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Background. It has been known that microRNAs (miRNAs) regulate the expression of multiple proteins and therefore are likely
to emerge as more effective targets of selective therapeutic modalities for breast cancer. Although recent lines of evidence have
approved that miRNAs are associated with the most common molecular breast cancer subtypes, the studies to breast cancer
subtypes have not been well characterized. Objectives. In this study, we propose a silico method to identify breast cancer subtype
related miRNAs based on two constructed miRNAs interaction networks using miRNA-mRNA dual expression profiling data
arising from the same samples.Methods. Firstly, we used a new mutual information estimation method to construct two miRNAs
interaction networks based onmiRNA-mRNA dual expression profiling data. Secondly, we compared and analyzed the topological
properties of these two networks. Finally, miRNAs showing the outstanding topological properties in both of the two networks were
identified. Results. Further functional analysis and literature evidence confirm that the identified potential breast cancer subtype
relatedmiRNAs are essential to unraveling their biological function.Conclusions.This study provides a new silicomethod to predict
candidate miRNAs of breast cancer subtype from a system biology level and can help exploit for functional studies of important
breast cancer subtype related miRNAs.

1. Introduction

Stratification of breast cancer patients according to their clin-
ical subtype and prognosis is a desirable goal in breast cancer
treatment in order to achieve a better personalized medicine.
Although still in the early stages of research, molecular breast
cancer subtypes may become useful in planning treatment
and developing new therapies. As themost common subtype,
luminal-A exhibited risk factors typically reported for breast
cancer in previous studies, including inverse associations for
increased parity and younger age at first full-term pregnancy
[1]. As another important breast cancer subtype, basal-like
exhibited several associations that were opposite to those
observed for luminal-A, including increased risk for parity
and younger age at first term full-term pregnancy [1]. In
addition, some studies foundwomenwithmultiple live births
who did not breastfeed and women who used medications
to suppress lactation were at increased risk of basal-like, but
not luminal-A. From molecular biology level, it has been
reported luminal-A and basal-like subtypes have distinct and

reciprocal gene expression profiles as well as large differences
in clinical characteristics, including survival [2]. Luminal-
A is one of ER-positive subtype since it has an expression
pattern similar to the luminal epithelial cells of the breast
and luminal-A tumors tend to have the best prognosis [3]. In
contrast, basal-like tumors are characterized by an expression
signature similar to that of the basal/myoepithelial cells of the
breast and are reported to be associated with aggressive
behavior and poor prognosis [2, 4, 5]. Therefore, identifi-
cation of breast cancer subtype related biomarkers is very
important to help in finding new treatment strategies.

As novel biomarkers,miRNAs have been proven to be fre-
quently deregulated in human breast cancer by recent studies
[6, 7]. A large number of studies have suggested that miRNAs
play essential roles in biological processes andmight correlate
with specific clinical features of breast cancer, such as estro-
gen and progesterone receptor expression, tumor stage, vas-
cular invasion, and proliferation index.Therefore, the identi-
fication ofmiRNA expression-based breast cancer subtypes is
considered a criticalmeans of prognostication.With the rapid
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development of system biology methods, an increasing num-
ber of studies have prioritized some novel miRNAs related to
breast cancer or breast cancer subtype as well as understand-
ing their properties. By integrating different data type, such
as microarray data, genotype data, DNA methylation data,
and the network or pathway information, into the prognostic
biomarker discovery, the prediction performance will be
improved greatly. Indeed, the significant progress has been
made for the identification and interpretation of the cancer-
related miRNAs with the aid of system biology methods.
For example, it has been reported that potential candidate
disease-relatedmiRNAs can be identified by comparing simi-
larities betweenmiRNAswith knownmolecular functions [8]
or associated with specific disease [9]. Also, some studies
inferred the functions of miRNAs by analyzing the proper-
ties of miRNA targets [10]. Considering that the targeting
propensity of miRNA can be largely explained by the func-
tional behavior of protein connectivity in the protein-protein
interaction network, Sun et al. proposed a novel miRFunSim
method to quantify the associations between miRNAs in
the context of protein interaction network [11]. Specifi-
cally, for the identification of important biomarkers of pri-
mary breast cancer subtypes, a recent advantage is com-
bining genomic DNA copy number arrays, DNA methyla-
tion, exome sequencing, messenger RNA arrays, microRNA
sequencing, and reverse-phase protein arrays to find each of
breast cancer subtypes showing significant molecular hetero-
geneity [12]. Furthermore, a lot of integrative methods that
combine the target-prediction algorithms with both mRNA
andmiRNA expression data have become popular. For exam-
ple, Luo et al. performed a systematic evaluation of functional
miRNA-mRNA interactions associated with the invasiveness
of breast cancer cells using a combination of integrated
miRNA and mRNA expression profiling, bioinformatics pre-
diction, and functional assays [13]. Lionetti et al. identified the
miRNA expression patterns and miRNA-mRNA regulatory
network in distinct molecular groups of multiple myeloma
usingmiRNA-mRNAdual expression profile data [14]. Zhang
et al. integrated the miRNA and gene expression profiles in
a multiple nonnegative matrix factorization framework to
identify the miRNA-gene regulatory comodules [15]. Most of
these methods used linear correlation coefficients to measure
the relationship between miRNAs and their targets.

