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ABSTRACT Epistasis is an important contributor to genetic variance. In inbred populations, pairwise
epistasis is present as additive by additive interactions. Testing for epistasis presents a multiple testing
problem as the pairwise search space for modest numbers of markers is large. Single markers do not
necessarily track functional units of interacting chromatin as well as haplotype based methods do. To
harness the power of multiple markers while minimizing the number of tests conducted, we present a low
resolution test for epistatic interactions across whole chromosome arms. Epistasis covariance matrices were
constructed from the additive covariances of individual chromosome arms. These covariances were
subsequently used to estimate an epistatic variance parameter while correcting for background additive
and epistatic effects. We find significant epistasis for 2% of the interactions tested for four agronomic traits
in a winter wheat breeding population. Interactions across homeologous chromosome arms were identified,
but were less abundant than other chromosome arm pair interactions. The homeologous chromosome arm
pair 4BL/4DL showed a strong negative relationship between additive and interaction effects that may be
indicative of functional redundancy. Several chromosome arms appeared to act as hubs in an interaction
network, suggesting that they may contain important regulatory factors. The differential patterns of epistasis
across different traits demonstrate that detection of epistatic interactions is robust when correcting for
background additive and epistatic effects in the population. The low resolution epistasis mapping method
presented here identifies important epistatic interactions with a limited number of statistical tests at the cost
of low precision.
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Epistasis is the interaction of alleles, or variants, at two or more loci.
Early observations of epistasis by Bateson (1909) were mostly qualita-
tive, noting that certain loci could mask the effects at other loci. Quan-
titative epistasis was first suggested and defined by Fisher (1919) who
coined the term ‘epistasy’. Statistically, epistasis is the deviation from an

additive expectation of two or more loci, often described as a change
in the slope of one locus conditional on the genotype at another locus
(Fisher 1919). Variance due to quantitative epistasis has been shown to
be an important contributor to the genetic variance in populations of
model organisms such as Arabidopsis (Malmberg et al. 2005; Kusterer
et al. 2007), as well as crop species such asmaize (Stuber andMoll 1971;
Melchinger et al. 1986; Lamkey et al. 1995; Wolf and Hallauer 1997;
Lukens and Doebley 1999) and rice (Yu et al. 1997; Li et al. 2008; Shen
et al. 2014). Significant epistasis has also been reported in allopolyploid
crops like cotton (Lee et al. 1968) and wheat (Crossa et al. 2010; Jiang
et al. 2017). Epistasis across subgenomes may be indicative of interac-
tions between homeologous loci, analogous to dominance in diploids,
and a possible contributor to that adaptation of these crops to a wide
landscape (Wendel 2000; Adams andWendel 2005; Chen 2010, 2013).
However, there is still little direct evidence that epistasis between
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homeologous loci is a large contributor to the total genetic variance in
allopolyploids (Santantonio et al. 2018a,b).

Epistasis has also been shown to be an important contributor to
evolution (Doebley et al. 1995; Lukens and Doebley 1999; Carlborg
et al. 2006; Phillips 2008; Hansen 2013; Doust et al. 2014). There has
been considerable effort over the past several decades to incorporate
these non-additive genetic factors into the genotype to phenotype map.
More recently these effects have been incorporated into whole genome
prediction models (Vitezica et al. 2013; Martini et al. 2016; Jiang and
Reif 2015; Akdemir and Jannink 2015; Wolfe et al. 2016; Akdemir et al.
2017; Jiang et al. 2017).

In practice, detecting epistatic interactions is difficult. The pairwise
search space is large even for modest numbers of markers. For example, a
population genotyped with 100 markers would require 4,950 tests for
pairwise epistasis. With advances in genotyping technologies, the number
of DNAmarkers available is typically much larger, in the tens to hundreds
of thousands, and more recently in the millions. In this study, 11,604
markerswereavailable,whichwouldresult inapproximately67million tests
for pairwise epistasis. A 0.05 genome-wide Bonferroni significance thresh-
old for all pairwise epistasis tests in this study would then be 7:4 · 10210:

Several methods have been proposed to reduce the multiple testing
problem. Epistasis is partitioned in part to the additive variance, particu-
larly when allele frequencies differ from 0.5 at either locus (Hill et al. 2008).
Therefore, genome-wide scans can be used to first identify variants with a
significant additive effect, then test only all pairwise variants identified in the
scan (Carlson et al. 2004). This can greatly reduce the number of epistatic
tests performed, while increasing the likelihood that epistasis will be
identified. Other methods include relaxing the multiple test correc-
tion threshold (Benjamini and Hochberg 1995), or reducing the
marker pairs tested based on some criteria such as biological function
(Ritchie 2011; Cowman and Koyutürk 2017; Crawford et al. 2017).

