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Abstract
The use of nanobiomaterials (NBMs) is becoming increasingly popular in the field of medicine. To improve the understanding 
on the biodistribution of NBMs, the present study aimed to implement and parametrize a physiologically based pharmacoki-
netic (PBPK) model. This model was used to describe the biodistribution of two NBMs after intravenous administration in 
rats, namely, poly(alkyl cyanoacrylate) (PACA) loaded with cabazitaxel (PACA-Cbz), and LipImage™ 815. A Bayesian 
parameter estimation approach was applied to parametrize the PBPK model using the biodistribution data. Parametrization 
was performed for two distinct dose groups of PACA-Cbz. Furthermore, parametrizations were performed three distinct dose 
groups of LipImage™ 815, resulting in a total of five different parametrizations. The results of this study indicate that the 
PBPK model can be adequately parametrized using biodistribution data. The PBPK parameters estimated for PACA-Cbz, 
specifically the vascular permeability, the partition coefficient, and the renal clearance rate, substantially differed from those 
of LipImage™ 815. This emphasizes the presence of kinetic differences between the different formulations and substances 
and the need of tailoring the parametrization of PBPK models to the NBMs of interest. The kinetic parameters estimated in 
this study may help to establish a foundation for a more comprehensive database on NBM-specific kinetic information, which 
is a first, necessary step towards predictive biodistribution modeling. This effort should be supported by the development of 
robust in vitro methods to quantify kinetic parameters.

Keywords Physiologically based pharmacokinetic modeling · Nanobiomaterials (NBMs) · Biodistribution · Bayesian 
parameter estimation

Introduction

Nanotechnology is rapidly gaining popularity in the field 
of medicine [1]. In medical settings, nanotechnology typi-
cally refers to the application of nanobiomaterials (NBMs) 
for surgical and medical treatments of patients. NBMs offer 
the opportunity of altering the associated pharmacokinetic 
profile of a drug, by improving dissolution in biological 
matrices, and prolonging systemic circulation time [2]. Since 

NBMs can be designed with a variety of physical–chemical 
characteristics, they can also be used in a variety of appli-
cations [3]. One way of applying NBMs is to encapsulate 
a drug with a NBM. Such encapsulated formulations can 
delay the elimination of the drug from the body, change their 
solubility, or lower their toxicity [4]. Additionally, NBMs 
are particularly useful for targeted drug delivery, since the 
modified physical–chemical properties make it possible to 
target specific tissues or organs [5]. In fact, the application 
of NBMs is not limited to drug delivery, as they have also 
been used for medical imaging and diagnosis [6].

For many applications, NBMs are designed to alter the 
biodistribution of a substance of interest. In order to inves-
tigate whether designed NBMs exhibit the desired distribu-
tion characteristics, in vitro tests [7, 8] may be useful. For 
example, an in vitro assay has been developed to investigate 
the relation between phagocytic uptake and blood clearance 
[9]. However, the measured in vitro kinetics do not always 
translate to in vivo distributions. Moreover, they are usually 
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specific to certain NBMs, and cannot always be used to infer 
generalities on the biodistribution of other NBMs. Hence, 
quantitative in vitro-to-in vivo extrapolation (QIVIVE) 
remains challenging. As a consequence, researchers often 
still rely on animal experiments in order to investigate the 
biodistribution of NBMs. For instance, the biodistributions 
of various NBMs involving chemotherapeutic drugs have 
been investigated in mice, such as plitidepsin [10], cisplatin 
[11], and irinotecan [12]. Furthermore, the biodistribution 
of nanoformulated radiolabels was studied in mice [13] and 
rats [14].

A particularly useful tool to quantitatively describe the 
biodistribution of NBMs is that of physiologically based 
pharmacokinetic (PBPK) modeling. PBPK models repre-
sent particular body tissues and organs with interconnected 
compartments that exchange material with rates determined 
by physiological transport processes. PBPK models may be 
used to infer delivered doses at a tissue level, extrapolate 
experimentally determined biodistribution to different expo-
sure conditions, or even to predict the distribution of NBMs 
based on limited a priori kinetic information. A crucial step 
in effectively using PBPK models is finding appropriate 
values for the parameters defining the PBPK model (i.e., 
its “parametrization”). In practice, the parametrization is 
determined from experimental in vivo biodistribution data 
using a model-fitting procedure. The specific numerical 
values of the parameters estimated with such a procedure 
may be subject to large uncertainties, due to variability and 
imprecision in the data and due to a lack of identifiability of 
parameters. Also, in vivo biodistribution studies are expen-
sive in terms of resources as well as animal life. Potentially, 
parametrization of PBPK models could be greatly aided with 
adequate in vitro testing systems that are predictive of spe-
cific kinetic processes or even PBPK model parameters [15]. 
Firstly, in vitro measurements can serve as initial (a priori) 
information in the interpretation of in vivo data by setting 
ranges on possible parameter values. Such information will 
significantly improve the parameter estimation from limited 
data. Second, and more importantly, in vitro kinetic informa-
tion for critical, NBM-dependent model parameters can aid 
in the extrapolation of a PBPK model from one (well para-
metrized) NBM to another (i.e., read-across). In this way, 
in vitro testing could assist in the effort to replace, reduce, 
and refine (i.e., 3Rs principle) animal studies that are still 
widely used as a first step towards clinical trials involving 
NBMs.

