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Abstract 

Extracellular vesicles (EVs) are advanced therapeutic strategies that can be used to efficiently treat diseases. Promising 
features of EVs include their innate therapeutic properties and ability to be engineered as targeted drug delivery sys-
tems. However, regulation of EV uptake is one challenge of EV therapy that must be overcome to achieve an efficient 
therapeutic outcome. Numerous efforts to improve the factors that affect EV uptake include the selection of a cell 
source, cell cultivation procedure, extraction and purification methods, storage, and administration routes. Limitations 
of rapid clearance, targeted delivery, and off-targeting of EVs are current challenges that must be circumvented. EV 
engineering can potentially overcome these limitations and provide an ideal therapeutic use for EVs. In this paper, we 
intend to discuss traditional strategies and their limitations, and then review recent advances in EV engineering that 
can be used to customize and control EV uptake for future clinical applications.
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Background
It is important to develop new approaches that effectively 
treat diseases. A promising approach involves the use of 
extracellular vesicles (EVs). EVs appear to have the poten-
tial to accelerate tissue regeneration and improve tissue 
functions without remarkable side effects. They are small 
vesicles secreted by cells that are released as exosomes, 
microvesicles, or apoptotic bodies according to their bio-
genesis and size. EVs are promising therapeutic options 
because of the role they play in intercellular communica-
tion, their innate therapeutic effects, and their capabil-
ity to be engineered. EVs are secreted by donor cells and 
exert their effects after uptake by recipient cells or by 
releasing their cargo. The use of EVs in clinical settings, 

in spite of sufficient amounts of effective EV, has encoun-
tered difficulties in low rate of EV absorption by their 
recipient cells, off-target delivery [1], and rapid clear-
ance from circulation [2], which are directly related to 
EV uptake and could critically affect the EV therapeu-
tic properties. Thus far, many efforts have been made to 
improve EV uptake by traditional strategies include the 
selection of an appropriate cell source, cell cultivation 
procedure, extraction and purification methods, stor-
age, and administration routes [3]. However, limitations 
to these approaches have urged scientists to engineer EVs 
in order to improve their therapeutic features and uptake 
efficiency. The results of these studies have shown that 
EV’s surface cargos greatly affect their uptake (Table  1) 
and have a high potential to be engineered [1]. Inner 
EV cargos could also be engineered to change the tar-
geted recipient cells function [4]. In this paper, we intend 
to review the traditional strategies in terms of recent 
advances in improving EVs uptake, and their limitations 
and challenges. Next, we will discuss EV engineering 
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strategies for customizing EV uptake in order to achieve 
an efficacious therapeutic outcome.

Traditional strategies for customizing extracellular 
vesicle (EV) uptake
In order to exploit the therapeutic potential of EVs, it 
is necessary to control and adjust EV uptake according 
to clinical need. Biological, biochemical, and biophysi-
cal factors impact EV uptake and they must be adjusted 
based on the donor and recipient cell types to achieve 
the desired outcome. The clinical situation determines 
whether EVs production and uptake need to be increased 
or reduced by the donor cells. Below, traditional strate-
gies that include donor cell selection, extraction, storage 
conditions, administration methods and treatment by 
EVs, recipient cells and their extracellular matrix (ECM) 
for customizing EV uptake are discussed in detail.

Control of extracellular vesicle (EV) production by donor 
cells
Donor cell control of EV production is a basic means to 
manage EV uptake. Cell source could provide the desired 
therapeutic effect in EVs such as anti-inflammatory 
effect, induction of proliferation, special differentiation, 
etc. [5, 6]. For example, MSC-derived EV [7] and neural 
stem cell derived EV have been proposed for treatment 
of osteoarthritis and Alzheimer’s disease, respectively 

[8]. Selection of the proper cell source and cell culture 
method enable researchers to control the amount of 
EVs produced by donor cells and their properties, which 
greatly impact EV uptake.

Extracellular vesicle (EV) sources
EVs isolated from various cell sources could potentially 
have different innate homing capabilities [9]. EVs from 
different cellular origins carry different cargos and exert 
different functions and therapeutic effects on recipi-
ent cells [10, 11]. Internal and superficial EV cargos are 
affected by the content of their cell sources. For exam-
ple, analysis of RNA contents in donor cells and isolated 
EVs show similar patterns, which reflect selectivity of 
the internal cargo packaging into EVs [12]. EV cargo can 
change during the time that EVs are secreted from the 
donor cells and taken up by the recipient cells. For exam-
ple, the presence of microRNA (miRNA)-processing 
enzymes (e.g., DICER) within the EVs suggests ongoing 
intravesicular processing that occurs to enable miRNA to 
mature during transfer and prior to the EV uptake [13]. 
Superficial cargos play a main role in targeted EV uptake; 
for instance, cytokines on the EV surface might serve as 
bar code molecules that are recognized by cell-specific 
cytokine receptors for targeted EV uptake [14]. Selec-
tion of an appropriate cell source enables researchers to 
improve the quantity and quality of the produced EVs, in 

Table 1  Mechanism of extracellular vesicles (EVs) internalization

Route of extracellular vesicle (EV) 
uptake

EV uptake mechanisms Interaction factor(s) Modification/engineering method 
for targeting

References

Endocytosis

 Clathrin-mediated and Caveolin-
dependent

Protein Tetraspanins Engineering the CD81 extracellular 
loop domain on EVs to selectively 
binds to specific cell surface proteins 
in donor cells

