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An SEIV epidemic model for childhood disease with partial permanent immunity is studied. The basic reproduction number 𝑅
0

has been worked out.The local and global asymptotical stability analysis of the equilibria are performed, respectively. Furthermore,
if we take the treated rate 𝜏 as the bifurcation parameter, periodic orbits will bifurcate from endemic equilibrium when 𝜏 passes
through a critical value. Finally, some numerical simulations are given to support our analytic results.

1. Introduction

It is primarily important for health administrators to protect
children from disease that can be prevented by vaccination.
Although preventive vaccines have reduced the incidence of
infectious diseases among children, childhood disease is an
important public health problem.We often use mathematical
models to realize the transmission dynamics of childhood
diseases and to estimate control programs [1–4]. Recently,
many scholars study the SEIV epidemic models [5, 6]. In
those models, let 𝑆(𝑡), 𝐼(𝑡), and 𝑉(𝑡), respectively, represent
the number of susceptible individuals at time 𝑡, infective
individuals at time 𝑡, and vaccinated individuals at time 𝑡.
At the earliest, most researches on these types of models
assume that the disease incubation is negligible, so that each
susceptible individual, once infected, instantaneously turns
into infectious and later recovers obtaining a permanent
immunity. Soon afterwards, the models become more gen-
eral. Researchers assume that a susceptible individual first
goes through a latent period after infection before becoming
infectious (we called𝐸 represents exposed individuals but not
yet infectious).

In [7], the authors discussed the following model:

̇𝑆 (𝑡) = 𝐴 (1 − 𝑝) + 𝜔𝑉 − 𝜇𝑆 − 𝛽𝑆𝐼,

𝑉̇ (𝑡) = 𝐴𝑝 − 𝜔𝑉 − 𝜇𝑉 + 𝜏𝐼,

𝐸̇ (𝑡) = 𝛽𝑆𝐼 − 𝜇𝐸 − 𝜎𝐸,

̇𝐼 (𝑡) = 𝜎𝐸 − 𝜇𝐼 − 𝜏𝐼,

(1)

where all parameters are positive. Parameter 𝐴 represents
the number of additional populations of childhood; 𝜔 rep-
resents the rate at which vaccine wanes; 𝜇 represents the
natural death rate; 𝛽 represents the rate at which susceptible
individuals become infected by those who are infectious;
𝑝 represents the fraction of recruited individuals who are
vaccinated; 𝜏 represents the rate at which infected individuals
are treated; and 𝜎 represents the rate at which exposed
individuals become infectious.

In model (1), 𝛽𝑆𝐼 is called incidence rate which plays an
important role in the transmission dynamics. In addition,
incidence rate can determine the tendency of epidemics. At
the earliest, in the classical epidemic disease model, scholars
made much focus on the bilinear incidence [8, 9]. In 1945,
Wilson and Worcester discussed the nonlinear incidence
rate [10, 11]. Later, the incidence function grows into more
general nonlinear forms. In [12], the authors have considered
a SEIV model with nonlinear incidence rate 𝛽𝑆𝐼(1 + 𝛼𝐼).
The paper discussed the basic reproduction of the system
and bifurcation phenomenon. And this incidence function
is more in line with actual situation. One of the strategies to
control infectious diseases is vaccination in [13, 14].

Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2015, Article ID 420952, 13 pages
http://dx.doi.org/10.1155/2015/420952

http://dx.doi.org/10.1155/2015/420952


2 Computational and Mathematical Methods in Medicine

And under the above circumstance, in [15], the authors
have studied the following model:

̇𝑆 (𝑡) = 𝐴 (1 − 𝑝) + 𝜔𝑉 − 𝜇𝑆 − 𝛽𝑆𝐼 (1 + 𝛼𝐼) ,

𝑉̇ (𝑡) = 𝐴𝑝 − 𝜔𝑉 − 𝜇𝑉 + 𝜏𝐼,

𝐸̇ (𝑡) = 𝛽𝑆𝐼 (1 + 𝛼𝐼) − 𝜇𝐸 − 𝜎𝐸,

̇𝐼 (𝑡) = 𝜎𝐸 − 𝜇𝐼 − 𝜏𝐼.

(2)

In [15] they have supplied a framework of discussing
the transmission dynamics of the epidemic model where the
preventive vaccine may lose efficacy over time. And it has
showed that if the vaccination coverage level is below the
threshold, the disease will persist within the population. In
addition, if the vaccination coverage level exceeds a certain
threshold value, the disease can be eradicated from the
population through constructing a proper Lyapunov function
by using global stability analysis of the model.