The multiple test correction problem is not the only challenge to
identifying epistatic interactions. Allele frequency, linkage disequilib-
rium and the number of alleles at a given locus can all reduce the efficacy
of pairwise marker epistasis detection. Low allele frequencies at either
locus reduce the epistatic effect, partitioning it to the additive instead
(Hill et al. 2008). Less than perfect linkage disequilibrium between the
markers and causal mutations also reduces the apparent effect size,
limiting detection much as it does for additive effects (Carlson et al.
2004). Single nucleotide polymorphism (SNP) markers are typically
considered bi-allelic, despite the potential for numerous alleles at a
single locus in the population. The impact of these factors can be re-
duced by using multiple linked markers to determine haplotypes. Hap-
lotypes have been shown to be powerful in the detection of additive and
interaction effects by accurately tracking larger segments of DNA in
high or perfect linkage disequilibrium (LD), and allowing multiple
alleles at every locus (Lin and Zeng 2006; Zhang et al. 2012; Jiang
et al. 2018). While allele frequencies are typically reduced using hap-
lotypes (i.e., the frequency of two alleles will be higher than the fre-
quency of three alleles), the added power from accurately tracking
relevant LD blocks make these methods attractive.

Haplotypes do not need to be assigned directly to gain an advantage
fromusingmultiplemarkers to identify regions associatedwith complex
traits. Regional heritability mapping (Nagamine et al. 2012; Riggio and
Pong-Wong 2014) has been used to identify additive effects of rare and
common variants in humans (Nagamine et al. 2012; Shirali et al. 2016)
as well as plants species like eucalyptus (Resende et al. 2017) and
cassava (Okeke et al. 2018). These methods employ the estimation of
additive covariance between individuals based on markers in a given
region of chromatin, and are used in a mixed model to estimate the
genetic variance attributable to the region. Variance components can

then be tested to determine if they are greater than zero using a likeli-
hood ratio test.

Wepropose amethod to greatly reduce the number of statistical tests
while taking advantage ofmultiplemarkers to determine importance of
epistatic interactions across chromosome arms of an allohexaploid
wheat population. This method is similar to the “divide and conquer”
method of Akdemir and Jannink (2015), but models interactions across
chromosomes instead of local epistasis. Epistatic covariances can be
formed using the Hadamard product of component additive or dom-
inance covariance matrices (Henderson 1985; Jiang and Reif 2015;
Martini et al. 2016). Additive by additive epistatic interactions between
disjoint sets of related (i.e., linked) markers can be modeled by first
calculating an additive covariance for each marker set, Ki and Ki9, and
using Ki⊙Ki9 as the covariance estimate of the epistatic term between
these sets. We define marker sets by the chromosome arm to which
they belong, and estimate the epistatic variance component between the
two arms using restricted maximum likelihood (REML) while correct-
ing for background additive and epistatic effects.

Common wheat is an important allohexaploid crop with three
subgenomes, A, B and D, resulting from hybridization events approx-
imately 500 thousand and 10 thousand years ago. Due to the al-
lopolyploid nature of wheat, we were interested in identifying
interactions across homeologous loci. Interactions at homeologous loci
are analogous to dominance effects in diploid hybrids, and could be
used to fix favorable homeoallelic interactions in inbred lines (Wendel
2000; Adams andWendel 2005; Birchler et al. 2010; Chen 2010, 2013).
Of the 21 chromosomes of wheat, chromosome arms pairs include�
3
2

�
14 ¼ 42 homeologous pairs,

�
14
2

�
3 ¼ 273 within subgenome

pairs, and

�
14
2

�
6 ¼ 546 across subgenome arm pairs.

Each chromosome arm of the wheat genome was sequenced in-
dependently using flow cytometry to assist in the assembly of the large
complex genome (International Wheat Genome Sequencing Consor-
tium 2014). The lone exception was chromosome 3B, which was se-
quenced and assembled in its entirety before the other chromosomes of
wheat (Paux et al. 2008; Choulet et al. 2014). Therefore, assigning
markers to a chromosome arm is feasible, but their position along that
arm may not be well defined if the number of scaffolds is large, as was
the case with the first wheat survey sequence (International Wheat
Genome Sequencing Consortium 2014). Using markers across an en-
tire chromosome arm known to be homeologous to another chromo-
some arms may therefore be a better strategy than attempting to assign
single homeologous marker pairs (Santantonio et al. 2018b). If inter-
actions are detected across homeologous regions, this may provide
evidence of beneficial homeoallelic interactions indicative of inter-
genomic heterosis.

We demonstrate the low resolution epistasis mapping methodology
using the CNLM winter wheat dataset from Santantonio et al. (2018a),
and show that epistasis can be detected between homeologous and non-
homeologous chromosome arms.

MATERIALS AND METHODS

Plant Materials
Details of the CNLM population used in this study can be found in
Santantonio et al. (2018a). Briefly, the dataset consists of 8,692 obser-
vations of 1,447 soft winter wheat breeding lines evaluated for four
traits, grain yield (GY), plant height (PH), test weight (TW) and head-
ing date (HD), in 26 environments across 10 years in an unbalanced
design. The population was genotyped with 11,604 genotyping by
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sequencing (GBS) markers distributed throughout the genome, albeit
with fewer markers on the D subgenome relative to the A and B
subgenomes.