[72, 118]

Integrins Disintegrin inhibitor with specificity 
for αvβ3 integrin reduce EV uptake in 
recipient cell

[119]

Immunoglobulins By inducing a high-affinity state of 
leukocyte function-associated anti-
gen-1 on resting T cells to stimulate 
EV binding

[120]

Proteoglycan Heparin sulfate pro-
teoglycans (HSPGs)

A subset of the multiple D-glucosa-
minyl 3-O-sulfotransferase isoforms 
prepares binding sites on either the 
recipient cell surface or EVs

[86]

 Lipid raft-mediate Cholesterol, glycoprotein, protein Flotillins Overexpression of flotillins in recipient 
cell

[121, 122]

Phagocytosis Protein C-type lectin Blocking C-type lectin on the recipi-
ent cell surface by specific antibodies 
to decrease EV uptake

[123, 124]

Macropinocytosis Protein Actin Cytochalasin D hampers actin polym-
erization and decreases EV uptake in 
recipient cells

[72, 84]
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addition to the internal and superficial cargos of EVs for 
targeted uptake. Recent studies demonstrated co-culture 
of the special cells elevated EV properties for disease 
treatment [15, 16] due to enriched therapeutic cargos of 
EVs through prospering interaction between cells. Hence, 
selection of an appropriate cell/cells source(s) could 
be enabled researchers to enrich EV and improve their 
uptake.

Amount of secreted extracellular vesicles (EVs)
An inadequate amount of EVs limits their extensive ther-
apeutic use. The amount of secreted EV varies according 
to its origin [17] and it is also affected by various biologi-
cal, chemical, and physical factors. Secreted factors like 
serotonin and histamine, as external biological signals, 
and microenvironmental conditions that include inflam-
matory signals can regulate EV release [18, 19]. Envi-
ronmental factors such as pH and electricity also affect 
exosome secretion. Acidic pH and low electricity levels 
increase EV secretion by donor cells without any appar-
ent changes in EV quality [17, 20]. Recent studies have 
demonstrated that three-dimensional cultures increase 
the production of EVs and affect their cargo composi-
tion [21, 22]. Therefore, regulation of environmental fac-
tors for donor cells that include biological, chemical and 
physical factors, especially in the form of 3D culture plat-
form (such as collagen scaffolds [23] and bioreactor [24]) 
as cell niche-engineering, could be effective in regulating 
the quantity and quality of the secreted EVs [7].

Extracellular vesicle (EV) extraction and purification
EVs of different sizes appear to have different target-
ing and uptake rates. Recipient cells have been shown to 
uptake smaller EVs (< 100 nm) at a more rapid rate than 
larger EVs, which leads to more effective delivery of their 
cargo and signals [25]. Given the small size of the exo-
some, they can target tumor tissue via enhanced perme-
ability and retention [26]. Homogeneous populations of 
EVs would be more safe, stable, and efficient [27]. There-
fore, isolation of a monodisperse EV population with a 
smaller size may improve EV uptake by recipient cells 
and its subsequent therapeutic effects.

Notably, the reduction of protein contaminants could 
affect EV uptake. Highly purified EVs appear to have 
preferential uptake by cells [28]. For example, human 
endothelial cells uptake EVs isolated from human car-
diomyocytes that were highly purified by size-exclusion 
chromatography (SEC) [28]. EVs isolated by ultracen-
trifugation, sucrose concentration gradient, SEC, and 
polymer-based precipitation all differ in yield and purity 
[29]. SEC has the highest purity among these methods. 
Although the precipitation method has a lower purity 
[30], it has a low price and rapid EV extraction and high 

yield, especially for large scale applications. ExtraPEG is 
a new polymer-based precipitation that does not affect 
EV biological activity [31, 32] and leads to smaller par-
ticle size distributions and faster uptake by target cells 
[25]. More recently, heparin-affinity beads have been 
employed to purify the EVs based on direct EV-heparin 
interactions. Isolation of EVs from cell culture media and 
human plasma by ultrafiltration followed by heparin-
affinity beads can result in highly pure EVs [33]. These 
methods should be improved in order to obtain highly 
purified EVs for preferential uptake in the therapeutic 
context. In this regard, a combination of several extrac-
tion and purification methods would be helpful.

Extracellular vesicle (EV) storage conditions
It is essential to keep extracted EVs under the best con-
ditions to preserve their therapeutic properties until 
administration. Storage of EVs has been shown to desta-
bilize the surface characteristics, morphological features, 
and protein content of isolated exosomes [34]. Parti-
cle size decreases with EV storage [35] and affects EV 
uptake. A review of the literature shows several factors 
that affect the quantity and quality of EVs during storage 
and subsequent EV uptake by recipient cells.