However, sometimes the Pearson correlation coefficient
cannot detect a significant correlation when two variables are
not in linear dependence. Fortunately, statistical correlation
measures based on mutual information are able to capture
more features of the data than the linear Pearson correlation
coefficient [16]. Therefore, different from other studies, the
joint analysis of miRNA-mRNA dual expression profiling
data arising from the same samples provided here is using
a newly developed mutual information estimation method
to construct two miRNA interaction networks based on the
expression profiling data of miRNA and its targets (mRNA),
respectively. A comparison of topological properties between
these two networks allowed us to identify some key miRNAs
which have been confirmed to be associated with breast can-
cer subtype by recent evidence. Further functional analysis
and literature evidence confirm that the identified potential

breast cancer subtype related miRNAs are essential to unrav-
eling their biological function. This study provides a new
silico method to predict candidate miRNAs of breast cancer
subtype from a system biology level and can help explore the
functional studies of clinically important breast cancer sub-
type related miRNAs.

2. Materials and Methods

2.1. Data Source. In this analysis, we selected mRNA expres-
sion profiling data including 24,817 mRNAs (GSE19783)
reported by Enerly et al. [17] to implement our analysis,
while 15 basal-like samples and 41 luminal-A samples were
included. For the miRNA expression profiling data, the
original microarrays covered 799 miRNAs arising from the
Agilent Technologies.miRNA expression status was scored as
present or absent for each gene in each sample by default set-
tings.miRNAs in samples that were run in replicate were con-
sidered present if scored in one of the two arrays.Those miR-
NAs that were detected in less than 10% of the samples were
excluded.This filtering resulted in 489miRNAs considered to
be expressed in this set of humanbreast tumors. In the present
study, we directly selected this filtered miRNA expression
profiling data (GSE19536) provided by Enerly et al. [17]
to implement our analysis. We considered the most basic
microarray analysis approach, SAM (significance analysis of
microarrays) [18], as a filter to extract statistically significant
differential expression of miRNAs that distinguish the recip-
rocal basal-like and luminal-A breast cancer subtypes. In this
method, repeated permutations of the data are used to deter-
mine if the expression of any miRNA is significant related
to the phenotype. To get more information, 𝑃 < 0.05 and
false discovery rates (FDR) <0.1 is often as a popular and less
stringent filter criterion to select a larger set of differentially
expressed genes [19]. We therefore also used this criterion
to determine miRNAs with various differentially expressed.
According to this criterion, 201 differentially expressed miR-
NAs are identified and will be used for further analysis.
We defined a breast cancer subtype related miRNA that is
luminal-A trend when it is significant (𝑃 < 0.001 and FDR <
0.05) and shows higher expression in luminal-A sample than
in basal-like sample. On the contrary, a miRNA is basal-like
trend when it is significant (𝑃 < 0.001 and FDR < 0.05) and
shows higher expression in basal-like sample than in luminal-
A sample.

2.2. Construction of miRNAs Interaction Networks

2.2.1. Construction of miRNAs Interaction Network Using
miRNA Expression Profiling. In the practice, inferring large
networks using mutual information (MI) has been shown to
be an effective strategy. In this analysis, we used a newly devel-
oped mutual information estimation method, parmigene
(parallel mutual information estimation for gene network
reconstruction) [20], to construct miRNAs interaction net-
work.Thismethod implements amutual information estima-
tor based on 𝑘-nearest neighbor distances that is minimally
biased with respect to the other methods and uses a parallel
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computing paradigm to reconstruct biology regulatory net-
works. For each triple consisting of nodes 𝑖, 𝑗, and 𝑘, this
algorithm considers each edge of the triple independently
and removes the weakest link if MI(𝑖; 𝑗) < MI(𝑗; 𝑘) − 𝜀 and
MI(𝑖; 𝑗) < MI(𝑖; 𝑘)−𝜀 according to the threshold. In this anal-
ysis, we selected 0.05 as the threshold to remove the weakest
edge of each triple of nodes.Theprogramwas implemented in
parmigene package of R software (http://www.r-project.org/).
After assembling all reservedmiRNA-miRNA pairs, miRNAs
interaction network based on miRNA expression profiling
data is constructed.