In the process of treatment, some patients can not be
cured; therefore we should consider the disease-caused death
on the basic of the above models and make the parameter 𝜖
be the rate at which infectious individuals lose their life due
to disease during the process of treatment. Moreover, about
some diseases, some cured patients can not obtain a perma-
nent immunity. Thus, this paper also considers the SEIV epi-
demic models for childhood disease with partial permanent
immunity based on above models and denotes 𝜏 as the rate of
𝐼 transforming to 𝑆. Namely, when 𝜏 = 0, all recoverers obtain
permanent immunity. When 𝜏 = 1, all recoverers become
susceptible individuals. When 0 < 𝜏 < 1, partial infective
individuals become susceptible individuals and the number
is 𝜏𝐼. So model (2) is transformed to model (3). Model (3) is
described as follows:

̇𝑆 (𝑡) = (1 − 𝑝)𝐴 + 𝜔𝑉 + 𝜏𝐼 − 𝜇𝑆 − 𝛽𝑆𝐼 (1 + 𝛼𝐼) ,

𝑉̇ (𝑡) = 𝑝𝐴 − 𝜔𝑉 − 𝜇𝑉,

𝐸̇ (𝑡) = 𝛽𝑆𝐼 (1 + 𝛼𝐼) − 𝜇𝐸 − 𝜎𝐸,

̇𝐼 (𝑡) = 𝜎𝐸 − 𝜇𝐼 − 𝜏𝐼 − 𝜖𝐼.

(3)

Assume the initial values are satisfied with the following:

𝑆 (0) ≥ 0, 𝑉 (0) ≥ 0,

𝐸 (0) ≥ 0, 𝐼 (0) ≥ 0.

(4)

System (3) which we present will be analyzed to decide
the optimal vaccine coverage level needed to control the
disease. The rest of this paper is organized as follows. In
Section 2, we calculate the basic reproduction number 𝑅

0
,

which determines the spread of infection. In Section 3,
the local stability of equilibria is analyzed. We discuss the
bifurcation phenomenon and illustrate that when the treated
rate 𝜏 crosses through a critical value, system (3) undergoes
Hopf bifurcation at the positive equilibrium in Section 4.
By constructing the Lyapunov function and a generalization
of the Poincaré-Bendixson criterion, we discuss the global

stability of disease-free equilibrium and endemic equilib-
rium, respectively, in Section 5. Some numerical examples
are presented to illustrate theoretical analysis in Section 6. In
Section 7 we discuss our findings.

2. The Basic Reproduction Number

In the following, we will calculate the basic reproduction
number of system (3). The basic reproduction number,
denoted by 𝑅

0
, is the expected number of secondary cases

produced, in a completely susceptible population, by a typical
infective individual [16]. Obviously, system (3) always has a
disease-free equilibrium𝑃

0
(𝐴[𝜇(1−𝑝)+𝜔]/𝜇(𝜇+𝜔), 𝑝𝐴/(𝜇+

𝜔), 0, 0); that is, 𝐸 = 𝐼 = 0. And {(𝑆, 𝐸, 𝐼, 𝑉) | 𝑆 > 0,
𝐸 ≥ 0, 𝐼 ≥ 0, 𝑉 > 0} is a positively invariant set of system
(3). Adding up the four equations in system (3), we can obtain

𝑑

𝑑𝑡
(𝑆 + 𝐸 + 𝐼 + 𝑉) = 𝐴 − 𝜇 (𝑆 + 𝐸 + 𝐼 + 𝑉) − 𝜖𝐼

= 𝜇 [
𝐴

𝜇
− (𝑆 + 𝐸 + 𝐼 + 𝑉)] − 𝜖𝐼

≤ 𝜇 [
𝐴

𝜇
− (𝑆 + 𝐸 + 𝐼 + 𝑉)] .

(5)

And lim sup
𝑡→∞

(𝑆 + 𝐸 + 𝐼 + 𝑉) ≤ 𝐴/𝜇. Therefore, the set

Ω = {(𝑆, 𝐸, 𝐼, 𝑉) | 𝑆 > 0, 𝐸 ≥ 0, 𝐼 ≥ 0, 𝑉 > 0,

𝑆 + 𝐸 + 𝐼 + 𝑉 ≤
𝐴

𝜇
}

(6)

is positively invariant for system (3). Next we will discuss
the dynamic characteristic of system (3) on Ω. Set 𝑥 =

(𝐸, 𝐼, 𝑆, 𝑉)
𝑇; then system (3) can be rewritten as

𝑑𝑥

𝑑𝑡
= Φ (𝑥) − Ψ (𝑥) , (7)

where

Φ (𝑥) =

[
[
[
[
[

[

𝛽𝑆𝐼 (1 + 𝛼𝐼)

0

0

0

]
]
]
]
]

]

,

Ψ (𝑥) =

[
[
[
[
[

[

𝜇𝐸 + 𝜎𝐸

𝜇𝐼 + 𝜏𝐼 + 𝜖𝐼 − 𝜎𝐸

−𝐴 (1 − 𝑝) − 𝜔𝑉 − 𝜏𝐼 + 𝜇𝑆 + 𝛽𝑆𝐼 (1 + 𝛼𝐼)

−𝑝𝐴 + 𝜔𝑉 + 𝜇𝑉

]
]
]
]
]

]

.