Temperature
Different storage temperatures and times influence both 
the recovery yield, morphology, and biological activity of 
exosomes [35]. Temperatures below − 70  °C are favora-
ble and provide the best conditions for preservation of 
fresh EVs for clinical applications and basic research [36]. 
The results of a high throughput study suggested that dis-
tinct protein populations leak from exosomes at different 
storage temperatures [34]. Cheng et  al. have evaluated 
the levels of exosome-associated proteins during long-
term storage at different temperatures (− 80 °C, − 20 °C, 
4  °C). They observed that ALIX, HSP70, and TSG101 
decreased over time and the degradation rate at − 80 °C 
was less than at − 20  °C and 4  °C [37]. Conversely, in 
another study, EVs stored at 4 °C had similar stability to 
those stored at − 70  °C until day 25 [35]. Also, human 
salivary exosomes remained intact in the absence of 
protease inhibitor and at different storage temperatures 
[38]. Although, it is apparent that − 70 °C to − 80 °C is 
a favorable temperature range for EV storage for clini-
cal use [36], further research is needed to evaluate the 
impact of temperature and both short-term and long-
term storage on EV uptake.

The duration of storage is another factor that might 
affect EV uptake. Park et al. observed that the numbers of 
EVs reduced over time; however, this reduction was more 
noticeable at higher temperatures. EVs stored at − 70 °C 
for 25  days showed a slight decrease in number [35]. 
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Aggregation is a consequence of EVs stored at − 70  °C 
and might damage their structure and biological activity 
[39]. Storage of EVs in a colloidal solution that includes 
a polymer, such as PEG, is suggested to prevent aggre-
gation of EVs [40] and lead to preservation of biological 
activity after their uptake.

Environmental pH
Acidic conditions are a favorable environment for EV 
isolation and storage, and might lead to an increase in 
EV uptake by recipient cells. A pH lower than 7, in con-
ditioned medium or urine, during incubation at room 
temperature for 30 min has been shown to increase the 
amount of isolated exosomes [41]. In another study, 
storage at pH 4 decreased the EV concentration and 
increased their cellular uptake after 24 h [37].

Extracellular vesicles (EVs) and the freeze–thaw cycle
Although the numbers of single exosomes decrease with 
an increasing freeze–thaw cycle, their cellular uptake is 
not substantially affected [37]. A decrease in exosome 
concentration along with an increase in uptake has been 
reported after 1–5 freeze–thaw cycles and short-term 
storage (24 h) [37]. In another study, the EV size remained 
unchanged following multiple freeze–thaw cycles at − 
20 °C [42]. Relatively high temperature and freeze–thaw 
cycles are proposed to affect exosomal membranes and 
change their properties, which would enable exosomes to 
be more easily absorbed by recipient cells [37].

According to current research, simultaneous storage 
of EVs in acidic pH, temperatures between − 70 and − 
80  °C, and fewer freeze–thaw cycles would lead to effi-
cacious EV uptake and probably a minimal reduction in 
EV concentration. However, more research is needed to 
more accurately determine the factors that contribute to 
the best EV storage and uptake.

Extracellular vesicle (EV) administration routes
The type of disease and its progression deeply influ-
ence the selection of EV administration strategies. Thus, 
we can increase EV uptake by using the appropriate EV 
administration methods and achieve a desired therapeu-
tic outcome. For example, the suggested routes for EV 
administration to the brain and retina are intranasal (IN) 
[43] and periocular injection, respectively. Intra-articular 
injection is recommended for treatment of osteoarthritic 
joints [38]. However, the administration method may dif-
fer for early and advanced stages of cancer. Below, we list 
the common methods of EV administration for therapeu-
tic purposes.

Systemic administration
There is strong preclinical evidence that systemically 
administered EVs can reach therapeutic tissue targets 
such as brain [43] or cartilage tissue [5]. Systemically 
delivered EVs displayed a higher tissue uptake in a posi-
tive dose-dependent manner in mice [3] and had a higher 
chance of reaching the metastatic cells [44]. Moreover, 
this route of delivery enabled the EVs to be rapidly taken 
up by macrophages in the reticuloendothelial system 
and the EVs cleared quickly [45]. The EV half-life is a few 
minutes and they completely disappear from circulation 
within four hours after an intravenous (IV) injection [46]. 
Therefore, the EV circulation time should be increased 
along with a decrease in clearance in order to maximize 
their uptake by target cells in order to attain a high thera-
peutic effect. Next, we discuss the different methods of 
systemic administration of EVs.

Intravenous (IV) injection  IV injection is a common EV 
administration route for in vivo analysis of EV biodistri-
bution. The results of one study showed that IV injection 
of EVs might decrease inflammation and apoptosis in an 
ischemic myocardium [47]. Recent researches showed 
that IV injections of cardiac progenitor cell-derived 
exosomes prevented doxorubicin/trastuzumab-induced 
cardiac toxicity [48]. More than half of the administrated 
EV remove from the blood within 30 to 60 min after IV 
injection [49].

Subcutaneous (SC) injection  The simplicity of sub-
cutaneous (SC) injection of EVs makes it an ideal route 
for clinical applications, in particular wound healing. 
SC injection of exosomes effectively restored epidermal 
barrier function [50] and attenuated full-thickness skin 
wounds [6, 51]. In addition, SC injection of exosomes 
loaded on biological scaffolds promoted diabetic wound 
healing in a chronic wound [52]. Localization of EVs with 
biological substrates may increase the efficiency of SC 
administration of EVs.