2.2.2. Construction of miRNAs Interaction Network Using
the Reconstructed miRNA Expression Dataset. We know that
miRNA can act by binding to the complementary sites on the
3 untranslated region (UTR) of the target gene to induce
cleavage with near perfect complementarity or to repress pro-
ductive translation [21]. Therefore, exploring the relation-
ships between the targets of miRNAs might reflect partly
the potential relationships between miRNAs. Based on this
assumption, we constructed another miRNAs interaction
network using the reconstructedmiRNAs expression dataset.
This process can be described as follows. Firstly, for each
identified differentially expressed miRNA, we got its target
genes from MicroCosm Targets database (http://www.ebi.ac
.uk/enright-srv/microcosm/htdocs/targets/v5/), in which the
candidate miRNA-target relationships were mostly predicted
by miRanda algorithm [22]. Secondly, we defined an activity
score for each miRNA as the summary of the expression
values of all mRNAs targeted by this miRNA. In this analysis,
we used principal component analysis (PCA) method to
get the summary of all targets of each miRNA. The PCA
technique can effectively characterize the internal structure
of high dimension dataset by preserving the variance in the
data while transforming the data into low dimension space.
Finally, we extracted the first principal component from PCA
which was used as the activity score for the corresponding
miRNA. After assembling the first principal component
(activity scores) of all miRNAs, the reconstructed miR-
NAs expression dataset was generated. In this dataset, each
miRNA was expressed by a linear combination of the expres-
sions of all its targets for each sample. For this reconstructed
miRNAs expression dataset, we still used the mutual infor-
mation estimationmethod, parmigene, as described above to
construct the miRNAs interaction network.

2.3. Identification of Breast Cancer Subtype Related miRNAs
from Two Constructed miRNAs Interaction Networks. In this
study, we analyzed and compared the topological properties
between two constructed miRNAs interaction networks.
Generally, hubs in cellular networks are central players
involving in broadly biochemical and genetic events [23]; we
therefore focused our attention on those hubs. We calculated
some topological properties of these hubs, such as between-
ness and closeness.While betweenness is a centralitymeasure
of a vertex within a graph, nodes that have a high probability
to occur on a randomly chosen shortest path between two
randomly chosen nodes also have a high betweenness [24].

Closeness is the reciprocal of the sum of all the geodesic
(shortest) distances from a given node to all other nodes [24].
In otherwords, amiRNAwith higher betweenness andhigher
closeness means that it is on higher number of shortest paths
betweenmiRNAs, and this miRNA is important [25]. Indeed,
some studies have approved that the topological properties
of disease genes are very different from those of nondisease
genes [26, 27] in gene-gene network. For example, disease
genes tend to interact withmore genes than nondisease genes.
These studies indicate that the gene-gene network can pro-
vide candidate genes for some diseases. Similarly, we assumed
the miRNAs showing the outstanding topological properties
in miRNA-miRNA network might be the potential disease
miRNAs. Therefore, we focused on those common hub miR-
NAs showing the outstanding topological properties shared
by these two constructed miRNAs interaction networks as
candidatemiRNAs and confirmed their potential importance
in breast cancer subtype.

2.4. Comparison of Subtype Classification Performance. To
evaluate the ability of the candidate miRNAs extracted from
two constructed miRNAs interaction networks for discrimi-
nating breast cancer subtype, we defined twomiRNA groups:
one is the miRNAs group with the common hub miRNAs
shared by two constructed miRNAs interaction networks
and the other is the miRNAs group with 201 differentially
expressed miRNAs. We applied four classifiers: naı̈ve Bayes
[28], 𝑘-nearest neighbor (𝑘NN) [29], support vector machine
(SVM) [30], and random forests (RF) [31] to compare the sub-
type classification performance of these two miRNAs groups
when they are taken as predictor variables to classify samples.
We used 5-fold cross validation to assess the classification
accuracy rate of these different machine-learning methods.
We set 𝑘 at three in 𝑘-nearest neighbor program and took
radial basis function (RBF) as the kernel function in the sup-
port vector machine program. For random forests program,
5,000 trees were constructed. Original miRNA expression
dataset and the reconstructed miRNA expression dataset
arising from PCA were used to implement this process,
respectively.

2.5. A Global Test for Candidate miRNAs Group. To explore
whether the identified candidate miRNAs group extracted
from two constructed miRNAs interaction networks is asso-
ciated with breast cancer subtype, we used Goeman’s global
test here [32] to determine its significance. Global test can
determinewhether the global expression pattern of a group of
genes (instead ofmiRNAs in our study) is significantly related
to the clinical outcome.

2.6. Survival Analysis for Candidate miRNAs. To explore
whether candidate miRNAs extracted from two constructed
miRNAs interaction networks are significantly correlated
with survival, we performed Kaplan-Meier (KM) survival
analysis for these candidatemiRNAs. In this analysis, samples
were classified using 𝐾-means clustering based on candidate
miRNAs expression levels into two groups which were
defined as luminal-A trend or basal-like trend according to
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the proportion of two breast cancer subtype samples. In other
words, if the predicted group arising from 𝐾-mean cluster
includes greater number of luminal-A samples than basal-
like samples, this group is defined as luminal-A trend and
vice versa. We used log-rank test to compare the two survival
groups (luminal-A trend and basal-like trend) on the basis of
the identified candidate miRNAs. The flow chart of our work
was shown in Figure 1.

3. Results

3.1. Construction of miRNAs Interaction Networks

3.1.1. Construction of miRNAs Interaction Network Using
miRNA Expression Profiling. After performing the mutual
information (MI) estimation using the original miRNA
expression profiling data, we obtained miRNAs interaction
network in which 1,413 miRNAs interaction relationships
were included. While miR-522 and miR-519a showed the
strongest interaction (MI = 2.238), followed by miR-155∗ and
miR-105 (MI = 2.176), this network was modeled as graph
in which each circle node represents miRNA and each blue
edge indicates the interaction between two miRNAs (see
Figure 2(a)). In Figure 2(a), the larger blue circle indicates the
miRNA with greater degree, whereas the smaller blue circle
indicates the miRNA with smaller degree.