(8)

Define

𝐹 = [
𝜕Φ
𝑖

𝜕𝑥
𝑗

(𝑥
0
)] , 𝑉 = [

𝜕Ψ
𝑖

𝜕𝑥
𝑗

(𝑥
0
)] with 1 ≤ 𝑖, 𝑗 ≤ 2.

(9)
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We have

𝐹 = [

[

0
𝛽𝐴 [𝜇 (1 − 𝑝) + 𝜔]

𝜇 (𝜇 + 𝜔)

0 0

]

]

,

𝑉 = [

𝜇 + 𝜎 0

−𝜎 𝜇 + 𝜏 + 𝜖
] .

(10)

It is easy to get

𝑉
−1
=
[
[
[

[

1

𝜇 + 𝜎
0

𝜎

(𝜇 + 𝜎) (𝜇 + 𝜏 + 𝜖)

1

𝜇 + 𝜏 + 𝜖

]
]
]

]

. (11)

𝐹𝑉
−1 develops a meaningful definition of 𝑅

0
and is the

expected number of new infections for system (3). 𝜌(𝐹𝑉−1) =
𝜎𝛽𝐴[𝜇(1 − 𝑝) + 𝜔]/𝜇(𝜇 + 𝜔)(𝜇 + 𝜎)(𝜇 + 𝜏 + 𝜖) is the spectral
radius of matrix 𝐹𝑉−1. Thus by [16]

𝑅
0
=

𝜎𝛽𝐴 [𝜇 (1 − 𝑝) + 𝜔]

𝜇 (𝜇 + 𝜔) (𝜇 + 𝜎) (𝜇 + 𝜏 + 𝜖)
. (12)

Set

𝑅
∗

0

=
1

𝛼𝜇𝑀

⋅ [2√𝛼𝜇𝑀𝛽 [𝑀 − (𝜇 + 𝜔) 𝜎𝜏] − 𝛽 [𝑀 − 𝜎𝜏 (𝜇 + 𝜔)]] ,

𝑅
∗

1
=
𝛽 [𝑀 − 𝜏𝜎 (𝜔 + 𝜇)]

𝛼𝜇𝑀
,

(13)

where𝑀 = (𝜇 + 𝜔)(𝜇 + 𝜎)(𝜇 + 𝜏 + 𝜖).

Lemma 1. Assume that𝑅
0
,𝑅∗
0
, and𝑅∗

1
are defined as (12), (13),

and𝑀 > 𝜎𝜏(𝜇 + 𝜔); then

(i) 𝑅∗
0
≤ 1;

(ii) 𝑅∗
1
< 1 ⇔ 𝑅

∗

1
< 𝑅
∗

0
.

Proof. (i) From the definition of 𝑅∗
0
, we know

𝑅
∗

0
− 1 = (2√𝛼𝜇𝑀𝛽 [𝑀 − (𝜇 + 𝜔) 𝜎𝜏]

− 𝛽 [𝑀 − 𝜎𝜏 (𝜇 + 𝜔)] − 𝛼𝜇𝑀) (𝛼𝜇𝑀)
−1
,

(14)

for𝑀 > 𝜎𝜏(𝜇 + 𝜔) and 𝛼, 𝛽, 𝜇,𝑀 > 0; then

𝛽 [𝑀 − 𝜎𝜏 (𝜇 + 𝜔)] ≥ 0, 𝛼𝜇𝑀 ≥ 0,

𝛽 [𝑀 − 𝜎𝜏 (𝜇 + 𝜔)] + 𝛼𝜇𝑀 ≥ 2√𝛼𝜇𝑀𝛽 [𝑀 − (𝜇 + 𝜔) 𝜎𝜏];

(15)

thus

𝑅
∗

0
− 1 ≤ 0; (16)

that is

𝑅
∗

0
≤ 1. (17)

(ii) From the definition of 𝑅∗
1
, we know

𝑅
∗

1
< 1

⇐⇒ 𝑅
∗

1
− 1 =

𝛽 [𝑀 − 𝜏𝜎 (𝜔 + 𝜇)] − 𝛼𝜇𝑀

𝛼𝜇𝑀
< 0

⇐⇒ 𝛽 [𝑀 − 𝜏𝜎 (𝜔 + 𝜇)] < 𝛼𝜇𝑀,

𝑅
∗

1
< 𝑅
∗

0

⇐⇒ 𝑅
∗

1
− 𝑅
∗

0

=

2𝛽 [𝑀 − 𝜏𝜎 (𝜔 + 𝜇)] − 2√𝛼𝜇𝑀𝛽 [𝑀 − (𝜇 + 𝜔) 𝜎𝜏]