Intranasal (IN) and  inhalation administration  Both 
IN and inhalation administration are the simplest types 
of EV administration in the clinic. IN administration of 
human EVs have been used to treat an injured brain [53]. 
In another study, IN administration of EVs minimized the 
adverse effects of status epilepticus in the hippocampus 
[54]. In addition, the therapeutic efficacy of IN admin-
istration of EVs for Parkinson’s disease has been docu-
mented [55]. Recently, aerosol inhalation administration 
of EVs was assessed in various clinical trials as treatment 
for COVID-19 [56–58]. In this method, EV could suspend 
in small droplets of liquid (up to a few micrometers in 
size) and could be absorbed into the respiratory tract and 
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then blood, by spraying using a nebulizer for breathing 
[59]. This method for EVs administration may soon be the 
most prevalent method because of its simplicity and ease.

Local administration
Local administration in comparison with systemic 
administration could directly deliver high concentrations 
of EVs to the site of the injury and increase the ability of 
recipient cells to uptake EVs. This is particularly relevant 
when the defect site is enclosed, such as the knee joint 
space and myocardia [4]. Although local administration 
reduces off-target delivery of EVs, rapid clearance from 
the defect site is observed and necessitates repeated 
administration [60].

The administration route affects uptake of EVs by recip-
ient cells. Therefore, we must select the best administra-
tion route for the disease under consideration to enable 
successful treatment. In general, systemic administration 
requires a higher total dose for each patient in compari-
son with local administration [61]. Systemic administra-
tion results in a rapid clearance rate of the EVs [45]. In 
terms of clinical application, the efficiency, simplicity, 
and cost are important factors that must be taken into 
consideration when choosing the route of administration.

Delivery strategies
Taking EVs from isolation to clinical use is an expensive 
process and finding an optimal situation is required to 
make most of it. Due to the rapid clearance of EVs from 
the body, both sustained release and gradual delivery of 
EVs are expected to increase their efficiency in accord-
ance with the therapeutic goals. Biomaterials, particu-
larly hydrogels, provide an ideal platform for EV delivery 
in order to enhance their bioavailability, prolong their 
release, and maximize their regenerative capacity. It 
was reported that hydrogel-mediated delivery of MSC-
derived EVs improved hepatic regeneration in chronic 
liver failure model [62]. Exosomes loaded on the hydro-
gel were continually released and promoted chronic 
diabetic wound healing [52]. Similarly, human umbilical 
cord (UC)-MSC-derived exosomes encapsulated in func-
tional peptide hydrogels promoted cardiac repair [63]. 
Advances in tissue engineering, especially hydrogel engi-
neering, and delivery approaches that prolong the exist-
ence of EVs in the body would be effective.

Control of extracellular vesicle (EV) uptake 
through recipient cells
The amount of EV uptake by recipient cells should be 
directly regulated in order to achieve an appropriate 
therapeutic outcome. Disease progression can be halted 
by either increasing EV absorption or prevention of EV 
uptake by various means, which include controlling the 

environmental conditions. For example, uptake and accu-
mulation of human UC-MSC-exosomes by mouse osteo-
sarcoma K7M2 cells in nude mice reduced proliferation 
and induced apoptosis in the tumors [64]. There are 
numerous examples for reduction and inhibition of EV 
absorption to control their uptake.

Control of extracellular vesicle (EV) uptake by regulation 
of the recipient cell environment
Numerous studies have been conducted to investigate 
the effect of environmental conditions on the rate of EV 
uptake by recipient cells. EV dose, exposure time, pH, 
and temperature were assessed. The results indicated 
a time- and dose-dependent increase in EV internaliza-
tion under in vitro and in vivo conditions [3, 65–70]. pH 
can alter EV interactions with cells; therefore, an acidic 
microenvironment plays a key role in human mela-
noma progression by increasing EV uptake [20]. Some 
viral membrane fusion proteins are inactive at pH 7, but 
undergo conformational changes at pH 5, which leads to 
membrane fusion during EV uptake [71] and probably 
after internalization.

It has been shown that when recipient cells are incu-
bated at 4 °C, their capacity to internalize EVs is dramati-
cally reduced compared to incubation at 37 °C [72, 73].

Concurrent control of recipient cells’ environmental 
factors (pH, temperature, dose, and exposure time) reg-
ulate EV uptake. However, additional research is neces-
sary to reach more accurate, applicable findings for EV 
therapy.

Control of extracellular vesicle (EV) uptake by treatment 
strategies
There are various situations in EV therapy where it is 
necessary to reduce or inhibit its uptake [74] via either 
direct or indirect strategies. In indirect strategies, drugs 
such as ketotifen are used to reduce or halt EV secretion 
by donor cells [75]. Direct strategies are accomplished by 
treatment of EVs, the recipient cells, and recipient cell 
ECM components, which we intend to discuss.