3.1.2. Construction of miRNAs Interaction Network Using the
Reconstructed miRNA Expression Dataset. For each of 201
differentially expressed miRNAs, we extracted the first prin-
cipal component of all its targets. Generally, when the first
principal component by itself explains less than 40% of the
variance, more components should be needed (http://www
.mathworks.com/help/stats/feature-transformation.html). In
our analysis, the contributions of the first principal compo-
nent were all more than 40%, and theminimum contribution
of the first principal component was 44.7%. Therefore, for
each miRNA, we used the first principal component of all
its targets to represent its expression. For the reconstructed
miRNA expression dataset arising fromPCA,we still adopted
the samemutual information estimationmethod to construct
miRNAs interaction network. As a result, 1,466miRNA inter-
action relationships were included in this network. While
miR-29c∗ and miR-9 showed the strongest interaction (MI =
2.760), followed by miR-145∗ and miR-199a-5p (MI = 1.859),
interestingly,miR-9 andmiR-199a-5pwere all potential breast
cancer subtype relatedmiRNAs supported by recent literature
and clinical experiences [33, 34].This network was also mod-
eled as a graph in which each circle node represents miRNA
and each blue edge indicates the interaction between two
miRNAs (see Figure 2(b)). In Figure 2(b), the larger green
circle indicates the miRNA with greater degree, whereas
the smaller green circle indicates the miRNA with smaller
degree.

3.2. Identification of Breast Cancer Subtype Related miRNAs
from Two Constructed miRNAs Interaction Networks. Here,
we compared the network topological properties of these two

Table 1:The comparison of network topological properties between
two miRNAs interaction networks.

Network topological
properties

Using the original
miRNA expression

dataset

Using the
reconstructed miRNA
expression dataset
arising from PCA

Network edge 1,413 1,466
Avg. degree 14.06 14.81
Avg. betweenness 129.39 135.90
Avg. clustering
coefficient 0.072 0.177

Avg. closeness 0.437 0.424
Network density 0.070 0.074
Network
heterogeneity 0.268 0.439

Network
centralization 0.060 0.083

Characteristic path
length 2.294 2.380

Network diameter 4 5
Network radius 3 3
Avg: average.

constructed miRNAs interaction networks (see Figure 2(c)
and Table 1). From Figure 2(c) and Table 1, we found that the
topological properties of these two networks are very similar,
such as the network density (0.070 and 0.074, resp.), the
network centralization (0.060 and 0.083, resp.), the average
degree (14.06 and 14.81, resp.), the average betweenness
(129.39 and 135.90, resp.), and the average closeness (0.437
and 0.424, resp.). Now we focused our attention on those
hubs.We assumed that the degree of nodes followed a Poisson
distribution in a random network [35]; we calculated the
probability of 𝑃 (degree ≥ 𝑡) under the null hypothesis that
nodes in the network were connected randomly. The results
showed that a node with degree ≥20 in a random network is
a rare event (𝑃 < 0.05) under the null hypothesis. In order to
get more information, we relax the degree threshold to 15.
This assumption is consistent with some previous studies in
which a protein node with degrees ≥15 in a disease related
network is considered as a hub protein [36, 37]. Therefore, in
this analysis, we considered those miRNAs with degree ≥15
as hubs. By comparing these two networks, 34 common hubs
shared by them were identified (see Table 2). We found these
hub miRNAs were all breast cancer subtype related miRNAs,
while 15 miRNAs were basal-like trend and 19 miRNAs
were luminal-A trend. We calculated the average degree, the
average betweenness, and the average closeness of these hubs
across these two networks.We found hubs with higher degree
also show the higher betweenness and higher closeness. In
other words, a miRNA with higher betweenness and higher
closeness means that it is on higher number of shortest paths
between miRNAs, and this miRNA is important [25]. Note
that the first two principal components of the top ranked
miRNAs, such as miR-148b, miR-223, and miR-423-3p, also
classified the samples very well (see Figure 3). Some lines of
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näıve Bayes

Differentially expressed 

Mutual information estimation

+mRNA expression dataset MicroCosm Targets database

Principal component analysis

Reconstructed miRNA expression dataset

miRNAs interaction 

Hub miRNAs

Hub miRNAs

Candidate miRNAs

Comparison of classification 

Enrichment analysis

MISIM analysis

Global test
Survival analysis

Mutual information estimation

Topological properties analysis

Topological properties analysis

miRNAs interaction
 network

network

performance

miRNAs

näıve Bayes

m: the number of background genes

n: the number of target genes of candidate miRNAs
t: the number of genes in GO or KEGG

m

trn

0

50

100

150

34 candidate miRNAs
201 differentially expressed miRNAs

Original miRNA expression dataset

RF SVM kNN

Cl
as

sifi
ca

tio
n 

ac
cu

ra
cy

 (%
)