To effectively implement a pipeline that includes in vitro 
determination of kinetic parameters, several aspects need to 
be established. First, relevant in vitro systems must be avail-
able to represent physiological aspects that can be adequately 
quantified and included in a PBPK model. Second, the mod-
eling should be able to effectively incorporate a priori infor-
mation obtained from the in vitro system. Third, with respect 

to the objective of read-across of PBPK modeling, catalog-
ing of critical kinetic model parameters is required. This 
third step includes the identification of generic parameters 
that do not vary much between NBMs, parameters that are 
specific to an NBM and may vary strongly between NBMs, 
and parameters for which the PBPK model is not very sen-
sitive, so that acquiring very precise information for these 
parameters is not useful. Such a catalog of PBPK parameter 
information requires an extensive set of studies on a wide 
variety of NBMs. To date, few studies have been published 
in which PBPK models have been parametrized to describe 
the biodistribution of NBMs. For example, Dogra et al. [16] 
implemented a PBPK model to describe the biodistribution 
of nanoparticles based on their diameter, whereas Fallon 
et al. [17] used a PBPK model to describe the concentra-
tion profiles of amitriptyline nanoparticles (antidepressant 
drug). Furthermore, Rajoli et al. [18, 19] implemented a 
PBPK model to describe the biodistribution of antiretrovi-
rals with physicochemical properties that are compatible 
with nanoformulations. PBPK models have been applied 
relatively often to describe the biodistribution of liposomal 
NBMs such as Doxil® [20, 21] and AmBisome® [20, 22]. 
However, this dataset is still too limited to serve as a basis 
for a robust parameter cataloging. Additional PBPK studies 
are needed.

The present study therefore implements a PBPK model 
and parametrizes the model based on in vivo biodistribu-
tion data for two different NBMs. The first NBMs consists 
of poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs) 
loaded with the chemotherapeutical drug, cabazitaxel. The 
second NBMs consists of nanostructured lipid carriers 
loaded with the fluorescent dye IR780. In order to estimate 
the PBPK model parameters, in vivo biodistribution data 
of the two substances in rat were used. The biodistribution 
of the loaded substances is hypothesized to follow that of 
the encapsulating NBM. Model parameters characterizing 
the distribution of these NBMs are estimated and analyzed 
with respect to the extent with which they may be properly 
estimated from the data and the sensitivity of the model 
to them. Model parameters are compared cross-NBM to 
build hypotheses on generic model parameters that may 
be representative of larger groups of NBMs. To the best of 
our knowledge, this is the first study to parametrize PBPK 
models to simulate the biodistribution of PACA loaded with 
cabazitaxel and LipImage™ 815.

Materials and methods

In vivo biodistribution datasets

In order to parametrize a PBPK model to describe the biodis-
tribution of nanoparticles, dedicated in vivo biodistribution 
data are needed. In this study, two different biodistribution 
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datasets were used, which were both based on studies in 
rat. The first biodistribution dataset was obtained following 
intravenous (iv) administration of PACA NBMs loaded with 
cabazitaxel (PACA-Cbz) [23]. These PACA NBMs can be 
used as drug-loading carriers since they facilitate targeted 
delivery of the chemotherapeutic drug to the tumor site 
[24]. The dataset was obtained by measuring cabazitaxel 
concentrations in various organs after administration of the 
PACA-Cbz. The second dataset was obtained following iv 
administration of LipImage™ 815 [23]. LipImage™ 815 is a 
novel contrast agent used in near-infrared fluorescence imag-
ing [25]. It consists of nanostructured lipid carriers that are 
loaded with the fluorescent dye IR780. The concentration of 
this fluorescent ICG dye was measured in rat organs. Details 
of both datasets are given below.