𝛼𝜇𝑀

< 0

⇐⇒ 𝛽 [𝑀 − 𝜏𝜎 (𝜔 + 𝜇)] < √𝛼𝜇𝑀𝛽 [𝑀 − (𝜇 + 𝜔) 𝜎𝜏]

⇐⇒ 𝛽 [𝑀 − 𝜏𝜎 (𝜔 + 𝜇)] < 𝛼𝜇𝑀;

(18)

this completes the proof.

3. Local Stability of Equilibria

In the following, we will discuss the local stability of the
equilibria 𝑃

0
and 𝑃∗.

Theorem2 (see [16]). Thedisease-free equilibrium𝑃
0
is locally

asymptotically stable if 𝑅
0
< 1; it is unstable if 𝑅

0
> 1.

Theorem 3. (i) Suppose𝑅∗
1
< 1. When𝑅

0
< 𝑅
∗

0
system (3) has

no real equilibria; when 𝑅∗
0
< 𝑅
0
< 1 there are two endemic

equilibria, 𝑃∗
1
and 𝑃∗

2
, and when 𝑅

0
≥ 1 there is only one

endemic equilibrium 𝑃
∗.

(ii) Suppose 𝑅∗
1
> 1. When 𝑅

0
< 𝑅
∗

0
system (3) has no real

equilibria; when 𝑅∗
0
< 𝑅
0
< 1 there is no endemic equilibria,

and when 𝑅
0
≥ 1 there is only one unique endemic equilibrium

𝑃
∗.

Proof. Through the following system, we can calculate the
endemic equilibria 𝑃∗(𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗):

𝐴 (1 − 𝑝) + 𝜔𝑉
∗
+ 𝜏𝐼
∗
− 𝜇𝑆
∗
− 𝛽𝑆
∗
𝐼
∗
(1 + 𝛼𝐼

∗
) = 0,

𝐴𝑝 − 𝜔𝑉
∗
− 𝜇𝑉
∗
= 0,

𝛽𝑆
∗
𝐼
∗
(1 + 𝛼𝐼

∗
) − 𝜇𝐸

∗
− 𝜎𝐸
∗
= 0,

𝜎𝐸
∗
− 𝜇𝐼
∗
− 𝜏𝐼
∗
− 𝜖𝐼
∗
= 0.

(19)



4 Computational and Mathematical Methods in Medicine

We can get

𝐸
∗
= (

𝜇 + 𝜏 + 𝜖

𝜎
) 𝐼
∗
,

𝑆
∗
=
(𝜇 + 𝜎) (𝜇 + 𝜏 + 𝜖)

𝜎𝛽 (1 + 𝛼𝐼
∗
)

,

𝑉
∗
=

𝑝𝐴

𝜇 + 𝜔
.

(20)

𝐼
∗ is satisfied with the following equation and is positive:

𝑘
1
(𝐼
∗
)
2
+ 𝑘
2
𝐼
∗
+ 𝑘
3
= 0, (21)

where

𝑘
1
= 𝛼𝛽 [(𝜇 + 𝜔) 𝜎𝜏 −𝑀] ,

𝑘
2
= 𝑀(𝜇𝛼𝑅

0
− 𝛽) + 𝜎𝛽𝜏 (𝜇 + 𝜔) ,

𝑘
3
= 𝜇𝑀(𝑅

0
− 1) .

(22)

We have

𝑘
1
< 0, 𝑘

2
> 0 ⇐⇒ 𝑅

0
> 𝑅
∗

1
;

𝑘
3
> 0 ⇐⇒ 𝑅

0
> 1;

(23)

it indicates the case of equilibria for system (3). More
specifically, when 𝑘

3
> 0 system (3) has only one endemic

equilibrium; when 𝑘
3
< 0, 𝑘

2
> 0, and (𝑘

2
)
2
− 4𝑘
1
𝑘
3
> 0

it has two endemic equilibria; otherwise it has no endemic
equilibria by the Descartes rule of signs. And, for 𝑘

3
< 0,

𝑘
2
> 0, and (𝑘

2
)
2
− 4𝑘
1
𝑘
3
= 0, that is, when 𝑅

0
= 𝑅
∗

0
, we

notice there exists a bifurcation point. Actually, the formula
𝑘
2

2
− 4𝑘
1
𝑘
3
can be represented with respect to 𝑅

0
so that

𝑘
2

2
− 4𝑘
1
𝑘
3
= [𝜇𝑀𝛼𝑅

0
+ 𝛽 [𝑀 − 𝜎𝜏 (𝜇 + 𝜔)]]

2

− 4𝜇𝑀𝛼𝛽 [𝑀 − 𝜎𝜏 (𝜇 + 𝜔)] .