Direct extracellular vesicle (EV) treatment  EVs secreted 
by cancer cells or microorganisms could result in disease 
progression by delivering bioactive molecules, such as pro-
teins and miRNAs to recipient cells. Reduction or inhibition 
of the uptake of EVs secreted by these cells could be used 
to treat certain illnesses. For instance, it has been demon-
strated that EVs derived from Helicobacter pylori preferen-
tially accumulate in the stomach where they induce inflam-
matory responses [76] and eventually result in stomach 
cancer. Therefore, we could prevent progression to stomach 
cancer by either reducing or halting uptake of Helicobac-
ter pylori EVs by recipient cells. Targeting superficial EV 
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markers with antibodies or other blocking molecules are 
presumed to reduce EV absorption. Nishida-Aoki et  al. 
used antibodies against human CD9 and CD63 to disrupt 
circulating EVs secreted by cancer cells. According to the 
results, macrophages eliminated the cancer EVs and signifi-
cantly reduced tumor metastasis [77]. Similarly, treatment 
of EVs with antibodies against tetraspanin-8, CD49d, inte-
grins, glycans, CD106, and CD11a or CD54 would reduce 
their uptake [78–81]. Among these, integrins are of utmost 
importance due to their critical role in EV to cell interac-
tions and EV internalization. EVs secreted by cancer cells 
assist with intercellular communication between cancer 
cells during metastasis [74]. Integrin beta 3 (ITGB3) is an EV 
surface integrin that facilitates EV uptake [82]; hence, pep-
tide blocking of ITGB3 could lead to inhibition of EV uptake 
and control of metastasis. Targeting the α6β4 and αvβ5 inte-
grins located on the EVs surface by integrin-blocking decoy 
peptides decreased exosome uptake [83]. Although various 
EV surface molecules and mechanisms could be employed 
to control EV uptake by recipient cells, discovering the most 
potent molecules at the EV surface is not unreasonable and 
could be promising for EV therapy.

Recipient cell treatment  Prevention of EV uptake can also 
be achieved through blocking recipient cell surface mol-
ecules with antibodies, treatment with small molecules, 
and by mimicking molecules. There was a reduction in EV 
uptake when monoclonal antibodies on the dendritic cell 
surfaces blocked integrins αv (CD51) and β3 (CD61), CD11a 
and its ligand CD54, and tetraspanins CD9 and CD81 
[80]. Heparin also blocks EV uptake. In another approach, 
researchers treated cells with a heparin sulfate mimetic 
molecule, which resulted in a dose-dependent reduction in 
EV uptake [33, 68]. Recipient cells pre-treated with choles-
terol-reducing agents (e.g., filipin) suppressed EV uptake by 
disrupting lipid raft–mediated endocytosis [70, 72]. A small 
molecule inhibitor of rac1, NSC23766, also inhibited micro-
glia uptake of EVs [84].

For ideal EV therapy, selective or targeted EV uptake 
should be inhibited in the recipient cells. For example, 
selective prevention of EV (that is released from cancer 
cells) absorption by immune cells could prohibit their sup-
pression and promote cancer treatment (Fig.  1). There-
fore, finding a proper method for treatment of secreted 
EVs or immune cells could be a valuable asset for disease 
treatment.

Treatment of recipient cell extracellular matrix (ECM) com-
ponents  EVs have a uniquely large surface area that can 
interact with both cells and biomolecules in the extracel-
lular microenvironment [85]. The ECM components are 
effective in EV trapping and uptake. For example, heparan 
sulfate proteoglycans (HSPGs) are found at the cell surface 
and in the ECM. Various complexes, including viral parti-
cles and lipoproteins, use HSPGs to facilitate their trans-
fer into cells [86]. Fibronectin is an ECM component that 
could simultaneously bind to HSPGs on the exosomal and 
plasma membrane surfaces, and facilitate cellular uptake 
of EVs [87]. A decrease in EV uptake following treatment 
with heparin sulfate mimetic molecules may be related to 
fibronectin binding [68]. Other ECM compounds may also 
play a role in EV uptake and blocking them can prevent this 
uptake. This field appears to have tremendous potential for 
research and clinical applications.

Extracellular vesicle (EV) uptake customization 
by novel EV engineering strategies
Despite significant improvements in the traditional strate-
gies for customizing EV uptake, there are numerous prob-
lems that exist such as rapid clearance, low EV uptake rate 
by recipient cells, and off-target effects. In recent years, 
research has shown that EV engineering can overcome 
these limitations; therefore, EV uptake can be customized 
as targeted drug delivery systems [43, 88, 89].

EV engineering procedures are performed by direct or 
indirect strategies in the presence and absence of genetic 
manipulation, which has been previously reviewed [7]. We 
intend to discuss recent advances in EV uptake engineer-
ing strategies in terms of customization and targeting of EV 
uptake.

Extracellular vesicle (EV) engineering strategies 
for improvement of innate targeting capacity
EVs have innate targeting that can be upgraded by EV 
engineering strategies to increase the efficiency of EV 
therapy (Table 2). The results of numerous reports have 
shown the innate capacity of EVs for specific cells or 
tissues. For example, EVs secreted by cortical neurons 
were selectively absorbed by neurons [90], and MSC-
exosomes specifically accumulated in the kidneys of a 
mouse model of glycerol-induced acute kidney injury 
compared to the healthy group [91]. Intrinsic tissue 
tropism and selective uptake of EVs depend on super-
ficial and integral EV cargos [92]. EV tropism can be 
engineered directly or indirectly in order to specifically 

Fig. 1  Schematic diagram that represents EV engineering for cancer therapy in clinical application. A Activation of immunomodulatory cells 
(including Treg) and inhibition of cytotoxic cells (including NK cells) by cancer cell EVs in order to suppress immune response and lead to metastasis. 
B Treatment of cancer cell EV to cease EV uptake by immune cells, in order to activate immune response and inhibit metastasis. C Loading 
chemotherapy drugs into EV and engineering EV uptake to treat cancers. D Three dimensional image of immunomodulatory cells (Green) and 
cytotoxic cells (Purple) which are respectively activated and inhibited by EVs (Blue) secreted by cancer cells (Pink)

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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modify the innate targeting of recipient cells. The exist-
ence of different integrins, CD63, complex of the tet-
raspanin 8 (TSPAN8), integrin α4, and glycans on the 
surface of the EV determines its tropism [79, 83, 93]. 
All have the capability to be engineered and regulate 
EV uptake [81]. Internal cargos are involved in EV tro-
pism. For example, circulating exosomal miRNAs play a 
role in organotropism of breast cancer metastasis [94]. 
Overexpression of Wnt4 in donor cells led to produc-
tion of transgenic exosomes that showed increased 
homing to the thymus compared to the un-engineered 
exosomes.[95]. A negative selection mechanism, by 
overexpression of CD47 on the EV surface, prevented 
EVs from uptake and elimination by phagocytic cells 
[96, 97], which resulted in an increased chance of EV 
uptake by their targeted cells.