Reconstructed miRNA expression dataset

0

50

100

150

34 candidate miRNAs
201 differentially expressed miRNAs

RF SVM kNN

Cl
as

sifi
ca

tio
n 

ac
cu

ra
cy

 (%
)

miR-224 miR-494

let-7e
miR-10a

miR-96 miR-15a miR-663

miR-650

miR-135b

miR-452
miR-517a

miR-223
miR-34a

miR-19a
miR-155

miR-487b

Ab
s. 

co
rr

el
at

io
n

1

0.8

0.6

0.4

0.2 Survival of two groups

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

Basal-like trend
Luminal-A trend

Months

Fr
ac

tio
n 

su
rv

iv
al

m
iR

-1
35

b

m
iR

-1
25

a-
5p

m
iR

-1
46

b-
5p

m
iR

-1
93

a-
5p

m
iR

-7
68

-5
p

m
iR

-1
99

a-
5p

m
iR

-4
87

b
m

iR
-6

50
le

t-7
e

m
iR

-2
24

m
iR

-4
52

m
iR

-4
23

-3
p

m
iR

-4
32

m
iR

-3
42

-3
p

m
iR

-2
23

m
iR

-1
55

m
iR

-1
42

-3
p

m
iR

-1
48

b
m

iR
-5

17
a

m
iR

-1
9a

m
iR

-1
0a

m
iR

-1
82

m
iR

-9
6

m
iR

-3
4a

m
iR

-1
5a

m
iR

-6
63

m
iR

-4
94

m
iR

-6
28

-3
p

m
iR

-3
38

-3
p

Assoc. with subtype = basal-like
Assoc. with subtype = luminal-A  

P
 v

al
ue

1

0.01

1e − 04

1e − 06

1e − 08

1e − 10

m
iR

-1
7
∗

m
iR

- 2
1
4
∗

m
iR

- 5
1
8

e∗
m

iR
- 3
0

a∗

m
iR

- 2
2
3
∗

miRNA expression dataset

hsa-miR-431*
hsa-miR-105
hsa-miR-155*
hsa-miR-25*
hsa-miR-548d-5p
hsa-miR-92a-1*
hsa-miR-223*
hsa-miR-650
hsa-miR-545
hsa-miR-9
hsa-miR-9*
hsa-miR-135b
hsa-miR-106b*
hsa-miR-517b
hsa-miR-517a
hsa-miR-517c
hsa-miR-519a
hsa-miR-522
hsa-miR-521
hsa-miR-518e*
hsa-miR-516a-5p
hsa-miR-525-5p
hsa-miR-934
hsa-miR-885-5p
hsa-miR-615-3p
hsa-miR-449b
hsa-miR-449a
hsa-miR-375
hsa-miR-26b*
hsa-let-7e*
hsa-miR-149
hsa-miR-499-5p
hsa-miR-29b-2*
hsa-miR-190b
hsa-miR-33b
hsa-miR-10a*
hsa-miR-191
hsa-miR-489
hsa-miR-34c-5p
hsa-miR-409-5p

L_
11

L_
10

L_
34

L_
33

L_
12

L_
31

L_
30

L_
39 L_

4
L_

40
L_

21
L_

23
L_

27
L_

22
L_

32
L_

16 L_
8

L_
35

L_
13

L_
28

L_
24 L_

7
L_

20
L_

15
L_

17
L_

14
L_

41
L_

19 L_
6

L_
37 L_

1
L_

18
L_

26
L_

29 L_
5

L_
2

L_
3

L_
9

L_
25

L_
36

L_
38 B_

8
B_

15 B_
2

B_
11 B_

9
B_

4
B_

5
B_

13
B_

14 B_
3

B_
10 B_

6
B_

1
B_

12 B_
7

Log rank P = 0.3364

Figure 1: The flow chart of the method.



6 BioMed Research International

(a)

(b)

0

10

20

30

40

miRNA Reconstructed miRNA
expression expression

miRNA Reconstructed miRNA
expression expression

miRNA Reconstructed miRNA
expression expression

D
eg

re
e

0

200

400

600

Be
tw

ee
nn

es
s

0.2

0.3

0.4

0.5

0.6

Cl
os

en
es

s

(c)

Figure 2: Two constructed miRNAs interaction networks. (a) miRNAs interaction network using the original miRNA expression profiling
data. The larger blue circle indicates the miRNA with greater degree and vice versa. (b) miRNAs interaction network using the reconstructed
miRNA expression dataset.The larger green circle indicates the miRNAwith greater degree and vice versa. (c)The comparison of topological
properties (average degree, average betweenness, and average closeness) between two miRNAs interaction networks.
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Table 2: 34 common hub miRNAs shared by two miRNAs interac-
tion networks.