(24)

Hence, (𝑘
2
)
2
− 4𝑘
1
𝑘
3
≥ 0 when 𝑅

0
≥ 𝑅
∗

0
. Considering all the

analysis results, (i) and (ii) can be obtained easily.

Theorem 4. For 𝑅
0
> 1, the endemic equilibrium 𝑃∗ of system

(3) is locally asymptotically stable satisfying 𝑐
3
> 0 and 𝑐

1
𝑐
2
−

𝑐
3
> 0, where 𝑐

1
, 𝑐
2
, and 𝑐

3
are shown in the following proof.

Proof. System (3) has only one endemic equilibrium 𝑃
∗ for

𝑅
0
> 1. At the equilibrium 𝑃

∗
= (𝑆
∗
, 𝑉
∗
, 𝐸
∗
, 𝐼
∗
) the matrix

of the linearized system (3) is

𝐽 (𝑃
∗
) =

[
[
[
[
[

[

−𝜇 − 𝛽𝐼
∗
(1 + 𝛼𝐼

∗
) 𝜔 0 𝜏 − 𝛽𝑆

∗
(1 + 2𝛼𝐼

∗
)

0 −𝜔 − 𝜇 0 0

𝛽𝐼
∗
(1 + 𝛼𝐼

∗
) 0 −𝜇 − 𝜎 𝛽𝑆

∗
(1 + 2𝛼𝐼

∗
)

0 0 𝜎 −𝜏 − 𝜇 − 𝜖

]
]
]
]
]

]

. (25)

The characteristic equation is

(𝜆 + 𝜔 + 𝜇) (𝜆
3
+ 𝑐
1
𝜆
2
+ 𝑐
2
𝜆 + 𝑐
3
) = 0, (26)

where

𝑐
1
= (𝜇 + 𝐸) + (2𝜇 + 𝜏 + 𝜎 + 𝜖) = 3𝜇 + 𝜏 + 𝜎 + 𝜖 + 𝐸,

𝑐
2
= (𝜇 + 𝐸) (2𝜇 + 𝜏 + 𝜎 + 𝜖) + (𝜏 + 𝜇 + 𝜖) (𝜇 + 𝜎) − 𝜎𝐹,

𝑐
3
= (𝜇 + 𝐸) (𝜏 + 𝜇 + 𝜖) (𝜇 + 𝜎) + 𝜎𝜏𝐸 − 𝜇𝜎𝐹,

𝐸 = 𝛽𝐼
∗
(1 + 𝛼𝐼

∗
) ,

𝐹 = 𝛽𝑆
∗
(1 + 2𝛼𝐼

∗
) .

(27)

It is easy to get

𝑐
1
𝑐
2
− 𝑐
3
= (2𝜇 + 𝜎 + 𝐸) 𝜏

2

+ [(𝜇 + 𝐸) (5𝜇 + 2𝜎 + 2𝜖 + 𝐸)

+ (𝜇 + 𝜎) (4𝜇 + 𝜎 + 2𝜖 + 𝐸)

− 𝜎𝐹 − (𝜇 + 𝐸) (𝜇 + 𝜎) − 𝜎𝐸] 𝜏

+ (𝜇 + 𝐸) (𝜎 + 𝜖 + 𝐸 + 3𝜇) (2𝜇 + 𝜎 + 𝜖)

+ (𝜇 + 𝜎) (3𝜇 + 𝜎 + 𝜖 + 𝐸) (𝜇 + 𝜖)

− 𝜎𝐹 (3𝜇 + 𝜎 + 𝜖 + 𝐸)

− (𝜇 + 𝐸) (𝜇 + 𝜎) (𝜇 + 𝜖) + 𝜇𝜎𝐹

= 𝐷𝜏
2
+ 𝐺𝜏 + 𝐻.

(28)

It is clear that 𝑐
1
> 0. By the Hurwitz criterion, epidemic

equilibrium 𝑃
∗ is locally asymptotically stable for 𝑐

3
> 0 and

𝑐
1
𝑐
2
− 𝑐
3
> 0.

4. Bifurcation Analysis

FromTheorem 3 we can see that𝑅
0
= 1 is a bifurcation value.

Actually, the disease-free equilibrium changes its stability
when being across 𝑅

0
= 1. Next, we investigate the nature

of the bifurcation concerning the disease-free equilibrium
𝑃
0
(𝐴[𝜇(1 − 𝑝) + 𝜔]/𝜇(𝜇 + 𝜔), 𝑝𝐴/(𝜇 + 𝜔), 0, 0) when 𝑅

0
= 1.