The innate targeting of EV has high potential in can-
cer therapy. Exosomes secreted by metastatic cancer 
cells could be preferentially uptaken by specific host 
organ to organize the pre-metastatic niche via upregu-
lation of proinflammatory gene expression and immu-
nosuppressive cytokine, which leads to organotropic 
metastasis [98]. The amount and origin of EVs affect 
their organ-specific uptake during metastasis as the 
rate of EV uptake secreted by malignant cancer cells 
is more than benign cancer cells [99]. It has also been 
shown that targeting the integrins α6β4 and αvβ5 of 
exosomes reduced their uptake and metastasis to lung 
and liver, respectively [83]. Hence, metastasis might be 

controllable provided the recipient cells are prevented 
from uptaking these EVs, although this approach 
requires further research.

Since EVs are safe and have the capacity to carry 
desired antigens and deliver them to immune cells, they 
can be used for vaccine production. Dendritic cells as 
antigen-presenting cells regulate immune responses 
by releasing their exosomes that are innately uptake by 
immune cells such as T cells and B cells. EVs secreted 
by dendritic cells can be loaded by viral proteins (as a 
superficial or internal cargo) or mRNAs (as an inter-
nal cargo) in order to severely elevate specific CD8 ( +) 
T cell and B cell reactions and create more effective 
immunity [100]. Recently, Tsai et  al. has developed a 
COVID-19 vaccine by the EV-based mRNA delivery for 
the expression of viral antigens. After uptake and cargo 
delivery of these EVs, antigen-presenting cells express 
several viral antigen proteins that evoke CD4 + and 
CD8 + T cells for effective immune responses [101]. 
These EVs could be engineered for the improvement of 
their targeted delivery by tetraspanins or other superfi-
cial proteins.

Overall, our knowledge about the innate 
organotropism of EVs is still in its infancy, and an 
accurate understanding of its mechanisms would be 
beneficial in the treatment of diseases. It seems that 
engineering of the EV surface and internal cargos have 
tremendous potential to improve innate tropism in tar-
geted EV uptake by their natural recipient cells for EV 
therapy.

Table 2  Extracellular vesicle (EV) treatment for preclinical studies in disease models

Disease models In vivo/in vitro Administration 
route

Delivery 
(sustained release/
injection)

Engineered/non-
engineered

Methods for Enhancing 
EVs therapeutic effects

References

Chronic liver failure In vivo Systemic Sustained release Hydrogel-mediated – [62]

Alzheimer’s disease In vivo Systemic Injection Targeted Engineering the dendritic 
cells to express Lamp2b 
fused to the neuron-spe-
cific RVG peptide for deliv-
ering exogenous siRNA

[43]

Breast cancer In vitro – – Engineered-targeted HEK293T cells transduced 
by a lentiviral vector 
bearing-LAMP2b-DARPin 
G3 chimeric gene for siRNA 
delivering

[88]

Parkinson’s disease In vivo/ in vitro Systemic – Engineered Catalase loading into 
exosomes by different 
methods

[125]

Cartilage damage In vivo/in vitro Local Injection – – [5]

Osteoarthritis In vivo Local Injection Engineered miR-140-5p-overexpressing 
in human synovial MSCs for 
the production of enriched 
EV

[4]
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Extracellular vesicle (EV) engineering strategies 
for artificial targeting
In this approach, we can customize EV uptake by 
increasing its affinity to the desired artificial recipient 
cells. For this purpose, researchers designed specific 
molecules that are synthetic mediators on the EV sur-
face to specifically bind to a molecule at the membrane 
surface of the desired target cells. Thus far, a number 
of bioengineering strategies have been developed, 
which can be categorized into four discrete approaches: 
receptor-ligand, enzymatic, and antigen–antibody or 
their combination.

In terms of the receptor-ligand approach, researchers 
modified EVs with ligands that could specifically bind to 
targeted cells [102]. For example, EVs were bioengineered 
to specifically bond to HER2/Neu by expressing designed 
ankyrin repeat proteins (DARPins) on the cancer cell 
membrane surface [88]. In order to deliver small inter-
fering RNAs (siRNA) specifically to brain cells, the EVs 
were isolated form dendritic cells that were genetically 
engineered to express Lamp2b, an exosomal membrane 
protein. Lamp2b fuses to the neuron-specific rabies viral 
glycoprotein (RVG) peptide. This approach led to an 
increase in targeted EV uptake by neurons [43]. Transfer-
rin-conjugated magnetic particles bound to a transferrin 
receptor on the EVs surface increased EV uptake by can-
cer cells in the presence of an external magnetic field, and 
consequently suppressed tumor growth [103].