miRNA Avg. degree Avg.
betweenness Avg. closeness

miR-338-3p 25.0 357.936 0.4865
miR-148b 24.0 356.126 0.4755
miR-223 22.5 225.153 0.4645
miR-223∗ 22.5 225.015 0.4645
miR-423-3p 21.0 259.025 0.4735
miR-768-5p 21.0 248.056 0.4645
miR-125a-5p 20.5 218.049 0.4670
miR-432 20.5 228.476 0.4590
miR-193a-5p 20.0 182.244 0.4640
miR-487b 20.0 314.999 0.4640
let-7e 19.5 229.821 0.4575
miR-142-3p 19.5 175.504 0.4600
miR-199a-5p 19.5 247.286 0.4695
miR-19a 19.5 137.946 0.4645
miR-224 19.5 217.737 0.4725
miR-30a∗ 19.5 190.177 0.4590
miR-452 19.5 281.325 0.4710
miR-146b-5p 19.0 241.451 0.4600
miR-34a 19.0 133.652 0.4540
miR-10a 18.5 161.993 0.4495
miR-135b 18.5 168.629 0.4600
miR-182 18.5 135.153 0.4525
miR-214∗ 18.5 177.383 0.4460
miR-517a 18.5 143.098 0.4600
miR-15a 18.0 211.751 0.4530
miR-628-3p 18.0 203.516 0.4475
miR-96 18.0 205.601 0.4525
miR-17∗ 17.5 128.604 0.4505
miR-342-3p 17.5 185.313 0.4470
miR-518e∗ 17.5 150.067 0.4515
miR-155 16.0 121.071 0.4420
miR-494 16.0 220.821 0.4430
miR-650 16.0 169.994 0.4490
miR-663 15.0 98.169 0.4350

literature evidence can support these results. For example,
miR-148b showing the outstanding topological properties
(average degree = 24, average betweenness = 356.126, and
average closeness = 0.4755) was approved a potential breast
cancer marker. Cuk et al. found miR-148b was significantly
upregulated in the plasma of breast cancer patients [38]. For
another example, miR-223 (average degree = 22.5, average
betweenness = 225.153, and average closeness = 0.4645),
a miRNA specific for IL-4-activated macrophages, was
detected within the exosomes released by macrophages and
was significantly elevated in the cocultivated SKBR3 and
MDA-MB-231 cells [39]. The invasiveness of the coculti-
vated breast cancer cells decreased when the IL-4-activated

macrophages were treated with a miR-223 antisense oligonu-
cleotide (ASO) that would inhibit miR-223 expression. In
addition, some othermiRNAs showing the outstanding topo-
logical properties were also approved to be potential breast
cancer or breast cancer subtype related miRNAs, such as
miR-423-3p (average degree = 21.0, average betweenness =
259.025, and average closeness = 0.4735), which was found
to be associated with the disease subtype and the survival of
breast cancer patients [40].

In order to explore whether removing important miR-
NAs can lead to the special network properties change, we
removed the top 10 rankedmiRNAs in the degree sequentially
from two individual networks and observed the change in the
networks topological properties. After removing the top 10
rankedmiRNAs with higher degree, the average degree of the
network based on the original miRNA expression dataset and
the network based on the reconstructed miRNA expression
dataset decreased from 14.06 to 12.86 and from 14.81 to 13.11,
respectively, whereas the average path length increased from
2.294 to 2.341 and from 2.380 to 2.445, respectively. In other
words, after removing the top 10 rankedmiRNAs sequentially,
we cannot find the obvious change of the network topological
properties, and the average path length increased smoothly as
the average degree decreased smoothly for these twomiRNAs
interaction networks (see Figure 4). Therefore, whether the
important miRNA or miRNA clusters can predominate in
the network topological properties needs to be validated.
Finally, the identified 34 common hub miRNAs showing the
outstanding topological properties will be as candidate miR-
NAs coming into our further analysis.

3.3. Comparison with Other Methods

3.3.1. Random Test. To validate whether the identified 34
hub miRNAs have higher similarity than general breast
cancer relatedmiRNAs, we download 86 breast cancer related
miRNAswith the keyword of “breast cancer” by searching the
miR2Disease database (http://www.mir2disease.org/) which
is amanually curated database that aims to provide a compre-
hensive record of miRNA deregulation involved in various
human diseases [41, 42]. When these miRNAs are mapped
into the miRNA expression dataset used in this paper, 57
miRNAs with the corresponding expression values were
obtained. From these 57 miRNAs, we randomly selected 34
miRNAs 1,000 times and calculated their average correlation
coefficients in each random condition.We found that none of
the average correlation coefficients in each random condition
is higher than the average of correlations of 34 candidate hub
miRNAs (𝑟 = 0.3095), and the maximum average correlation
coefficient is 0.2732 in random conditions (see Figure 5(a)).
Therefore, this result supports the assumption that candidate
hub miRNAs might have potential similar function.

3.3.2. Comparison with MISIM Tool. To further validate
whether the identified miRNAs have the similar function,
we used a miRNA similarity (MISIM) tool [9] to measure
the functional similarity of 34 shared hub miRNAs based on
humanmiRNA-disease association data and the structures of

http://www.mir2disease.org/
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Figure 3:The principal components scatter plots for (a) miR-338-3p, (b) miR-148b, (c) miR-223, and (d) miR-423-3p.The red circles indicate
the luminal-A samples while the green snowflakes indicate the basal-like samples.

the corresponding disease relationships. We used the recom-
mended MISIM threshold of 0.7 to determine whether two
miRNAs have a link. In other words, those miRNA pairs with
MISIM coefficient greater than or equal to 0.7 will be selected.
The results ofMISIManalysis showed thatmiR-223,miR-452,
let-7e, miR-10a, miR-663, andmiR-15a had a similar function
(see Figure 5(b)). Indeed, a few of the newly published
literature have approved someof thesemiRNAs are associated
with breast cancer subtype, such as miR-223. These results
suggest miRNA clusters identified by our methodmight have
potential functional congregation related to breast cancer
subtype.