In other words, we will discuss under what conditions system
(3) can undergo a forward or a backward bifurcation. And we
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need the results in [17, 18]. In order to introduce it, consider
the following equation which has a parameter 𝜙:

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑥, 𝜙) ; 𝑓 : 𝑅

𝑛
× 𝑅
𝑛
, 𝑓 ∈ 𝐶

2
(𝑅
𝑛
× 𝑅
𝑛
) . (29)

Without loss of generality, for all values of the parameter 𝜙,
assume 0 is an equilibrium for system (29); that is,

𝑓 (0, 𝜙) ≡ 0, ∀𝜙 = 0. (30)

Lemma 5 (see [17]). Suppose the following.

(A1) 𝑄 = 𝐷
𝑥
𝑓(0, 0) is the linearization matrix of system

(29) around the equilibrium 𝑥 = 0 with 𝜙 evaluated at
0. 0 is a simple eigenvalue of𝑄 and all other eigenvalues
of 𝑄 have negative real parts.

(A2) Matrix 𝑄 has a (nonnegative) right eigenvector 𝑉 and
a left eigenvector𝑊with respect to the zero eigenvalue.

Define 𝑓
𝑘
as the 𝑘th component of 𝑓, and

𝑎 =

𝑛

∑

𝑘,𝑖,𝑗=1

𝑤
𝑘
V
𝑖
V
𝑗

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑗

(0, 0) ,

𝑏 =

𝑛

∑

𝑘,𝑖=1

𝑤
𝑘
V
𝑖

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝜙
(0, 0) .

(31)

And 𝑎 and 𝑏 totally decide the local dynamic of system (29)
around 𝑥 = 0.

(i) Consider 𝑎 > 0, 𝑏 > 0. If 𝜙 < 0, with |𝜙| ≪ 1, 𝑥 = 0 is
locally asymptotically stable and there exists a positive
unstable equilibrium; if 0 < 𝜙 ≤ 1, 𝑥 = 0 is unstable
and there exists a negative and locally asymptotically
stable equilibrium.

(ii) Consider 𝑎 < 0, 𝑏 < 0. If 𝜙 < 0, with |𝜙| ≪ 1, 𝑥 = 0 is
unstable; if 0 < 𝜙 ≤ 1, 𝑥 = 0 is locally asymptotically
stable and there exists a positive unstable equilibrium.

(iii) Consider 𝑎 > 0, 𝑏 < 0. If 𝜙 < 0, with |𝜙| ≪ 1, 𝑥 =
0 is unstable and there exists a locally asymptotically
stable negative equilibrium; if 0 < 𝜙 ≤ 1, 𝑥 = 0 is
stable and a positive unstable equilibrium emerges.

(iv) Consider 𝑎 < 0, 𝑏 > 0. If 𝜙 changes from
negative to positive, 𝑥 = 0 changes its stability
from stable to unstable. Correspondingly, a negative
unstable equilibrium becomes positive and locally
asymptotically stable.

Remark 6. The requirement that 𝑉 is nonnegative is unnec-
essary by [17].

It seems that a transcritical bifurcation occurs at 𝜙 = 0:
more specifically, the bifurcation at 𝜙 = 0 is forward when
𝑎 < 0 and 𝑏 > 0; the bifurcation at 𝜙 = 0 is backward when
𝑎 > 0 and 𝑏 > 0.

Next consider 𝜙 = 0 as the bifurcation parameter, so that
𝑅
0
< 1 for 𝜙 < 0 and 𝑅

0
> 1 for 𝜙 > 0 and so that 𝑥

0
is a

disease-free equilibrium for system (29) of all values of 𝜙.
Take into account the following system:

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑥, 𝜙) , (32)

where 𝑓 is continuously differentiable at least twice in both
𝑥 and 𝜙. The disease-free equilibrium is the line (𝑥

0
; 𝜙). And

the disease-free equilibrium changes its local stability at the
point (𝑥

0
; 𝜙) [16].

Next we will exhibit that there exist nontrivial equilibria
near the bifurcation point (𝑥

0
; 0).