A second strategy has emerged that target antigens by 
specific antibodies. Antigens are biomolecules involved 
in ligand-receptor interactions that have the ability to 
stimulate the host immune response. Epidermal growth 
factor receptor (EGFR) is overexpressed in cancer cells. 
Therefore, Cheng et  al. engineered anti-CD3 and anti-
EGFR on the surfaces of exosomes to cross-link T cells 
and EGFR + cancer cells in order for the T cells to elimi-
nate the cancer cells [89]. Recombinant fusion proteins, 
including nanobodies against the EGFR and lactadherin 
(C1C2) domains could bind to phosphatidylserine (PS) 
on the EV surface by C1C2. Therefore, this recombi-
nant protein could provide a specific binding site and 
boost cancer cell uptake of the EVs that contained an 
anti-cancer drug [104]. The addition of nanobodies on 
the surface of EVs via glycosylphosphatidylinositol (GPI) 
changes EV cell targeting by greatly improving EV bind-
ing to cancer cells for chemotherapy drug delivery [105]. 
There is the possibility to directly embed a tissue-specific 
antibody or homing peptide on the EV surface in order 
to facilitate their uptake by target cells, including cardiac 
fibroblasts, myoblasts and ischemic myocardium [1]. In 
order to improve muscle function in a mouse model of 
muscular dystrophy, researchers attached peptide CP05 
to CD63 on the EV surface to change EV homing and 

biodistribution, and increase delivery of a splice-correct-
ing oligomer to muscle cells [106].

Artificial chimeric exosome is a new strategy that could 
be useful for anti-phagocytosis and targeted cancer ther-
apy. These artificial exosomes are constructed by inte-
grating cell membrane proteins from multiple cell types 
(red blood cells and cancer cells) into synthetic phos-
pholipid bilayers. [107]. A biomimetic artificial strategy 
is exploited to prepare liposome-like nanovesicles that 
artificially have a variety of targets for protein/peptide 
ligands such as anti-HER2 affibody (a type of small pro-
tein engineered to an antibody mimetic) while containing 
chemotherapy drugs for enhanced targeted drug delivery 
[108].

The use of enzymes that degrade ECM on the EV sur-
face may increase EV uptake. Hyaluronan is a glycosa-
minoglycan that can accumulate in the ECM of tumors. 
GPI-anchored PH20 hyaluronidase on an exosome sur-
face degraded tumor ECM and enhanced both T cell and 
drug permeability in the tumor milieu in order to destroy 
the cancer cells [109].

Bioengineering of EV surface molecules, production of 
chimeric and biomimetic EVs and, particularly the poten-
tial of tetraspanins in an EV membrane, are proposed 
strategies that could be efficient for disease treatment. 
Notably, targeted artificial EVs appear to have a prom-
ising future for treatment due to their potential to fully 
customize surface design and internal cargos.

Extracellular vesicle (EV) engineering strategies 
for an extended circulation time and decreased clearance
One of the major issues in EV administration is their 
short half-life in the circulation because of their rapid 
clearance. There are various strategies to increase both 
the EV half-life and their uptake. The addition of polyeth-
ylene glycol (PEG) to the EV surface increases circulation 
time, cell specificity, and reduces immunogenicity [110]. 
They prepared epidermal growth factor receptor nan-
obody-PEG-lipids and then mixed with EVs. Kamerkar 
et al. have reported that the presence of CD47 on EV sur-
face inhibited EV uptake and clearance from the circula-
tion by macrophages and monocytes which increased the 
chance of EV uptake by recipient cells [97]. Accordingly, 
amplification of CD47 expression on the surface of EV 
through engineering of donor cells may help increase EV 
circulation time.

Macrophages recognize the negative charge of PS, 
which leads to an increased clearance of IV injected EVs 
[2]. We assume that reduction of PS groups in the EV 
membrane or neutralizing the surface negative charge 
would result in a decrease of EV uptake by macrophages.

Research on nanoparticles has shown that particle 
size affects their clearance [3] because nanoparticles 
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smaller than 100  nm are less prone to elimination by 
macrophages. EVs are nanoparticles that apparently 
obey this rule.

All in all, the concurrent use of two or more of the 
previously mentioned approaches such as PEG, CD47, 
PS, or EV size would increase the EV circulation time 
in the blood and delay their clearance. This would 
increase the chances of EV uptake by recipient cells. 
Further research in this context is very promising for 
the therapeutic applications of EVs.

Post extracellular vesicle (EV) uptake engineering 
strategies
In order to have ideal use of EV capabilities for their 
uptake, the fate of absorbed EVs inside the recipient 
cell must be taken into consideration. After internali-
zation, EVs undergo recycling, degradation, and deliv-
ery to the cytosol [111] or endoplasmic reticulum, 
depending on the type of disease and its progression 
[112–114] (Fig.  2, Table  3). EV should be engineered 
to increase their uptake and determine their fate in the 
receipt cells, which would likely result in a more effi-
cient EV therapy. Nakase et al. designed a pH-sensitive 
fusion polypeptide and cationic lipid material to con-
currently anchor on the surface of an exosome. Their 
findings showed improved cellular EV uptake and an 
efficient cytosolic release [111]. Conversely, neutrali-
zation of endosomal pH and cholesterol accumulation 
in endosomes by Bafilomycin A1, as a Vacuolar-type 
ATPase (V-ATPase) inhibitor, blocked cytosolic release 
of the endosomal cargos [114].