3.3.3. Comparison with Our Previous Results. In addition, we
also compared these candidate miRNAs with our previously
identified miRNAs which were obtained from the con-
structed luminal-A trend and basal-like trend miRNA-
miRNA network based on the defined correlation coefficient
ratio (CCR) [19].We found that four identified commonmiR-
NAs (miR-199a-5p, let-7e, miR-342-3p, and miR-125a-5p)
were all associated with breast cancer subtype. Also, in the
acquired clusters (modules) of highly correlated miRNAs
using the weighted correlation network analysis (WGCNA)
method [19, 43], it is interesting to find that the candidate hub
miRNAs showed the similar expression, such as let-7e and
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miR-125a-5p; miR-182 and miR-96; miR-17∗ and miR-19a;
and miR-142-3p, miR-155, miR-146b-5p, and miR-223.

3.4. Comparison of Subtype Classification Performance. Aswe
expected, for the original miRNA expression profiling data,
the classification accuracy ofmiRNAs groupwith 34 common

miRNAs shared by two miRNAs interaction networks is up
to 100% using four classifiers. The classification accuracy of
miRNAs group with 201 differentially expressed miRNAs is
100%, 100%, 96.4%, and 94.6% for RF, SVM, 𝑘NN, and näıve
Bayes classifiers, respectively. For the reconstructed miRNAs
expression data arising from PCA, the classification accuracy
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Figure 6: (a) Global test for 34 candidate hub miRNAs shared by two constructed miRNAs interaction networks. This graph is based on the
decomposition of the test statistic into the contributions made by each of miRNAs in the alternative hypothesis. The graph illustrated the 𝑃
values of the tests of individual component miRNAs of the alternative. The plotted miRNAs are ordered in a hierarchical clustering graph.
The clustering method is average linkage. (b) Survival analysis for 34 candidate hub miRNAs shared by two miRNAs interaction networks.
Samples were classified using𝐾-means clustering based on the expression levels of 34 candidate miRNAs into two groups which were defined
as luminal-A trend or basal-like trend according to the proportion of two breast cancer subtype samples.

of miRNAs group with 34 common miRNAs shared by two
miRNAs interaction networks is 100.0%, 100.0%, 98.2%, and
98.2% for RF, SVM, 𝑘NN, and näıve Bayes classifiers, respec-
tively. The classification accuracy of miRNAs group with 201
differentially expressed miRNAs is 98.2%, 98.2%, 94.6%, and
92.8% for RF, SVM, 𝑘NN, and näıve Bayes classifiers, respec-
tively. It is well known that RF and SVM classifiers have a
higher classification performance than 𝑘NN and näıve Bayes
classifiers [31]. In other words, two classifiers with slightly
lower performance all showed that the miRNAs group with
34 common miRNAs shared by two miRNAs interaction
networks wasmore powerful than the other groupwhen used
as predictor variables to classify samples.This result supports
our hypothesis and can indicate that some hub miRNAs
showing the outstanding topological properties in the disease
network might contribute to disease or disease subtype or
serve as predictive biomarkers and effective targets for thera-
peutic intervention.

3.5. GO and KEGG Functional Enrichment Analysis. In this
analysis, for each of identified candidate miRNAs, we used
DAVID (http://david.abcc.ncifcrf.gov/) to perform GO and
KEGG functional enrichment analysis for its targets, and

a GO term (or a KEGG pathway) with a 𝑃 value of 0.01 was
considered to be significant.We did not perform themultiple
test correction to avoid a loss of true-positive results. The
KEGG enrichment analysis results showed that the targets of
the identified candidate miRNAs were significantly enriched
on the functions related to amino acid metabolism, such as
pyrimidine metabolism and histidine metabolism. This is in
agreementwith the previous findings thatmiRNAs selectively
regulate certain metabolic processes such as amino acid
biosynthesis, so that they can selectively control certain
metabolite production [44]. GO enrichment analysis results
showed that the function of genes targeted by some shared
hub miRNAs, such as miR-15a and miR-199a-5p, focused on
protein kinase activity.