Let 𝑆 = 𝑥
1
, 𝑉 = 𝑥

2
, 𝐸 = 𝑥

3
, and 𝐼 = 𝑥

4
; then system (3)

becomes

̇𝑥
1 (𝑡) = 𝐴 (1 − 𝑝) + 𝜔𝑥2 (𝑡) + 𝜏𝑥4 (𝑡) − 𝜇𝑥1 (𝑡)

− 𝛽𝑥
1
(𝑡) 𝑥
4
(𝑡) (1 + 𝛼𝑥

4
(𝑡)) := 𝑓

1
,

̇𝑥
2
(𝑡) = 𝐴𝑝 − 𝜔𝑥

2
(𝑡) − 𝜇𝑥

2
(𝑡) := 𝑓

2
,

̇𝑥
3
(𝑡) = 𝛽𝑥

1
(𝑡) 𝑥
4
(𝑡) (1 + 𝛼𝑥

4
(𝑡)) − 𝜇𝑥

3
(𝑡) − 𝜎𝑥

3
(𝑡) := 𝑓

3
,

̇𝑥
4
(𝑡) = 𝜎𝑥

3
(𝑡) − 𝜇𝑥

4
(𝑡) − 𝜏𝑥

4
(𝑡) − 𝜖𝑥

4
(𝑡) := 𝑓

4
.

(33)

We will show that system (33) may exhibit a backward
bifurcation when 𝑅

0
= 1 by applying Lemma 5. Think of the

disease-free equilibrium𝑃
0
(𝐴[𝜇(1−𝑝)+𝜔]/𝜇(𝜇+𝜔), 𝑝𝐴/(𝜇+

𝜔), 0, 0) and notice that the condition 𝑅
0
= 1 can be seen as

𝛽 = 𝛽
∗
= 𝜇(𝜇+𝜏+𝜖)(𝜇+𝜎)(𝜇+𝜔)/𝜎𝐴[(1−𝑝)𝜇+𝜔] in terms

of the parameter 𝛽.
Calculate the eigenvalues of the following matrix:

𝐽 (𝑃
0
, 𝛽
∗
)

=

[
[
[
[
[
[
[
[
[
[

[

−𝜇 𝜔 0 𝜏 −
𝛽
∗
𝐴 [𝜇 (1 − 𝑝) + 𝜔]

𝜇 (𝜇 + 𝜔)

0 −𝜔 − 𝜇 0 0

0 0 −𝜇 − 𝜎
𝛽
∗
𝐴 [𝜇 (1 − 𝑝) + 𝜔]

𝜇 (𝜇 + 𝜔)

0 0 𝜎 −𝜏 − 𝜇 − 𝜖

]
]
]
]
]
]
]
]
]
]

]

;

(34)

we can obtain 𝜆
1
= −𝜇, 𝜆

2
= −𝜇 − 𝜔, 𝜆

3
= −2𝜇 − 𝜎 − 𝜏, and

𝜆
4
= 0.
The matrix 𝐽(𝑃

0
, 𝛽
∗
) has a simple eigenvalue of 0; and

all others have negative real parts. Thus, we can make use
of the center manifold theory. The disease-free equilibrium
𝑃
0
is a nonhyperbolic equilibrium when 𝛽 = 𝛽∗ (i.e., when

𝑅
0
= 1). This completes the verification with respect to (A1)

of Lemma 5.
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Now we set 𝑉 = (V
1
, V
2
, V
3
, V
4
)
𝑇 as a right eigenvector

associated with the zero eigenvalue 𝜆
4
= 0. It is calculated

by

[
[
[
[
[
[
[
[
[
[

[

−𝜇 𝜔 0 𝜏 −
𝛽
∗
𝐴 [𝜇 (1 − 𝑝) + 𝜔]

𝜇 (𝜇 + 𝜔)

0 −𝜔 − 𝜇 0 0

0 0 −𝜇 − 𝜎
𝛽
∗
𝐴 [𝜇 (1 − 𝑝) + 𝜔]

𝜇 (𝜇 + 𝜔)

0 0 𝜎 −𝜏 − 𝜇 − 𝜖

]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[

[

V
1

V
2

V
3

V
4

]
]
]
]
]

]

= 0.

(35)

Expanding (35), we can have

−𝜇V
1
+ 𝜔V
2
+ 𝜏V
4
−
𝛽
∗
𝐴 [𝜇 (1 − 𝑝) + 𝜔]

𝜇 (𝜇 + 𝜔)
V
4
= 0,

(−𝜔 − 𝜇) V
2
= 0,

(−𝜇 − 𝜎) V
3
+
𝛽
∗
𝐴 [𝜇 (1 − 𝑝) + 𝜔]

𝜇 (𝜇 + 𝜔)
V
4
= 0,

𝜎V
3
− (𝜏 + 𝜇 + 𝜎) V

4
= 0.