PACA‑Cbz A biodistribution study has been performed 
which involved a single administration of PACA NBMs 
loaded with the drug cabazitaxel (PACA-Cbz) produced 
by SINTEF (Trondheim, Norway). Cabazitaxel is a chemo-
therapeutic agent that has been approved by the US food 
and drug administration (FDA) for the treatment of patients 
with metastatic prostate cancer. The PACA nanocarriers 
consisted of poly(2-ethylbutyl cyanoacrylate) (PEBCA). 
The particle hydrodynamic diameter and zeta potential 
of the PACA-Cbz NBM were determined using dynamic 
light scattering (DLS), which resulted in 121.8 nm (z-avg) 
and − 5.5 mV, respectively [23]. In addition, a polydisper-
sity index (PDI) of 0.14 was measured [23].

In this biodistribution study, PACA-Cbz was admin-
istered iv with two distinct cabazitaxel doses of 0.5 μg/g 
body weight, and 3.5 μg/g body weight. Cabazitaxel concen-
trations in the blood were measured using a puncture after 
1 min, 3 min, 7 min, 15 min, 30 min, 1 h, 4 h, 1 day, 2 days, 
4 days, and 14 days. The biodistribution of the encapsulating 
PACA NBMs was assumed to follow that of the cabazitaxel. 
Rats were sacrificed at five different time points: 1 h, 1 day, 
2 days, 4 days, and 14 days post-exposure. At each time 
point, four rats were sacrificed. After sacrifice, cabazitaxel 
concentrations in the blood, liver, spleen, lungs, kidneys, 
heart, and brain were established. These data were used to 
parametrize the PBPK models in the present study. Further 
details on the PACA-Cbz biodistribution will be published 
by Åslund et al. [23].

LipImage™ 815 The biodistribution of LipImage™ 815 has 
been assessed in a dedicated experiment, which was based 
on a single iv administration. LipImage™ 815 is produced 
by the French Alternative Energies and Atomic Energy 
Commission (CEA) and consists of a nanostructured lipid 
carrier that is loaded with IR780 [25]. The particle hydro-
dynamic diameter of LipImage™ 815 was determined using 
dynamic light scattering (DLS), which resulted in 52.2 nm 

(z-avg) [23]. In addition, a polydispersity index (PDI) of 
0.102 was measured [23]. The zeta potential of LipImage™ 
815 is neutral (0 mV) [23].

In the dedicated biodistribution study, three different dose 
group were used, which corresponded with IR780 doses 
of 0.046 μg/g body weight, 0.15 μg/g body weight, and 
0.46 μg/g body weight. Similar to the PACA-Cbz dataset, 
IR780 levels were measured in the blood using a puncture 
15 min, 30 min, 1 h, 4 h, and 24 h post-exposure. The bio-
distribution of the lipid NBMs was assumed to follow that of 
the IR780. Rats were sacrificed at 1 h, 1 day, 2 days, 4 days, 
and 14 days post-exposure. After the sacrifice, the blood, 
liver, spleen, lungs, kidneys, heart, and brain were col-
lected for IR780 analysis. Although IR780 levels were also 
measured in the thymus and the testes, these data were not 
considered in this study since those organs are not explic-
itly included in our PBPK model. Further details on this 
LipImage™ 815 biodistribution dataset will be published 
by Åslund et al. [23].

Table 1 summarizes the doses and measurement time 
points of the five biodistribution subsets.

PBPK model framework

The PBPK model implemented in this study was originally 
developed by Li et al. [26] to describe distribution of nano 
 CeO2 in rat. Fourteen main compartments are included in 
this model, namely, arterial blood, venous blood, upper 
airways, tracheobronchial region, pulmonary region, liver, 
spleen, kidney, heart, brain, gastro-intestinal (GI) tract, and 
the remaining organs (rest). All compartments are intercon-
nected via the blood circulation. In addition, eight organ 
compartments comprised a sub-compartment that corre-
sponds with the phagocytizing cells. Finally, four different 
clearance routes are included in this PBPK model: the lym-
phatic system, the urine, the feces, and liver metabolism. A 
schematic overview of the PBPK model is shown in Fig. 1. 
Since the PBPK model was applied to simulate biodistri-
butions after iv administration, the total injected dose was 
modeled to be deposited in the arterial blood compartment.

Table 1  Summary of the biodistribution datasets used to parametrize 
the PBPK models in the present study

Dataset Loaded substance 
concentration (μg/g 
bw)

Time points of sacrifice (h)

PACA-Cbz 0.5 1 h, 1d, 2d, 4d, and 14d
PACA-Cbz 3.5 1 h, 1d, 2d, 4d, and 14d
LipImage™ 815 0.046 1 h, 1d, 2d, 4d, and 14d
LipImage™ 815 0.15 1 h, 1d, 2d, 4d, and 14d
LipImage™ 815 0.46 1 h, 1d, 2d, 4d, and 14d
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PBPK model parameter estimation