Chromosome centromere positions
Chromosome centromere positions were provided by the Interna-
tional Wheat Genome Sequencing Consortium (IWGSC) for all
chromosomes except 3B (IWGSC 2018, personal communication).
Those positions were assigned by determining where chromosome
arm library reads aligned to the final assembly. Each chromosome
arm was sequenced independently using flow-cytometry to remove
the chromosome arm from a series of aneuploid stocks, each con-
taining an extra arm. The lone exception was chromosome 3B,
which was sequenced in its entirety, so no centromere position
was available for the 3B chromosome. Centromere start and stop
addresses provided by IWGSC are shown in Supplemental Table S1.

While restriction sites are expected to be uniformly distributed
throughout the genome, methylation of cytosine is not. One of the
restriction enzymes used to generate GBS libraries,MspI, is sensitive to
DNAmethylation, digesting unmethylated DNA at a much higher rate
than methylated DNA (McClelland et al. 1994). Methylation is an
important regulator of chromatin structure, where euchromatin tends
to contain few methylation sites relative to heterochromatin (Keshet
et al. 1986). Therefore restriction sites in heterochromatin with high
levels of methylation, such as at the centromere, are less likely to be
retained as GBS markers because digestion is less likely to happen at
these sites. This means that the GBS markers can be used to roughly
assign a centromere position using the density of GBS markers along
the chromosome.

To determine the centromere position of 3B, we employed kernel
density estimation using the density() function of the ‘stats’package inR
to determine the smoothed density of GBS marker positions. We then
assigned the 3B centromere interval to the chromosome positions
flanking the second position for which the derivative of the density
was zero. We performed this operation for all chromosomes to de-
termine the efficacy of this method for determining the centromere
position (Supplementary Figure S1). The positions provided by the
IWGSC were used for all chromosomes other than our estimate for
the 3B centromere position for all additional analyses.

Regional epistasis mapping
The low resolution epistasis mapping approach employed here uses
markers from two defined regions, i and i9; to calculate additive co-
variance between individuals (VanRaden 2008,method I) based on those
regions (i.e., Ki and Ki9 "  i 6¼ i9). The Hadamard product of these
additive covariancematrices can be used to produce the pairwise additive
by additive epistatic relationship, Ki·i9 ¼ Ki⊙Ki9; between these two
regions (Henderson 1985; Jiang and Reif 2015; Martini et al. 2016). In
this study, we defined regions as the short (S) and long (L) arms of each
chromosome, where i 2 f1AS; 1AL; 1BS; . . . ; 7BL; 7DS; 7DLg. Vari-
ance components for each region and their respective interaction were
estimated by fitting the following nested models

y ¼ 1mþ Xbþ ZgG2 þ ZgI2 þ e (1)

y ¼ 1mþ Xbþ ZgG2 þ ZgI2 þ ZgAi
þ ZgAi9

þ e (2)

y ¼ 1mþ Xbþ ZgG2 þ ZgI2 þ ZgAi
þ ZgAi9

þ ZgAi·Ai9
þ e (3)

where y is the phenotype vector, 1 is a vector of ones, m is the
population mean, X is the environment incidence matrix, b is the

vector of fixed environmental effects, and Z is the genotype incidence
matrix. Residuals were assumed to be normally distributed such that
e � N ð0;s2IÞ: Chromosome arm additive effects were assumed to
be gAi

� N ð0;s2
aiKiÞ and gAi9

� N ð0;s2
ai9
Ki9Þ; while the chromosome

arm interaction effect was assumed to be gAi·Ai9
� N ð0;s2

ai · ai9Ki·i9Þ:
Background additive, gG2 ; and epistatic, gI2 ; effects were included to
account for population structure. The covariances of the background
effects were calculated as described in Santantonio et al. (2018a,
equation 5), but with markers belonging to region i and i9 omitted
from the calculation.

Sequential nested likelihood ratio tests were used to determine if the
additive (model 2 vs. model 1) and interaction (model 3 vs. model 2)
variance estimates of the chromosome armswere greater than zero. From
theNeyman-Pearson lemma (Neyman and Pearson 1933), the likelihood
ratio test statistic is defined asD ¼ 2 2ðlogℒ alternative 2 logℒ nullÞ;where
D � x2

dfH12dfH0
; and is uniformly most powerful (UMP).

Best linear unbiased predictors (BLUPs) of each region were sub-
sequently used to look for patterns between additive and interaction
effects for the chromosome arm pair. The pairwise product of the
additive chromosome arm BLUPs was then compared to the chromo-
some arm interaction BLUPs, in a manner analogous to the Additive ·
Additive single locus model (Hill et al. 2008; Santantonio et al. 2018b).
Negative associations should indicate a less-than-additive model,
whereas positive relationships would demonstrate a greater than addi-
tive epistatic effect.