EVs secreted from cancer cells are supposed to medi-
ate cell–cell communication during metastasis [74], 
which is associated with an endosomal recycling path-
way in cancer cells. Recycling endosomes is the re-
release of internalized EVs to the extracellular space 
via recipient cells. For instance, recycling of internal-
ized fibroblast-derived CD81 + EVs by breast cancer 
cells could trigger their migration for metastasis [115]. 
Therefore, we assume that metastasis could be inhib-
ited through blocking EVs recycling and compel inter-
nalized EVs to be degraded.

Rab5 and Rab7 are small GTPases that regulate the 
essential steps in EV endocytosis, their cargo uptake 
into early endosomes, and transport to lysosomes for 
degradation [116]. Therefore, they may be good engi-
neering candidates for post-EV uptake.

The best engineering approach should target several 
goals by using a limited number of modifications. Post-
EV uptake engineering is still in its infancy, and its per-
spective research and clinical applications appear to be 
promising for EV therapy.

Fig. 2  Schematic diagram that represents secretion of EVs by 
donor cells and EV uptake by recipient cell through contact without 
internalization (a), membrane fusion (b), internalization (c) and, post 
internalization fate of uptaken-EV including delivery (d), degradation 
(e) and recycling (f )

Table 3  Extracellular vesicle (EV) uptake routes

EV uptake route Docking goal Mechanism Intracellular fate References

Membrane fusion Cargo release directly into the cytosol Direct membrane fusion Delivery of cargo directly into the cytosol [96, 114]

Contact without 
internalization

Trigger signaling pathways Signaling pathways Activation of signaling pathways [126]

Internalization Internalization Endocytosis Recycling [96, 114]

Phagocytosis Degradation

Macropinocytosis Delivery
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Clinical translation of engineered EV
Preclinical studies have shown that the EV engineering 
strategies have a high potential for control of challenges 
allocated to EV administration and their subsequent 
clinical translation in an efficient way. Despite satisfac-
tion with the benefits of engineered EV, their probable 
side effects should not be neglected. These side effects 
might be related to the process of preparing, engineer-
ing, isolating, purification, and administration routes of 
EV. Thus far, approximately 50 clinical trials related to 
EV have been recorded on clinicaltrials.gov, and some 
of them are designed based on internal cargo engineered 
EV (including exosomes loaded with curcumin, antigen, 
and siRNA against KrasG12D) [117]. It is predictable that 
the designing of clinical trials will soon reach the field of 
targeted EV uptake engineering.

Currently, the various methods for production, engi-
neering, and applications, are used for EVs, it is expected 

that these different methods will gradually be standard-
ized and defined. In this regard, Minimal Information for 
Studies of EVs (MISEV) guidelines that were released by 
the International Society for EVs (ISEV) are the impor-
tant step for the standardization of research and clinical 
applications of EV. It seems due to more complex proce-
dures, we need to develop special comprehensive sup-
plement guidelines and standardization protocols of EV 
engineering for clinical application.

Conclusion and future perspectives
In recent years, researchers have paid increasing atten-
tion to the therapeutic effects of EVs because of their 
innate therapeutic properties and capability to be engi-
neered. In order to optimize the use of EV therapeutic 
properties, engineering methods should be developed 
to overcome the limitations and challenges that include 

Fig. 3  Schematic diagram that represents the overview of an algorithm that could be used to refer to relevant databases that receive the target 
cell and tissue names, obtaining the relevant recorded information from these tissues and, after processing, can provide output to researchers. 
The output could provide the best suggestions for: selecting a proper cell source, extracellular vesicle (EV) administration and delivery, and EV 
engineering and donor cells for customizing EV uptake for therapeutic use
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rapid clearance of EVs and their targeted delivery. EVs 
have the potential to be engineered in terms of internal 
and superficial cargo for EV uptake. Therefore, although 
EVs have innate tropism, EV engineering could enhance 
their innate targeting of recipient cells and they can also 
be engineered artificially for the desired target cells. 
Hence, we could regulate and customize the EV uptake 
by the recipient cells and consequently upgrade the EV 
therapeutic efficiency. It seems that due to increasing 
progress in EV engineering, the future perspective of EV 
uptake engineering as disease treatment could be very 
promising, especially when using a combined strategy of 
traditional and engineering approaches that complement 
each other. Today, tremendous research has been con-
ducted in terms of EV uptake. The increased amount of 
EV data mandates that researchers generate more com-
prehensive databases that can provide relevant services. 
One of the main services of these databases could pertain 
to customizing EVs absorption for research and clinic 
use because of the influence of numerous biological, bio-
chemical, and biophysical factors. The best EV uptake 
engineering needs a professional, strong algorithm that 
asks the target cell and subsequently refers to the data-
bases. According to available records, the most appropri-
ate options for the best selection of the cell source, type 
of cell culture, extraction method, purification route, 
storage condition, administration route and delivery of 
the EVs to the recipient cells, and the method of treat-
ing the recipient cell and the best engineering method 
for donor cells and EVs could be determined to custom-
ize EV uptake. Figure 3 provides an outline of a required 
algorithm. Overall, increased research in EV uptake engi-
neering for EV therapy appears promising and can make 
a considerable contribution to disease treatment in the 
near future.
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