To estimate the PBPK model parameters, a Bayesian method 
was adopted. Bayesian parameter estimation has the advan-
tage that prior information on possible parameter values can 
be taken into account from previous experiments or litera-
ture. Furthermore, new information from various sources 
(e.g., expert judgement, in vitro test results, kinetic param-
eters) can be incorporated via the prior when this informa-
tion becomes available. This essentially allows one to refine 
and update model parameter information when new experi-
mental datasets are acquired. Bayesian parameter estimation 
approaches are based on Bayes’ theorem, which is formu-
lated as follows:

� represents the set of model parameters and D represents  
an observed data (e.g., measured concentrations or amounts 
in different organs). On the left-hand side of the equation 
is the posterior likelihood distribution, P(�|D) , the likeli-
hood of parameter values � given the data D . This can be 
interpreted as a probability distribution of the values for the 
parameter � , i.e., as the parameter estimate.  P(�) is the prior 
distribution, which expresses knowledge on the parameter 
values � before evidence D is considered (e.g., evidence 
available from previous studies, based on read-across from 
similar materials or obtained from a representative in vitro 

(1)P(�|D) = P(�) ⋅ P(D|�)
∫ P(��) ⋅ (D|��)d��

Fig. 1  Schematic overview of 
the PBPK model used in the 
present study. This PBPK model 
was adapted from Li et al. [26]
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test system). P(D|�) is the data likelihood. This expresses 
how well the PBPK model describes the observed data D  
for a particular set of parameters � . ∫ P(��) ⋅ P

(
D|��

)
d�� 

represents the total likelihood of the data D . It is used as a 
normalization factor for the posterior.

Generally, solving Eq. (1) is complicated in view of the 
integration in the normalization factor (the total data likeli-
hood). The technique of Markov (or Gibbs) sampling allows 
one to sidestep the complexities of the integration and to 
sample directly from the posterior likelihood distribution 
P(�|D) . This method follows from the observation that the 
normalization factor in 1 is a constant. The posterior is thus 
proportional to the product of the prior and the likelihood:

Sampling from P(�) ⋅ P(D|�) is therefore equivalent to 
sampling from the normalized posterior in 1).

The data likelihood P(D|�)  is customarily assumed to 
depend on the difference between data simulated by a model 
with parameters � and observed data. In this study, it was 
defined as follows.

Here, N is the total number of observed data points, 
observedi is the ith observed data point, and predictedi is 
the corresponding predicted data point.

An adaptive Markov chain Monte Carlo (MCMC) sam-
pling method was employed to sample from the posterior 
likelihood, which was previously described by Vihola 
[27]. Since prior information on model parameters P(�) 
was not available, the so-called uninformed prior (Jeffreys’ 
prior) was used [28], which initially places minimal con-
straints on the values the model parameters may take on. 
However, when considering the entire parameter space, 
sampling sufficient points to describe the posterior distri-
bution proved to be prohibitively expensive, computation-
ally. Therefore, upper and lower limits were set for each 

(2)P(�|D) ∝ P(�) ⋅ P(D|�)

(3)P(D��) = e
−

1

N

∑
ln

�
predictedi

observedi

�2

parameter. To identify reasonable limits, model parameters 
were manually optimized until the resulting model simula-
tions visually resembled the observed biodistribution data 
to a reasonable degree. The upper and lower limits were 
then defined as a factor 30 higher and lower, respectively, 
than the manually optimized parameter values.

In addition to the upper and lower parameter limits, we 
also chose to only optimize a limited number of model 
parameters. These parameter values were chosen by 
inspecting their influence on the PBPK model outcomes 
based on the model equations. The following parameters, 
as well as the corresponding upper and lower limits used 
in the MCMC sampling method, are shown in Table 2.

The remaining model parameters were adopted from 
Li et al. [26]. Although their study results are based on 
different NPs and exposure scenarios, the influence of 
the remaining model parameters on the model outcome 
is small. This assumption was verified using a local sen-
sitivity analysis (results not shown). This local sensitiv-
ity analysis was performed by calculating the area under 
the curve (AUC) of the NBM amounts in the blood com-
partments (venous + arterial). In addition, the sensitivity 
analysis was performed for one parameter at a time; hence, 
the sensitivity of combined parameters was not assessed. 
Specifically, the sensitivity was calculated in the form of 
an elasticity coefficient S:

 where ΔAUC is the change in the AUC as a result of a 
change in the parameter value, Δp . Here, the applied change 
in the parameter values was always 10% of the original 
value,p , which means that Δp

p
= 1.1.

The PBPK model, the adaptive MCMC parameter sam-
pling method, and the sensitivity analyses were imple-
mented in R [29] using the packages mrgSolve [30] and 
adaptMCMC [31].