For the 14 three-way homeologous arm sets, a three-way interaction
was included and tested against a model with only the three two-way
interaction terms.Wedidnot attempt to run all three-way chromosome
arm combinations, as this would have been computationally infeasible,

with

�
42
3

�
¼ 11; 480 combinations. The Hadamard product of the

three additive covariance matrices was used to produce the three-way
additive by additive by additive epistatic relationship, Ki·i9·i$ ¼
Ki⊙Ki9⊙Ki$: The following two models were fit to test the three-
way interaction.

y ¼ 1mþ Xbþ ZgG2 þ ZgI2 þ ZgAi
þ ZgAi9

þ ZgAi$þ ZgAi·Ai9
þ ZgAi·Ai$

þ ZgAi9·Ai$
þ e

(4)

y ¼ 1mþ Xbþ ZgG2 þ ZgI2 þ ZgAi
þ ZgAi9

þ ZgAi$þ ZgAi·Ai9
þ ZgAi·Ai$

þ ZgAi9·Ai$þ ZgAi·Ai9·Ai$
þ e

(5)

A likelihood ratio test was then used to determine if adding the three-
way interaction term significantly improved the model fit beyond the
two-way interaction terms.

In summary, thismethod estimates a randomadditive effect for each
region and a random interaction effect between these regions for all
individuals while correcting for the background genetic effects of the
remainder of the genome.The likelihood ratio test is used todetermine if
the variability of the interaction effects is greater than zero. If the
interaction effects do significantly deviate from 0, then we reject the
nullhypothesis that there areno interacting locibetween the tworegions.

Software
Variance component estimation was accomplished using restricted
maximum likelihood (REML) implemented in ‘ASReml-R’ (Gilmour
1997; Butler 2009). Other computation, analyses and figures were
made using base R (R Core Team 2015) implemented in the Microsoft
Open R environment 3.3.2 (Microsoft 2017) unless noted otherwise.
The ‘circlize’ R package (Gu et al. 2014) was used to make Figures 2
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and S4. LaTeX tables were generated using the R package ‘xtable’
(Dahl 2016).

Data Availability
All data used for this study can be found in Santantonio et al. (2018a).
Additionally, we provide an example script that uses a custom R pack-
age, ‘lre’, to fit the models for the 4B and 4D chromosome pair (Sup-
plementary File S1.tar.gz). The package relies on the freely available R
package ‘EMMREML’ for solving multi-kernel mixed models
(Akdemir and Okeke 2015). Supplemental material available at Fig-
share: https://doi.org/10.25387/g3.7311797.

RESULTS

Centromere positions
Most of the GBS marker density estimates of centromere locations
agreed well with the positions provided by the IWGSC (Supplemental
FigureS1).Chromosomes1Dand4Awere exceptions.Weestimated the
3B centromere to be positioned between 344.4 Mbp and 345.0 Mbp
(Supplemental Table S1).

Model fit and p-value distribution
Homeologous chromosome arm pair models each had five random
genetic effects and therefore five covariance structures for the two-way
interactionmodels. Allmodels converged, but some variance parameter
estimates were often close to the parameter boundary and were con-
sidered to be zero. Variance component estimates on the boundary did
not occur for the background additive or epistatic effects, but often
occurred for one or both of the additive chromosome arm effects or the
interaction effect. This resulted in a relatively large number of additive
and interaction variance component tests with a p-value of 1.As a result,
p-value distributions were heavily skewed toward 0 and 1 (Supplemen-
tary Figures S2 and S3).Most chromosome arms had low additive effect
p-values, whereas most interaction p-values were high, indicating that
the majority of chromosome arm pairs do not have effect interactions
large enough to detect.

Homeologous arm tests
The U-shaped distribution of the p-values suggested that when the true
variance was very small or zero, the average information algorithm
estimated the parameter on the boundary (i.e., 0), and when it was
positive, the p-value tended to be low. Larger sample sizes may be
necessary to obtain uniform p-value distributions when the null hy-
pothesis is true. We therefore considered all homeologous arm pairs
with an interaction variance p-value less than 0.05 that also had positive
additive variance component estimates to determine the relationship
between additive chromosome arm effects and their interaction.

Seventeen homeologous chromosome arm pairs had significant in-
teraction effects for at least one of the four traits (Table 1 and Supple-
mental Figure S4). Interactions involving homeologs 4 and 7 were
overrepresented, with 14 of the 22 significant interactions identified
between one of these two homeologs. Chromosome arm pair tests failed
to detect the significant homeologous marker set interactions found on
chromosome homeologs 1 and 5 for HD and homeolog 3 for PH
(Santantonio et al. 2018b). The failure to detect these regions using
the chromosome arm test suggests that the associations detected by
Santantonio et al. (2018b) were spurious, or their signal is being washed
out by the abundance of uninformative markers on those chromosome
arms. The lack of a two-way arm PH interaction on chromosome arm
3S agrees with the homeologous marker set identified there, where only
the three-way homeologous marker set interaction term was significant.

