPS signal is cascaded with additional information
which needs to be removed before storing only the latitudinal and longitudinal information.
The microprocessor begins by initializing all the peripherals and sensors on the device node.
Thirty seconds of initialization time is given to ensure all the sensors have been initialized
properly. After initialization, a connection will be established between the device node and
the cloud database by using the Message Queuing Telemetry Transport (MQTT) messaging
protocol. Once the MQTT protocol connection has been established, the microprocessor
begins gathering all the sensor data. Finally, the sensor data is aggregated into the buffer
and encapsulated into the MQTT protocol format, and published into the cloud database
using the brute force method. If the publishing is unsuccessful, the microcontroller checks
the network of the MQTT connection and continues the sensor sampling process.
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Figure 1. System architecture design for the in-vehicle air quality monitoring system.

Furthermore, the data will be processed and sorted in the cloud database. Each of the
device nodes is assigned with a unique identifier (ID) to avoid mis-location of the data entry.
Then, a database handler is designed to discard the distorted data entry and invalid ID. For
example, some published data may contain unidentified ASCII characters. Meanwhile, a
web page and a mobile application are developed, which is capable of viewing the real-time
data of the in-vehicle air quality status. The visualization is for the convenience of the user
to understand and learn the patterns of the in-vehicle air quality. The data is illustrated
in the form of Google Maps. There are several features available in the interface such
as real-time view, data export, playback of the daily route, and view of historical data
according to date.

The primary power source for the sensor device node is obtained from the in-car
charger. The voltage range of a car battery is from 11.9 V to 14.8 V, where most of the time
it is in the fluctuation mode. Therefore, several stages of voltage step-down are necessary
due to the different operating voltages of the sensors. Figure 2 shows the final design of
the sensor device baseboard with the specific voltage requirement and interface of the
device node labelled. As for the sensor validation, the gas sensor data have been calibrated
and verified with the established portable gas sensor device with the model Aeroqual,
Series-500.
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4. Real-Time Data Collections

In the preliminary study, the fresh air (FA) and RC ventilation mode are selected in
order to observe the gas compositions inside the vehicle cabin. The eight gas parameters
selected to be sampled inside the cabin are O3, CO, VOC, NO2, SO2, CO2, PM2.5, and
PM10. The time taken for one set of data collection is forty minutes and will be repeated
sixty times for each experiment. There are two types of cars used in this experiment that
represents the indoor vehicle environment: the Nissan Grand Livina and the Toyota Vios.
The experiment is conducted under an average vehicle speed of about 70 km/h.

Figure 3 shows the data collection of the common hazardous gases inside the vehicle
cabin with the FA mode. For the FA mode, the quality of air inside the vehicle cabin is
highly dependent on the outdoor air quality. Results show that most of the parameters
observed exceeded the recommended limit established by the DOSH standard. Only
two parameters—CO2 and SO2—are below the recommended limit. In the FA mode, the
CO2 gas detected in the vehicle cabin was in the range of 600–900 ppm and the data
collection showed a similar range with the outdoor air. It can be assumed that the low
SO2 obtained is due to the experiment routes performed outside the petroleum refineries,
chemical manufacturing industries, mineral ore processing plants, and power station areas.
Meanwhile, the RC ventilation mode presented lesser hazardous gases existing inside the
vehicle cabin. The only three parameters, which are CO2, PM2.5, and PM10 exceeded the
recommended limit with reference to the DOSH standard. The air quality inside the vehicle
cabin was not affected by the outdoor environment.

After finishing the preliminary experiment, we identified the essential observation
parameters for further investigation. Next, the experiment is conducted on a real-time
traffic basis. The experiment is performed for two months entirely under RC ventilation
mode conditions. The travelling time can be separated into three slots, which are morning
(06:00–08:00), afternoon (11:20–13:30), and evening (16:00–18:00). Travelling distance in
June 2019 is 2306 km for 14 days, and July 2019 is 2494 km for 19 days. The daily average
travelling distance is approximately 164.7 km, as shown in Figure 4. The minimum
occupant is one and the maximum occupants are five. The experiment vehicle is a sedan
car type with 2.75 m3 of space. Figure 5 shows the daily travelled path in this experiment.
On the other hand, Table 2 shows the size of the data samples that have been collected
throughout the experiments. Time series data in the air quality system has a parameter
dedicated to counting the number of packets received by the cloud database. Each time
the device is powered up, the count will be set as one and increases according to the
subsequent data packet. Thus, the section data can be sorted using the count parameter.
The average acquisition time for each data is 4 s. Once the data entered into the cloud
database is completed, the vehicle speed is computed using the latitude, longitude, and
time data. Then, the data labelling for the ML algorithms is generated. The data labelling
is used to help the algorithms to train better and produce reliable results.