(4)S =
ΔAUC∕AUC

Δp∕p

Table 2  Model parameter chosen to be optimized, as well as their upper and lower limits used in the MCMC method

Parameter (unit) Upper/lower limits
(PACA-Cbz

Upper/lower limits 
(LipImage™ 815)

Description

χrich (-) 1.67 ×  10−2–15 1.67 ×  10−1–150 Permeability of richly perfused organs
P (-) 3.3 ×  10−2–30 1.67 ×  10−3–1.5 Tissue-blood partition coefficient
kkidneyEl  (h−1) 1–900 3.3 ×  10−2–30 Renal elimination rate
kab0  (h−1) 1.16 ×  10−2–10.5 3.3 ×  10−2–30 The maximum uptake rate of phagocytizing cells in organs 

except for the spleen
ksab0  (h−1) 1.67 ×  10−2–15 3.3 ×  10−2–30 The maximum uptake rate of phagocytizing cells in the spleen
kde  (h−1) 3.3 ×  10−5–0.03 3.3 ×  10−5–0.03 The release rate of phagocytizing cells
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Model evaluation

A PBPK model was independently parametrized using the 
Bayesian parameter estimation approach for each of the five 
biodistribution data groups (i.e., the two dose groups of 
PACA-Cbz, and the three dose groups of LipImage™ 815). 
In order to quantitatively evaluate the quality of the PBPK 
model simulations, the average absolute fold error (AAFE) 
was calculated, which is defined as follows:

 where N denotes the total number of observations. Note that 
the AAFE was calculated separately for each parametrized 
model, and for each model compartment. An AAFE of 1 is 
achieved when the PBPK model simulation exactly matches 
the measured biodistribution data. The AAFE increases as 
the difference between the PBPK model prediction and the 
measured data increases.

(5)
AAFE = 10

1

N

∑����
log

10

�
predicted

observed

�����

Results

In the present study, a PBPK model was parametrized 
based on five in vivo biodistribution (sub)datasets con-
cerning NBMs. Figure 2 shows the posterior distribu-
tion of each parameter estimated using the five bio-
distribution datasets. These posterior distributions are 
probability density plots P(�|D) of the parameter values 
after considering the biodistribution data. This means 
that P(�|D)d� gives the probability that a parameter has 
a value between � and � + d� . As shown in Fig. 2, the 
posterior distribution of χrich is rather broad, covering 
at least two or more orders of magnitude in all five para-
metrizations. In addition, no clear maximum is observed 
in the posterior distributions of χrich for the LipImage™ 
815 datasets. The posterior distributions of the remaining 
parameters were generally narrower (i.e., smaller than 
one order of magnitude) and always demonstrated a clear 
maximum.

Fig. 2  Probability density plots of the sampled posterior distributions of the six estimated parameters (i.e., χrich, P,  kab0,  ksab0,  kkidneyEl, and  kde) 
for the five in vivo biodistribution datasets
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In order to investigate whether PBPK parameters were 
correlated, pair-plots were made (supplemental material; 
Figures S1, S2, S3, S4, S5). Generally, no correlations 
were observed between the PBPK parameters. Only the 
macrophage uptake parameters,  kab0 and  ksab0, seemed to 
exhibit a linear relationship when considering the parameter 
estimates based on the PACA-Cbz low-dose biodistribution 
data (Figure S1).

Table 3 shows the median value and the credible inter-
val of the posterior distributions of all parameters and all 
five in vivo data subsets. The median value represents the 
most likely parameter value and will be referred to as the 
parameter estimate. The credible interval is the interval 
that contains 90% of the parameter values in the posterior 
distribution.

The results presented in Table 3 demonstrate that the esti-
mated permeability of richly perfused organs, χrich, and the 
estimated renal clearance,  kkidneyEl, were approximately two 
orders of magnitude larger for PACA-Cbz than for LipIm-
age™ 815. Similarly, the substance-blood partition coef-
ficient, P, is approximately one order of magnitude larger 
for PACA-Cbz than for LipImage™ 815. The macrophage 
absorption rate parameters,  kab0,  ksab0, and the macrophage 
release rate,  kde, were comparable between PACA-Cbz 
and LipImage™ 815. Interestingly, P,  ksab0, and  kkidneEl 
all increase with increasing LipImage™ 815 doses. Such 
a dose-dependent relation was only observed for the  ksab0 
when assessing PACA-Cbz.

The median parameter estimates shown in Table 3 were 
used to simulate cabazitaxel and IR780 levels. Figure 3 
shows a comparison between the simulated cabazitaxel lev-
els and those measured in vivo. The difference between the 
simulated cabazitaxel levels and the measured cabazitaxel 

levels was expressed with the AAFE, which is also shown 
in Fig. 3.