The test for three-way homeologous chromosome arm interactions
only revealed three sets of homeologous arms that had a significant
three-way interaction at p , 0:05 (Table 2). The three-way 3S chro-
mosome arm interaction for PHwas found to have a positive three-way
arm interaction variance parameter estimate with a p-value of p¼ 0:02;
supporting the evidence from Santantonio et al. (2018b) that found
a significant 3-way interaction on 3S using homeologous markers.
The 7L three-way arm interaction term was also found to have a low
p-value for TW of p ¼ 0:006; confirming another significant three-
way homeologous marker interaction found by Santantonio et al.
(2018b). None of these three-way tests passed a Bonferroni signif-
icance threshold.

Many interactions were detected on chromosome arms where no
homeologous marker sets were identified with a significant interaction
effect (Santantonio et al. 2018b). Notably, a strong interaction effect
was identified on homeolog 6S for HD, and two regions for GY on 5S
and 7L, where no significant homeologous interaction sets were iden-
tified. Neither of the interacting pairs for GY had a p-value lower than
a homeologous arm Bonferroni correction of 0.05 / 42 = 0.0012.

Relationships between chromosome arm additive and interaction
effects were only considered for the ten chromosome arm pair trait
combinations that had all chromosome arm additive and interaction
effects with significant non-zero variance components. Of these ten, six
had significant correlations between the additive product and the in-
teraction with an absolute value $ 0:1 (Table 1). Four of these showed
positive relationships, while the other two showed negative relation-
ships. By far the strongest relationship detected was between 4BL and
4DL for PH (r ¼ 2 0:65; Figure 1), indicating that individuals with
high or low additive values for both arms tended to have genotypic
values less than expected by additivity alone. Conversely, the same 4BL/
4DL pair had a weak, yet positive relationship for TW (r ¼ 0:14;
Supplemental Figure S5). The 4BS/4DS pair, where the Rht genes are
known to reside, had a weak, yet significant, positive correlation for PH
(Supplemental Figure S6).

All pairwise arm tests

For all

�
42
2

�
¼ 861 pairwise chromosome arm pairs, we only con-

sider those tests that passed a Bonferroni threshold of 0:05=
861 ¼ 5:8 · 1025 for the interaction term in this section. Seventy-nine
chromosome arm interaction variance components were declared sig-
nificantly greater than zero for at least one trait, representing about 2%
of the number tested (Supplementary Tables S2 and S3). Of these,
interactions for the PH trait were the most prevalent, representing
49 (62%), of the interactions detected. HD and TW accounted for
the remaining 13 (16%) and 17 (22%) interactions, respectively. No
chromosome arm interactions were detected for GY at the Bonferroni
significance threshold. No interactions were detected for any of the
traits involving chromosome arms 1AS, 1DL, 2AS, 2DL, 3DL, 4AS,
5AS, 5BL, 5DL, 6BL, 6DS, and 7BS at this threshold.

There were several chromosome arms that appeared to be inter-
acting with multiple loci (Supplemental Table S4). Of these, several
clearly stand out (Figure 2). Chromosome arms 1AL, 2AL, 2DS, 4BS,
4DS, 4DL, 6AS and 7AL were involved in five or more interacting
pairs for PH, with 2DS, 4DS and 4DL involved in 10 or more signif-
icant pairs. The 4D chromosome in particular was involved in almost
half (21) of the interacting arm pairs for PH. 7DL was involved in all
but three of the interacting pairs detected for the TW trait. Arm
interactions for HD did not cluster to one or a few arms in the same
way as PH and TW, but 6AS and 7BL were each involved in five
interacting pairs for this trait.
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Most correlations between the additive products and the epistatic
effect were low in magnitude (i.e., , 0:3), particularly for the TW and
HD traits. Notable exceptions include the 4BL/4DL pair for PH, which
had a highly negative correlation, as previously noted. Pairs with mod-
erate magnitude tended to also include the 4DL chromosome arm, but
other pairs with moderate correlations between the product of their
additive and interaction effects included the 1AL/2AL, 1AL/7AL, and
3AS/6AS arm pairs.

DISCUSSION

Centromere positions
While our assigned position for the 3B centromere position is an
estimate, most of the other chromosome estimates were close to the
centromere position provided by the IWGSC (Supplemental Figure
S1). The centromere position estimate reported here should be
sufficient to assignmost of the 3Bmarkers to the correct chromosome
arm for the subsequent analyses.