Sensors 2021, 21, 4956 7 of 16
Sensors 2021, 21, x FOR PEER REVIEW 7 of 17 
 

 

 

 
Figure 3. The common hazardous gases inside the vehicle cabin with the FA and RC ventilation 
modes. 

After finishing the preliminary experiment, we identified the essential observation 
parameters for further investigation. Next, the experiment is conducted on a real-time 
traffic basis. The experiment is performed for two months entirely under RC ventilation 
mode conditions. The travelling time can be separated into three slots, which are morning 
(06:00–08:00), afternoon (11:20–13:30), and evening (16:00–18:00). Travelling distance in 
June 2019 is 2306 km for 14 days, and July 2019 is 2494 km for 19 days. The daily average 
travelling distance is approximately 164.7 km, as shown in Figure 4. The minimum occu-
pant is one and the maximum occupants are five. The experiment vehicle is a sedan car 

Figure 3. The common hazardous gases inside the vehicle cabin with the FA and RC ventila-
tion modes.



Sensors 2021, 21, 4956 8 of 16

Sensors 2021, 21, x FOR PEER REVIEW 8 of 17 
 

 

type with 2.75 m3 of space. Figure 5 shows the daily travelled path in this experiment. On 
the other hand, Table 2 shows the size of the data samples that have been collected 
throughout the experiments. Time series data in the air quality system has a parameter 
dedicated to counting the number of packets received by the cloud database. Each time 
the device is powered up, the count will be set as one and increases according to the sub-
sequent data packet. Thus, the section data can be sorted using the count parameter. The 
average acquisition time for each data is 4 s. Once the data entered into the cloud database 
is completed, the vehicle speed is computed using the latitude, longitude, and time data. 
Then, the data labelling for the ML algorithms is generated. The data labelling is used to 
help the algorithms to train better and produce reliable results. 

 
Figure 4. The daily travelled path in the experiment. 

Table 2. Data features and samples size for the in-vehicle air quality. 

Collection Site Parameter 

Monthly 
Number of records 48,816 

Size 3,593,866 bytes (3.59 MB) 

One section 
Number of records 1184 

Size 92,160 bytes (0.09 MB) 

Value types 

Twelve air quality variables 
(Time, latitude, longitude, 

speed, CO2, temperature, hu-
midity, PM1, PM2.5, PM10, 

count, label) 

Figure 5 shows the raw CO2 sensor data on three different days for the morning slot. 
The fluctuation in the graph is due to the variation of the vehicle’s speed as well as the 
number of occupants in the car. The graph shows that the CO2 concentration level is higher 
than the recommended level by the Department of Occupational Safety and Health 
(DOSH). Other parameters of the morning slot such as vehicle speed, temperature, hu-
midity, CO2, PM2.5, and PM10 are illustrated in Figure 6. 

Figure 4. The daily travelled path in the experiment.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 5. The raw carbon dioxide sensor data plotted for the morning slot. 

 
Figure 6. The raw section sensor data plotted for each parameter. 

5. Data Processing for Time Series Data 
This section will briefly introduce the flow of preparing the real-time data, labelling 

the data, and performing the data normalization procedure. This study uses time-series 
data, which is an ordered sequence data. The time interval between the data point is con-
tinuous and each time unit observation has at most, one data point. 

The real-time sensor data might have data errors such as sensor error and outlier data 
prone to a false trend. The data preprocessing method is introduced to reduce the training 
complexity and to increase the accuracy while feeding the data into the prediction algo-
rithms. The next step of the data preparation is labelling the sensor data. After completing 
the labelling process, the data will be run through a series of ML experiments to figure 
out the most compatible ML parameters for the air quality system. There are a total of six 
input data used for the ML, which are CO2, PM2.5, PM10, vehicle speed, temperature, and 
humidity. 

  

Figure 5. The raw carbon dioxide sensor data plotted for the morning slot.

Table 2. Data features and samples size for the in-vehicle air quality.

Collection Site Parameter

Monthly Number of records 48,816

Size 3,593,866 bytes (3.59 MB)

One section
Number of records 1184

Size 92,160 bytes (0.09 MB)

Value types

Twelve air quality variables (Time,
latitude, longitude, speed, CO2,

temperature, humidity, PM1,
PM2.5, PM10, count, label)
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Figure 5 shows the raw CO2 sensor data on three different days for the morning slot.
The fluctuation in the graph is due to the variation of the vehicle’s speed as well as the
number of occupants in the car. The graph shows that the CO2 concentration level is higher
than the recommended level by the Department of Occupational Safety and Health (DOSH).
Other parameters of the morning slot such as vehicle speed, temperature, humidity, CO2,
PM2.5, and PM10 are illustrated in Figure 6.
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5. Data Processing for Time Series Data

This section will briefly introduce the flow of preparing the real-time data, labelling
the data, and performing the data normalization procedure. This study uses time-series
data, which is an ordered sequence data. The time interval between the data point is
continuous and each time unit observation has at most, one data point.