For each of the three LipImage™ 815 dose groups, 
simulated and corresponding measured IR780 levels are 
shown in Fig. 4. IR780 simulations are shown for the blood, 
liver, spleen, lung, brain, heart, and kidney. The difference 
between the simulated IR780 levels and the measured IR780 
levels was expressed with the AAFE, which is also shown in 
Fig. 4. All AAFE calculated for IR780 were below 3, indi-
cating an average discrepancy between model and data of 
less than a factor 3. In addition, the AAFE resulting from 
the spleen and the heart were always below 2, whereas the 
AAFE corresponding to the blood, lungs, and brain were 
higher than 2 for all three dose groups.

Discussion

The use of NBMs has become a very promising approach 
to facilitate various medical applications including targeted 
drug delivery and medical imaging [32]. One of the key 
aspects for adequately using the NBMs is the optimization 
of the biodistribution of a substance by selecting the encap-
sulating NP [33]. The present study utilized a PBPK model 
to analyze the in vivo biodistribution of two NBMs after iv 
administration in rats. The NBMs considered in this work 
were PACA loaded with cabazitaxel particles and LipIm-
age™ 815. Using a Bayesian parameter estimation tech-
nique, PBPK model parameters were estimated from in vivo 
biodistribution data. The Bayesian method is particularly 
suitable as it naturally accommodates the introduction of 
a priori information via a so-called prior. In principle, this 
method also allows the incorporation of initial model param-
eters measured in in vitro models. Ideally, an appropriate 

Table 3  Parameter estimates (median) and the corresponding credible 
interval (in parentheses) resulting from applying the Bayesian param-
eter estimation method using the five biodistribution datasets. χrich, 
vascular permeability coefficient; P, partition coefficient; kkidneyEl, 

renal clearance rate; kab0, uptake rate by macrophages (excluding 
those in the spleen); ksab0, uptake rate by macrophages in the spleen; 
kde, release rate by macrophages

Dataset χrich P kkidneyEl kab0 ksabo kde

PACA-Cbz Low 1.5
(1.6 × 10−1–
1.3 × 101)

3.9
(2.4–5.4)

2.4 × 102

(1.9 × 102–3.2 × 102)
1.3 × 10−2

(1.2 × 10−2–
4.4 × 10−2)

8.4 × 10−2

(5.4 × 10−2–
2.6 × 10−1)

1.4 × 10−2

(1.2 × 10−2–
2.5 × 10−2)

PACA-Cbz High 2.1
(1.7 × 10−2–
1.3 × 102)

2.6
(1.7–4.0)

2.1 × 102

(1.7 × 102–2.8 × 102)
1.4 × 10−2

(1.2 × 10−2–
2.5 × 10−2)

2.3 × 10−1

(1.4 × 10−1–
4.3 × 10−1)

1.4 × 10−2

(1.3 × 10−2–
1.9 × 10−2)

LipImage™ 815 
Low

7.0
(2.4 × 10−1–
1.2 × 102)

1.3 × 10−1

(5.0 × 10−2–
2.2 × 10−1)

2.7
(2.1–3.4)

1.7 × 10−1

(8.3 × 10−2–
8.0 × 10−1)

2.1 × 10−1

(1.0 × 10−1–
8.7 × 10−1)

1.3 × 10−2

(7.6 × 10−3–
2.6 × 10−2)

LipImage™ 815 
Mid

5.4
(2.4 × 10−1–11)

1.7 × 10−1

(8.4 × 10−2–
2.8 × 10−1)

4.3
(3.3–5.4)

1.6 × 10−1

(9.3 × 10−2–
4.6 × 10−1)

3.0 × 10−1

(1.7 × 10−1–
8.4 × 10−1)

8.6 × 10−3

(5.5 × 10−3–
1.5 × 10−2)

LipImage™ 815 
High

4.5
(2.3 × 10−1–98)

2.8 × 10−1

(1.6 × 10−1–
4.6 × 10−1)

7.9
(6.2–10)

2.6 × 10−1

(1.1 × 10−1–
6.4 × 10−1)

4.7 × 10−1

(2.2 × 10−1–1.1)
1.3 × 10−2

(7.0 × 10−3–
2.2 × 10−2)
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Fig. 3  PBPK model simulation 
results (red) compared with 
measured cabazitaxel (black 
dots) in blood plasma, liver, 
spleen, lung, brain, heart, and 
kidney for two different doses. 
The difference between simu-
lated and measured cabazitaxel 
levels, which is expressed with 
the AAFE, is shown in the 
right-upper corner of every plot. 
A larger AAFE corresponds 
with a larger difference, and an 
AAFE of 1 represents a perfect 
fit
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in vitro system may provide at least a correct order-of-
magnitude estimate of a parameter’s value. This estimate 
may then be used to define a prior distribution, which can 
then be updated with, e.g., in vivo data. Limiting a search 
to a smaller region of the parameter space via an informed 
prior will significantly improve parameter estimation from 
distribution data.