Model fit and p-value distribution
The distribution of p-values from the likelihood ratio test should be
uniform if no true interactions exist. If interactions are important, then
we would expect to see a skewed distribution withmany small p-values.
However, the p-valueswere often calculated to be 1 because the variance
components were estimated on the parameter boundary (i.e., zero),
resulting in the U-shaped distribution. When variance parameters
are estimated on the parameter boundary, the p-value becomes 1 simply
due to the fact that the variance component is zero. This is likely due
to a lack of sufficient population size to distinguish and resolve multi-
ple small variance components. Perhaps another explanation may be
provided by the use of the the average information algorithm to fit
the mixed model, which may lose a small portion of information by
avoiding the calculation of the second derivative of the likelihood func-
tion. While other algorithms exist for solving REML problems, the
computational burden of resolving multiple variance components with
dense covariance structures may be restrictive. Further investigation
is necessary to determine how large a population need be to resolve

n Table 1 Table of significant homeologous chromosome arm interactions. The proportion of genetic variance attributed to each arm and
their corresponding interaction are shown with statistical significance from a nested likelihood ratio test

Trait armi armi9 ðh2armi
, h2armi9

Þa h2armi · armi9
rb

GY 5BS 5DS ð0:038;0:000Þ 0:028��c 0:27���

GY 7AL 7BL ð0:018;0:000Þ 0:041� 0:10���

PH 2AS 2DS ð0:021;0:079Þ��� 0:033��� 20:04
PH 4AS 4DS ð0:000;0:039Þ��� 0:017� 0:19���

PH 4AL 4BL ð0:013;0:034Þ� 0:029� 0:10���

PH 4AL 4DL ð0:015;0:004Þ 0:027��� 0:07��

PH 4BS 4DS ð0:002;0:031Þ��� 0:049��� 0:18���

PH 4BL 4DL ð0:048;0:003Þ� 0:058��� 20:65���

PH 6AL 6DL ð0:110;0:005Þ�� 0:024� 0:06�

PH 7AL 7BL ð0:000;0:070Þ 0:029�� 0:45���

TW 1BS 1DS ð0:000;0:000Þ 0:073��� 0.00
TW 4BL 4DL ð0:096;0:049Þ��� 0:013� 0:14���

TW 6AL 6BL ð0:031;0:000Þ 0:047� 0:12���

TW 7AL 7DL ð0:019;0:030Þ 0:140��� 20:04
TW 7BL 7DL ð0:043;0:061Þ 0:092��� 0:16���

HD 1BS 1DS ð0:000;0:000Þ 0:018� 0.00
HD 4BS 4DS ð0:000;0:002Þ 0:014�� 0:15���

HD 6AS 6BS ð0:008;0:041Þ� 0:049��� 0.02
HD 6AS 6DS ð0:014;0:000Þ 0:046��� 20:03
HD 6AL 6BL ð0:009;0:110Þ� 0:013� 20:21���

HD 7AS 7DS ð0:013;0:045Þ�� 0:032� 20:05�

HD 7AL 7BL ð0:000;0:045Þ��� 0:025� 0:14���

HD 7BS 7DS ð0:013;0:054Þ��� 0:012� 0:29���
a
h2 represents the proportion of the chromosome arm additive or interaction variance component estimates to the total genetic variance.

b
r indicates the correlation between the product of the additive arm effects and their interaction effect with correlation coefficients significantly different from zero
indicated by asterisks. If only one additive effect had a non-zero variance, the correlation coefficient shown is the correlation between the additive effect with the
non-zero variance and the interaction effect.

c�, ��, and ��� correspond to p-values , 0.05, 0.01, and a Bonferroni correction of 0.05/42 = 0.0012, respectively.

n Table 2 Table of significant three-way homeologous chromosome arm interactions. The proportion of genetic variance attributed to
each arm and their corresponding interaction are shown with statistical significance from a nested likelihood ratio test indicated by
asterisks

Trait armi armi9 armi$ (h2armi
, h2armi9

, h2armi$
Þa (h2armi · armi9

, h2armi · armi$
, h2armi9· armi$

) h2armi · armi9· armi$

PH 3AS 3BS 3DS ð0:017;0:017;0:054Þ��b ð0:000;0:000;0:007Þ�� 0:010�

TW 7AL 7BL 7DL ð0:017;0:044;0:035Þ ð0:005;0:057;0:000Þ 0:051��

HD 6AS 6BS 6DS ð0:005;0:031;0:000Þ� ð0:035;0:021;0:000Þ� 0:019�
a
h2 represents the proportion of the chromosome arm additive or interaction variance component estimates to the total genetic variance.

b� and �� correspond to p-values , 0.05 and 0.01, respectively.
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multiple genetic variance parameters with magnitudes of 1% or less of
the total variance.

Homeologous arm tests
Mostof the homeologous chromosome arm interactions detectedacross
all traits involved homeologs 4 and 7. The less-than-additive trend
observed for the 4BL/4DLpair forPHmay suggest a significantdegree of
gene functional redundancy between these two arms. Functional gene
redundancy between homeologous alleles should result in a less-than-
additive effect similar to partial dominance at alleles. Despite having a
weakpositive additivegenetic trait correlationbetweenPHandTW(0.3,
Santantonio et al. 2018a), the 4BL/4DL pair had a weak, yet positive
relationship for TW. This provides evidence that the observed pattern is
not simply a genetic artifact andmay indicate differential gene function
for these two traits.