3.6. AGlobal Test for 34 CommonHubmiRNAs Shared by Two
miRNAs Interaction Networks. To explore whether the iden-
tified 34 candidate hub miRNAs are associated with breast
cancer subtype, we used Goeman’s global test here to deter-
mine its significance. The results showed that this candidate
miRNAs set is strongly associated with the breast cancer sub-
type (𝑃 = 1.05𝐸−23) (see Figure 6(a)).When we selected the
top 10 hub miRNAs to perform the same analysis, the strong

http://david.abcc.ncifcrf.gov/
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association still existed (𝑃 = 1.96𝐸−11). FromFigure 5(a), we
can see thatmiR-135b displays a strong associationwith breast
cancer subtype (𝑃 = 2.35𝐸−12, FDR = 2.30𝐸−10) and shows
the obvious basal-like trend (the average expression in basal-
like samples is 2.231 times as that in luminal-A samples).
Recent evidence has approved miR-135b is upregulated in
basal-like tumor subtypes [17]. Moreover, an interesting
observation was that miR-34a showed an association with
luminal-A subtype (𝑃 = 2.55𝐸 − 05, FDR = 0.00024). Recent
studies found the tumors with high expression of miR-34a
represented aggressive breast cancers but the tumors with
lower expression suffered from significantly increased tumor
recurrence [45]. Thus, miR-34a presents a novel and peculiar
finding which needs to be explored in future studies [46].

3.7. Survival Analysis for 34 Candidate HubmiRNAs Shared by
Two miRNAs Interaction Networks. To explore whether the
identified 34 candidate miRNAs are significantly correlated
with survival, we performed Kaplan-Meier (KM) survival
analysis for these candidate miRNAs.The analysis found that
the two groups (luminal-A trend and basal-like trend) arising
from 𝐾-mean cluster did not display the obvious different
survival rate (log rank 𝑃 = 0.3364; see Figure 6(b)). This
result agrees with Enerly et al.’s study in which they did
not find any significant association of miRNAs to survival
in the entire cohort except miR-150 which was found to be
predictive of better prognosis within the corresponding set of
patients in part of the cohort [17]. Maybe an increased sample
size can change this case.

4. Discussion

As we know, cancer is the result of a complex multistep pro-
cess that involves the accumulation of sequential alterations
of several genes, including those encodingmicroRNAs (miR-
NAs). A large body of evidence has implicated that aberrant
miRNA expression patterns exist in most of human malig-
nancies. A single miRNA might have many targets that are
involved in different oncogenic pathways, and a small group
of miRNAs are consistently deregulated in a wide variety
of hematological malignancies and solid tumors; developing
strategies to silence or reexpress these miRNAs will likely
affect several groups of patients [47]. These findings suggest
that miRNA profiling has diagnostic and perhaps prognostic
potential [48, 49].

In this paper, we used a novelmutual information estima-
tion method to construct two miRNAs interaction networks
based on miRNA-mRNA dual expression profiling data and
identified the common hubmiRNAs shared by these two net-
works, some of which were approved to be breast cancer sub-
type related miRNAs. A key difference between our method
and other network-basedmethods is that we constructed two
miRNAs interaction networks utilizing miRNA-mRNA dual
expression profiling information arising from the same sam-
ples and identified the common miRNAs showing the out-
standing topological properties in both of the two networks.
Specifically, we know that the detection of dependencies
between biology random variables is highly useful in feature

selection, such as biomarker identification. However, many
dependencies between biomarkers are not linearly correlated,
and the classical correlation analysis cannot be used for
discovering nonlinear dependencies with no correlation.
Therefore, as a powerful method, mutual information plays
an important role in information theory which allows us to
identify general nonlinear dependencies between biomarkers
[50]. Our analysis integrated miRNA-mRNA target relation-
ships, principal component analysis, andmutual information
estimation, which will enhance the power for identifying
disease-related or disease subtype relatedmiRNAs.This study
provides a new analyzing method from system biology level
and helps to understand the relationship between miRNA
and mRNA in primary breast cancer subtype.

A noteworthy observation is that not all differentially
expressed miRNAs can be identified as breast cancer subtype
related although miRNA expression alone is sufficient to dis-
tinguish luminal-A from basal-like samples [17]. Therefore,
the joint analysis of miRNA and mRNA utilizing their dual
expression profiling information will make the findings more
accurate. Moreover, it is interesting to obtain some additional
information from this analysis. For example, among the 34
common hub miRNAs shared by two miRNAs interaction
networks we found that the let-7 family (let-7e) and miR-342
family (miR-342-3p) were included. Indeed, these miRNAs
displayed a more significant differential expression between
TP53 mutational statuses than between estrogen receptor
(ER) statuses [17] and have previously been linked to tumori-
genesis [51, 52].

We should point out the limitations of this analysis. In the
present study, we only analyzed the predicted direct miRNA-
target regulation owing to the computational complexity of
miRNA-mRNArelationships. In the practice,many predicted
algorithms focus on a similar feature set for their prediction
under the hypothesis that all miRNA target sites are evolu-
tionary conserved. Unfortunately, not all miRNA target sites
are conserved or adhere to canonical seed complementarity
[53].Therefore, using the predicted miRNA-target regulation
may have the potential impact on the final results. Specifically,
the lack of miRNA-mRNA dual expression profiling datasets
of breast cancer subtype and the relative small sample size
cause the limitations in the data analysis, and the results need
to be approved in the future studies when more miRNA-
mRNA dual expression profiling datasets of breast cancer
subtype are available.

5. Conclusion

In conclusion, utilizing miRNA and mRNA dual expression
profiling information to perform data analysis can help reveal
important findings with regard to the underlying molecular
mechanisms of breast cancer subtype and also help to identify
candidate breast cancer subtype related miRNAs using the
distinct network properties.
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