The PBPK model parametrizations obtained in this study 
resulted in accurate simulations of PACA-Cbz and LipIm-
age™ 815 concentrations. This indicates that the param-
eter estimation was successful. Interestingly, the parameter 
estimates resulting from the parametrization on the biodis-
tribution data of PACA-Cbz were markedly different from 
parameter estimates resulting from the parametrization on 
the LipImage™ 815 biodistribution data (Table 3). More 
specifically, the estimated permeability of richly perfused 
organs, χrich, and the estimated renal clearance,  kkidneyEl, 
were approximately two orders of magnitude larger for 
PACA-Cbz than for LipImage™ 815, whereas the partition 
coefficient, P, was approximately one order of magnitude 
smaller for PACA-Cbz than for LipImage™ 815. Further-
more, the estimates of these three parameters based on 
PACA-Cbz fall outside the credible interval of the param-
eter estimated for LipImage™ 815. These findings may 
be (partially) explained by the different physicochemical 
properties of the two studied NBMs. Specifically, the zeta 
potential and the particle size substantially differed, which 
might have affected the biodistribution of the NBMs. This 
further emphasizes the need of tailoring the parametrization 
of PBPK models to the substance of interest. Conversely, 
the macrophage-related parameters  kab0,  ksab0 (macrophage 
absorption rate), and  kde (macrophage release rate) seemed 
comparable among the considered NBMs. Whilst already 
known that macrophage uptake of nanoparticles is a key 
component of the biodistribution and biocompatibility of 
NBMs [34], the work presented here highlights the impor-
tance of clear determination of macrophage accumulation of 
NBMs, irrespective of the nanoparticle platform. Ongoing 
work within the REFINE consortium is aimed at defining, 
and translating methodologies to assess macrophage uptake 
of NBMs, that can aid in PBPK model development.

Information on PBPK model parameters as collected 
here will significantly aid the generalizability of PBPK 
modeling. If the database on specific model parameters is 
expanded, this could allow the grouping of NBMs accord-
ing to kinetic parameters. Regression modeling or classifi-
cation models could assist in predicting model parameters 
based on NBM properties, or at least assist in construct-
ing prior distributions, thus greatly improving subsequent 
model parametrizations. Ideally, such a database could be 
supported by adequate in vitro measurements of kinetic 
parameters, further strengthening the development of 
informed, predictive priors for the parameter. An example 

of a PBPK model parameter that could be directly meas-
ured in in vitro systems is the permeability of the vascu-
lar epithelium (“χrich”) [35]. In addition, NBM uptake by 
phagocytes (“kab0”, “ksab0”) may be measured by incubat-
ing macrophages with fluorescently labeled NBMs and 
subsequently detecting fluorescence using a plate reader, 
flow cytometry, or confocal microscopy [36]. Future stud-
ies should be conducted to compare in vitro measurements 
of PBPK model parameters for the NBMs considered in 
this work, in order to evaluate the feasibility of the in vitro 
system for PBPK model parametrization.

Another important finding of this study was that certain 
parameters estimated using the LipImage™ 815 biodistri-
bution data seemed to be dose-dependent. In particular, the 
partition coefficient P, the uptake rate of macrophages in the 
spleen,  ksab0, and the renal clearance  kkidneyEl all increased 
with increasing dose (Table 3). In addition, minor to no 
overlap was found between the credible intervals of these 
parameter estimates between the different parametriza-
tions. In contrast, the permeability χrich, the uptake rate of 
macrophages outside the spleen  kab0, and the release rate 
from macrophages  kde did not demonstrate clear trends with 
increasing dose. This indicates that certain PBPK model 
parameters should be tailored to the desired LipImage™ 
815 dose of the exposure scenario. The dose-dependency 
of certain model parameters might limit the extrapolation 
of LipImage™ 815 biodistribution data to different doses. 
Interestingly, for the PACA-Cbz biodistribution, this dose-
dependency was only observed for the  kab0. Further research 
should be conducted to investigate whether the dose- 
dependency of PBPK model parameters is seen for other 
NBMs, and to identify other PBPK model parameters that 
might exhibit a dose dependency.