A negative correlation for PH was not observed for the 4BS/4DS
chromosome arm pair, as would be expected from previous results for
theRht genes that reside on those chromosome arms (Santantonio et al.
2018b). In that study, a significant less-than-additive effect of the wild-
type Rht homeologs suggested that the two genes have partial func-
tional redundancy. The mutant alleles are insensitive to the plant
hormoneGibberellic acid (GA), and result in a semi-dwarf plant stature
which greatly reduces lodging in high nitrogen environments. Plants
with both mutant alleles are far shorter than expected based on the
additive effect of the two mutant alleles. From the perspective of func-
tionality, one functional homeolog is able to recover most of the gene
pathway function, with relatively little gained from the addition of a
second functional homeolog. Therefore, the loss of one gene does not
result in complete loss of the gene pathway, but merely a non-additive
reduction in its total activity.

The lack of a negative correlation between the additive and in-
teraction effects for the 4BS/4DS pair cast some doubt on the usefulness
of these correlations to infer the direction of the epistatic effect. The
relationship between the product of the additive effects and the in-
teraction was thought to mirror the f21; 1g Additive · Additive ep-
istaticmodel using amulti-locus approach (Hill et al. 2008; Santantonio
et al. 2018b), but it is unclear what is driving these trends. Further

investigation into the relationships between regional additive and epi-
static effects in warranted.

For inbred allopolyploids, multi-subunit protein complexes can be
comprised of genes from a single subgenome, or from multiple sub-
genomes. If functional copies of subunits exist on both genomes, the
formation of subgenome hetero-complexes may occur. Protein com-
plexes comprised of evolutionarily divergent subunits may have in-
creased or, more likely, decreased functionality. If hetero-complexes
display decreased functionality, then we would expect the relationship
between the additive and epistatic effects to be negative.

It is unlikely that all homeologous interactions are so large in effect
that they are quicklyfixed after the hybridization event. The distribution
of epistatic effects is likely similar in shape to the distribution of additive
effects. These distributions will change based on the complexity of the
trait. If a trait is governed by relatively few loci, the relatively few epistatic
interactions may have larger effects, and may be easier to detect. In
contrast, a large number of small effect additive loci may also result in a
large number of small effect interactions that are too small to detect in
populations of moderate size.

All pairwise arm tests
PHappears to exhibit a higher degree of epistasis than eitherTWorHD.
However, the number of interacting loci or chromosome arms detected
was not directly related to the observed increase in genomic prediction
accuracy by inclusion of epistatic predictors. Santantonio et al. (2018a)
found HD to have the largest percent increase in accuracy from the
additive model by including all pairwise additive by additive interac-
tions, yet had the fewest detectable interacting chromosome arms, other
than GY.

GY showed no evidence of important epistatic interactions in this
study, as has been previously shown (Santantonio et al. 2018a,b). This
may be due to one of two explanations. The first and most obvious is
that grain yield is not subject to epistatic gene action. This would mean
that all genes contribute additively to the collection and allocation of
resources to vegetative tissue, and then reallocation to the ear during
flowering and grain fill. The second and more likely explanation is that
GY is the culmination of essentially all the genes working in concert to
produce the final outcome, and interactions with such small effectsmay
simply be too small to detect (Xu and Jia 2007; Wu et al. 2012). Dif-
ferential response to environmental stress across years and locations
may further reduce the ability to detect interactions if they are only
important in certain environments.

Whilewe corrected for population structureonboth the additive and
epistatic levels (i.e., using additive and additive by additive genetic co-
variance terms), it is possible that residual structure is causing the
observed additive and epistasis relationships. The drastically different
patterns in the arm pair test results for each trait suggests otherwise. If
these interactions were due to population structure, we would expect to
see similar patterns of significance across all traits. When we omitted
the background epistatic effect, most of the 861 interactions were sig-
nificant (results not shown). We deemed this to be due to chromosome
arm epistatic relationship matrices modeling close relationships in the
population regardless of which unit of chromatin was used to deter-
mine those relationships. However, it is possible that these interactions
are far more prevalent than suggested here, and that correction for
background epistatic effects is diluting true genetic signal.

The prevalence of a few chromosome arms interacting with many
other arms is of particular interest, due to the potential for one site to
influence the expression of somany other sites. These sites appear to act
as hubs in interaction networks, and have been shown to be prevalent in

Figure 1 Interaction effect of chromosome 4BL by 4DL plotted
against the product of the additive effects for 4BL and 4DL for PH. r
indicates the Pearson correlation coefficient.