The real-time sensor data might have data errors such as sensor error and outlier
data prone to a false trend. The data preprocessing method is introduced to reduce the
training complexity and to increase the accuracy while feeding the data into the prediction
algorithms. The next step of the data preparation is labelling the sensor data. After
completing the labelling process, the data will be run through a series of ML experiments to
figure out the most compatible ML parameters for the air quality system. There are a total
of six input data used for the ML, which are CO2, PM2.5, PM10, vehicle speed, temperature,
and humidity.

5.1. Data Preprocessing

The raw data of the sensor is collected without a filtering process. The filtering
process is implemented in the cloud rather than on the embedded device to reduce the
complexity in the embedded system. The common data errors of the real-time monitoring
application as expected are outliers and data missing [46]. Three types of common data
pre-processing are: filling the not-a-number (NAN) data into zero, dropping the NAN data,
or data interpolation before feeding the data into the ML algorithms. In this research, data
interpolation is conducted using the nearest-neighbour method. This method is suitable
for datasets that have missing values or outlier conditions [47]. Equation (2) shows the
nearest-neighbour mathematical equations. When the outlier occurs at the position xi, the
value of the closest known neighbour is used to replace the outlier value. There are four
states of different formulas that are used in this method. If the position of xi is greater
than 5, the average of the five previous data will be used to replace the outlier position.
When the outlier position is less than five, an average value will be used by taking as much
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historical data that it has. The reason for taking previous data and not using the future
data is because the data collection is in real-time in time-series form.

xi =


xi−1+xi−2

2 , i f i = 2;
xi−1+xi−2+xi−3

3 , i f i = 3;
xi−1+xi−2+xi−3+xi−4

4 , i f i = 4;
xi−1+xi−2+xi−3+xi−4+xi−5

5 , otherwise

(2)

where as xi is the outlier value.

5.2. Data Labelling

Before feeding the sensor data into the prediction algorithm, a set of data should
be labelled as the output in supervised machine learning. In fact, the air quality index
(AQI) is an index approach to categorize the quality of the air in a specific environment.
The AQI is usually separated into a few ranges and each range is assigned a color code
as well as a description. It provides a public health advisor for each range [48]. The
breakpoint concentration of the in-vehicle air quality for different types of pollutants
has been discussed previously in Table 1. There are various versions of standards and
guidelines which depend on the international agencies [22]. Current air quality standards
do not provide a breakpoint for CO2. So, the CO2 breakpoint listed in Table 1 is obtained
from different organizations and research groups [16,23–25].

Figure 7 shows the flowchart of labeling the in-vehicle air quality index. The pa-
rameters of CO2, PM2.5, and PM10 are selected to compute the index for pollutants. The
highest index represents the AQI at that time. A large pressure will be created against the
vehicle’s body when the vehicle travels at a high speed and leakages will occur between
the joints [44]. The higher the vehicle speed, the more outdoor air will be penetrating the
vehicle cabin [10]. Thus, other parameters such as temperature, humidity, and vehicle
speed may also affect the AQI inside the vehicle cabin.
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5.3. Normalization

The data normalization method is often implemented in the dataset to ease the data
processing time. The function of the normalization is to change the numeric values in the
dataset into a 0 to 1 range without changing the original range values of the dataset. In AI
prediction, not every dataset requires normalization. However, the sensor dataset contains
several features in a different range. For instance, the CO2 sensor consisting of three digits
might reach to four digits and the PM sensor consisting of one digit might reach three
digits. Hence, the min-max scalar is selected due to the sensor dataset in a time-series form
with a short interval. If the originality of the trend is not preserved, the learning process in
the ML prediction models will be affected.

6. Prediction Analysis using Machine Learning Algorithms

This section describes the algorithms that are used to predict the future condition of
the air quality.

6.1. Linear Regression

A linear regression model is capable of time series prediction [49]. This is because the
model makes a prediction by simply computing a weighted sum of the input features, plus
a constant called the bias term, as shown in Equation (3).