In the present study, a PBPK model was used to simulate 
the biodistribution of two NBMs. The biodistribution of the 
encapsulating NBMs is assumed to follow that of the sub-
stances loaded, since the biodistribution is mainly governed 
by the characteristics of the encapsulating NBM. However, 
this approach does not take into account the distribution of 
the free substances. As the encapsulating NBM degrades at 
a certain rate after administration, the loaded substance is 
released after which it may still migrate through the body, 
albeit with different kinetics than that of the NBM. In order 
to also consider the biodistribution of the free substance, a 
complementary model for the distribution and elimination of 
the free substance should be implemented and parametrized. 
Parametrization of this model would require measuring the 
encapsulated substance as well as the free substance. How-
ever, due to the technical challenges in making this distinc-
tion, there are currently no biodistribution datasets available 
that include this information. As a consequence, it remains 
challenging to incorporate the kinetics of the free substance 
into the PBPK model.



2141Drug Delivery and Translational Research (2022) 12:2132–2144 

1 3



2142 Drug Delivery and Translational Research (2022) 12:2132–2144

1 3

The present study shows that PBPK models can be 
well parametrized from biodistribution data for two 
NBMs, namely, PACA-Cbz and LipImage™ 815. In order 
to advance the applicability of PBPK modeling of the 
NBMs, data on specific PBPK model parameters should be 
expanded and preferably be compiled in a generally acces-
sible database. Such a database would support the identifi-
cation of groups of PBPK model parameters that are fairly 
constant across (a group of) NBMs, and of parameters that 
appear to be NBM-specific and require quantification on 
a case by case basis. Especially for the latter, the avail-
ability of adequate in vitro systems to estimate their values 
would greatly expand the generalizability of PBPK models. 
It should be noted, however, that a challenge in setting up 
such a database is that many different PBPK models have 
been developed, making the comparison between param-
eter estimates difficult. The database should therefore also 
include the model structure used to derive the parameter 
values. This model structure should be considered when 
searching for relations between estimated parameters and 
NBM properties.

Ideally, a PBPK model would be developed that predicts 
the biodistribution in humans, instead of animals such as 
rats. Although such human PBPK models have been devel-
oped for a few substances [37–41], validation of their pre-
dictivity is extremely challenging due to a lack of human 
biodistribution data involving NBMs. Instead of tackling 
this challenge at once, we aimed to first work towards a pre-
dictive model for rats. Such a model allows us to obtain a 
better understanding of the NBM properties in relation to 
the kinetic PBPK model parameters. The two most impor-
tant steps to arrive at that stage are (1) the collection of 
more in vivo biodistribution data to expand the database and 
enable the identification of trends in kinetic properties and 
grouping of NBMs and (2) the development of robust and 
reliable in vitro methods that provide quantitative parameters 
that can be directly incorporated in a PBPK model. Although 
the second step is one of the objectives within the REFINE 
consortium, neither condition has yet been fulfilled. The 
present work contributes to the expansion of the database 
on kinetic parameters.

Conclusion

This work presents the parametrization of a PBPK model 
on the basis of biodistribution data for two NBMs, 

PACA-Cbz and LipImage™ 815. Some of the identi-
fied PBPK model parameter values (i.e., the macrophage 
uptake and release parameters) were fairly constant over 
the different NBMs and dosing schedules. In contrast, 
parameters related to elimination, partitioning, and vascu-
lar permeability were clearly material-dependent. Overall, 
the parametrized PBPK model provided a good descrip-
tion of the distribution data, indicating the validity of the 
approach. However, the study also demonstrated dose-
dependency in certain parameters when parametrizing 
the PBPK model using the LipImage™ 815 biodistribu-
tion data, which implies that the administered dose must 
be carefully considered when interpreting PBPK model 
simulations.

All in all, this study helps with expanding the dataset 
on PBPK model parameters for different NBMs. It should 
be noted that the parametrization was performed with the 
implicit assumption that the distribution is mainly driven 
by the distribution of the encapsulating NBMs, and that 
after degradation of the NBMs, subsequent re-distribution 
of the loaded substance does not occur to a significant 
extent. This introduces some uncertainty in the quantita-
tive results. It is important to stress that future PBPK stud-
ies should ideally keep track of both NBMs and encapsu-
lated drug. This would enable the development of generic, 
predictive PBPK models. This effort should be supported 
by the development of robust in vitro methods to quantify 
kinetic parameters. Some in vitro systems have already 
been developed for NBMs, but it is vital to understand 
variability in methodological approaches, to harmonize 
assessment of these key parameters. The results of this 
study furthermore show that the Bayesian parameter esti-
mation method is a useful tool to parametrize a PBPK 
model. The Bayesian method is especially apt to combine 
information from different sources, be it different in vivo 
studies or in vitro data. Together with generic PBPK mod-
eling, the Bayesian parametrization approach and in vitro 
kinetic models could greatly assist in the effort to replace, 
reduce, and refine (i.e., 3Rs principle) animal studies.
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