680 | N. Santantonio, J.-L. Jannink, and M. Sorrells



yeast (Forsberg et al. 2017). Jiang et al. (2017) observed a large pro-
portion of the epistatic interactions affecting GY involved chromo-
somes 4A and 7D in a large population of hybrid wheat. While we
did not detect a large number of interactions involving 4A, 7D was
particularly important for TW. However, the interactions that they
detected appear to be on the short arm of chromosome 7D, instead
of the long arm as we observed. It appears that the hub loci detected in
this study are not the same as those of Jiang et al. (2017), although they
used a different genome assembly than used in this report. The signal
detected for hub arms may be due to the presence of functional and

non-functional alleles at important upstream regulators, such as tran-
scription factors. In this case, a non-functional transcription factor
could cause the suppression of differential additive alleles.

The detection of chromosome arm interactions not identified in the
homeologous marker sets of Santantonio et al. (2018b) suggests that
singlemarker setsmaymiss important interactions. It is unclear if these
interactions would have been detected if they had tested all pairwise
epistatic interactions between markers. While all possible tests can be
conducted, this increases the multiple testing problem drastically and
may result in the loss of ability to detect any interactions. It is unclear

Figure 2 Chromosome arm interactions significant at a Bonferroni correction of 0:05=861 ¼ 5:8 · 1025: Blue and red bridges indicate interactions
with a significant positive or negative correlation between the product of the additive effects and their interaction effect, respectively. Black
bridges indicate significant interactions that did not have a significant correlation between additive products and the interaction effect.
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how large the effect sizes of a single pair of interacting loci would need
to be to show up in a variance component estimated frommultiple loci.
While this method may not work well for a single large effect interac-
tion, it may work well for many small effect interactions as might be
expected for homeologous regions.

It should be noted that epistatic relationships formed from the
Hadamard product of covariance matrices have the property of shrink-
ingdistant relationshipswhile emphasizing close ones. For example, two
lines with an additive covariance of 0.1 will have an epistatic covariance
of 0.01, whereas two lines with an additive covariance of 0.9 will have an
epistatic covariance of 0.81. It may be that there are several levels of
relatedness that must be considered to properly account for genetic
relatedness. The pedigree is an example of a covariance estimation
procedure that emphasizes close relationships and deemphasizes more
distant ones. Considering both pedigree and marker based covariance
matrices has been shown to be more predictive than using either alone
(de los Campos et al. 2009b; Crossa et al. 2010). Other methods, in-
cluding Reproducing Kernel Hilbert Spaces (RKHS), can be used to
model these various degrees of genetic relatedness (de los Campos et al.
2009a; Crossa et al. 2010), but may have less genetic interpretability
than the method presented here.

The utility of the low resolution approach will depend on the
magnitude and direction of effects, as well as the number and distribu-
tion of causal interacting loci. This is further complicated by the relative
LDbetweenthese loci, themarkers tagging them, and the lociwithwhich
they interact. While single markers may not be in high LD with causal
loci, the combination of some markers can form haplotypes that are in
high LD with one or more causal loci. Haplotype combinations across
regions may then flag true interacting loci that would be otherwise
undetectable using single marker interactions. While our method does
not explicitly define these haplotypes, it does capture these relationships
through the additive genetic covariance of the region. We suspect that
thismethodwill be themost appropriate for traitswithmoderate genetic
complexity, as demonstrated by the lack of interacting regions detected
for perhaps the most complex trait, grain yield.

CONCLUSION
The interacting pairs presented here do not have the precision to make
claims of interacting genes.Nor are these interactions necessarily targets
for selection. They do, however, demonstrate that there appears to be
global patterns of epistasis across the genome. Seemingly additive only
traits have often been shown to be under a high degree of epistasis when
careful investigation is used to elucidate the trait (Carlborg et al. 2006;
Forsberg et al. 2017). Some have argued thatmuch, if notmost, of genetic
variation is subject to epistasis (Carlborg and Haley 2004; Carlborg et al.
2006; Huang et al. 2012; Forsberg et al. 2017), where the rest of the
genome must be functional to express additive differences in alleles.

This is evident when we consider the the complexity of the cell,
where no genes truly work independently of one another. In order to
create the complex structure of the cell, proteinsmay interact with other
proteins, both alike and dislike to them, to form multi-subunit com-
plexes. Therefore allelic variation alone should be sufficient to produce
epistatic variation. It is merely our inability to separate this variation
from “additive” variation under classic parameterizations that leads
many to conclude that epistasis is not important (Carlborg et al.
2006; Hill et al. 2008; Huang et al. 2012; Huang and Mackay 2016;
Forsberg et al. 2017).

Further research into this methodology might be used to identify
meaningful haplotypes. Once interacting segments are identified, they
can each be split into multiple pieces for further refinement of the

method,while nominally increasing the number of tests performed. The
low resolution epistasis mapping approach presented here emphasizes
the power of using multiple genetic markers to test for interacting
genomic regions, albeit at the cost of low precision.
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