ŷ = θ0 + θ1x1 + θ2x2 + . . . + θnxn (3)

where,

ŷ—the predicted value
n—the number of features
xn—the nth feature value
θj—the jth model parameter

6.2. Support Vector Machine

The support vector machine (SVM) can perform linear or nonlinear classification.
Besides that, SVM also supports linear and nonlinear regression applications, known as
SVR [50]. In the SVR, there are three parameters that need to be appropriately selected to
achieve higher prediction accuracy and better performance. These are the insensitive loss
coefficient (ε), error penalty factor (C), and kernel function coefficient (γ). The complexity
of the model is dependent on these parameters. These three parameters are highly inter-
related and affect the SVR model. The grid search method provides the best combination
for the three mentioned parameters. By implementing the GridSearchCV function in the
sklearn library, the grid search range for both ε and C is set (−3, 3, 21) with the logspace
function. Thus, the best hyperparameters found for the model of ε, C, and γ are at 0.001,
501, and a radial basis function kernel (RBD kernel), respectively.

6.3. Multilayer Perceptron

The MLP is the most commonly used model in the feed-forward neural network.
The basic MLP has three layers which are the input layer, hidden layer, and output layer
as shown in Figure 8. A grid search method is implemented to search the fine-tuned
hyperparameters in the MLP. The range of hyperparameters for hidden nodes, learning
rate, optimizer, and activation function are 23–210, 0.001–0.05, adam or stochastic gradient
descent, and relu or tanh, respectively. The fine-tuned hyperparameters in the MLP
structure applied in this research have a single hidden layer of 128 hidden nodes, a 0.001
learning rate, tanh activation function, and stochastic gradient descent optimizer.
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6.4. Evaluation Methods

To evaluate the performance of the ML applied to the in-vehicle air quality monitoring
system, RMSE [51], the mean squared error (MSE), mean absolute error (MAE), and
coefficient of determination (R2) are selected. Equations (4)–(7) present the formula for
each of the evaluation metrics, respectively.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (4)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (6)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (7)

where,

ŷi—predicted value of y
yi—mean value of y

7. Results and Discussions

All data were separated into two sets, which are 80% as the training data and 20%
as the test data. The model scripts were executed using the Nvidia GeForce RTX 2080
Ti graphics card as the hardware accelerator. 75 data points, which represented data of
5 min, were predicted using the different ML prediction models mentioned in previous
sections. There are two datasets to test, train, and evaluate which have different time slots
and monthly data as mentioned in Table 2.

The evaluation results of the ML prediction models are shown in Table 3. The eval-
uation result is to verify the prediction capability. The accuracy of the MLP model had
a significant improvement when the historical data was increased from 0.7151 to 0.9107
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of R2. The SVR model with the RBF kernel had the highest R2 and lowest MSE, RMSE,
and MAE compared to other models. The SVR-RBF-based prediction model showed the
highest prediction accuracy and had better generalization performance. The R2 obtained
was as high as 0.9890 (section) and 0.9981 (month).

Table 3. Prediction model results.

Section Month

R2 MSE RMSE MAE Computation
Time (s) R2 MSE RMSE MAE Computation

Time (min)

SVM 0.9890 6.4513 2.5410 0.97194 1.6 0.9981 3.6168 1.9018 0.4101 44.5

LR 0.8137 109.9008 10.4833 5.1379 0.2 0.9946 10.1875 3.1917 2.1348 37.2

MLP 0.7151 212.4807 14.5767 11.5757 26 0.9107 100.0034 9.0589 5.0422 83.3

In addition, another important aspect is the computation time of the model for future
implementation of the prediction algorithm in edge computing. In the section dataset, the
LR had an outstanding computation. It only took 0.2 s for the prediction. However, the
R2 of the LR was lower than the SVR. The prediction model of the SVR had an acceptable
computation time (1.6 s) with a high R2. For the real-time prediction model, high accuracy
and low computation time are an important aspect that must be considered.

Figures 9 and 10 show the distributions of prediction results for easy interpretation.
From the graph, the prediction model of the SVR-RBF shows similar shapes and tendencies
to the actual data. The LR prediction model also shows a good fitting line. However, the
MLP prediction model does not fit into the actual data. Hence, the SVR with the RBF
prediction model is suitable for system prediction.
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8. Conclusions

This research focused on the ML prediction model for an in-vehicle air quality appli-
cation. A hardware testbed was developed to obtain sensor data in the in-vehicle indoor
environment. Then, three predictive models of machine learning algorithms such as LR,
SVR, and MLP were applied to the in-vehicle air quality prediction system to predict
the air quality inside the vehicle cabin. This allowed the monitoring of the real-time air
quality inside the car cabin. The system can be used as a potential measure to reduce traffic
accidents due to driver drowsiness and fatigue. The results showed that the SVR had the
highest performance rates in terms of R2 and had less error rate. This indicates that the
SVR model has an outstanding prediction performance as well as low computation time
compared with the LR and MLP models.
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