(36)

Expanding (36), we have

𝑉 = (
(𝜇 + 𝜎)[𝜎𝜏(𝜇 + 𝜔) −𝑀]

𝜇𝑀
, 0, 1,

𝜎

𝜏 + 𝜇 + 𝜖
)

𝑇

. (37)

And the left eigenvector𝑊 = (𝑤
1
, 𝑤
2
, 𝑤
3
, 𝑤
4
) satisfying𝑊 ⋅

𝑉 = 1 is obtained by

−𝜇𝑤
1
= 0,

𝜔𝑤
1
− (𝜔 + 𝜇)𝑤

2
= 0,

− (𝜇 + 𝜎)𝑤
3
+ 𝜎𝑤
4
= 0,

𝜏𝑤
1
−
𝛽
∗
𝐴 [𝜇 (1 − 𝑝) + 𝜔]

𝜇 (𝜇 + 𝜔)
𝑤
1
+
𝛽
∗
𝐴 [𝜇 (1 − 𝑝) + 𝜔]

𝜇 (𝜇 + 𝜔)
𝑤
3

− (𝜏 + 𝜇 + 𝜖)𝑤
4
= 0.

(38)

From (38), the left eigenvector𝑊 turns out to be

𝑊 = (0, 0,
(𝜇 + 𝜏 + 𝜖)

2𝜇 + 𝜎 + 𝜏 + 𝜖
,
(𝜇 + 𝜎)(𝜇 + 𝜏 + 𝜖)

𝜎(2𝜇 + 𝜎 + 𝜏 + 𝜖)
)

𝑇

. (39)

Computing the following formulas, we get

𝜕
2
𝑓
1

𝜕𝑥
1
𝜕𝑥
4

=
𝜕
2
𝑓
1

𝜕𝑥
4
𝜕𝑥
1

= −𝛽,

𝜕
2
𝑓
1

𝜕𝑥
2

4

=
−2𝛼𝛽𝐴 [𝜇 (1 − 𝑝) + 𝜔]

𝜇 (𝜇 + 𝜔)
,

𝜕
2
𝑓
3

𝜕𝑥
1
𝜕𝑥
4

=
𝜕
2
𝑓
3

𝜕𝑥
4
𝜕𝑥
1

= 𝛽,

𝜕
2
𝑓
3

𝜕𝑥
2

4

=
2𝛼𝛽𝐴 [𝜇 (1 − 𝑝) + 𝜔]

𝜇 (𝜇 + 𝜔)
,

𝜕
2
𝑓
1

𝜕𝑥
4
𝜕𝛽

=
𝜕
2
𝑓
1

𝜕𝛽𝜕𝑥
4

=
−𝐴 [𝜇 (1 − 𝑝) + 𝜔]

𝜇 (𝜇 + 𝜔)
,

𝜕
2
𝑓
3

𝜕𝑥
4
𝜕𝛽

=
𝜕
2
𝑓
3

𝜕𝛽𝜕𝑥
4

=
−𝐴 [𝜇 (1 − 𝑝) + 𝜔]

𝜇 (𝜇 + 𝜔)
,

(40)

and all the other second-order partial derivatives are equal to
zero.

So, we evaluate 𝑎 and 𝑏 as follows:

𝑎 =

4

∑

𝑘,𝑖,𝑗=1

𝑤
𝑘
V
𝑖
V
𝑗

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑗

(𝑃
0
, 𝛽
∗
) ,

𝑏 =

4

∑

𝑘,𝑖=1

𝑤
𝑘
V
𝑖

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝛽
(𝑃
0
, 𝛽
∗
) .

(41)

From system (33), and the terms (𝜕2𝑓
𝑘
/𝜕𝑥
𝑖
𝜕𝑥
𝑗
)(𝑃
0
, 𝛽
∗
) and

(𝜕
2
𝑓
𝑘
/𝜕𝑥
𝑖
𝜕𝛽)(𝑃
0
, 𝛽
∗
) which are nonzero, the following are

deduced:

𝑎 = 2𝑤
1
V
1
V
4

𝜕
2
𝑓
1

𝜕𝑥
1
𝜕𝑥
4

(𝑃
0
, 𝛽
∗
) + 𝑤
1
V2
4

𝜕
2
𝑓
1

𝜕𝑥
2

4

(𝑃
0
, 𝛽
∗
)

+ 2𝑤
3
V
1
V
4

𝜕
2
𝑓
3

𝜕𝑥
1
𝜕𝑥
4

(𝑃
0
, 𝛽
∗
) + 𝑤
3
V2
4

𝜕
2
𝑓
3

𝜕𝑥
2

4

(𝑃
0
, 𝛽
∗
) ,

𝑏 = 2𝑤
1
V
4

𝜕
2
𝑓
1

𝜕𝑥
4
𝜕𝛽
(𝑃
0
, 𝛽
∗
) + 2𝑤

3
V
4

𝜕
2
𝑓
3

𝜕𝑥
4
𝜕𝛽
(𝑃
0
, 𝛽
∗
) .

(42)

By (37) and (39), we obtain

𝑎 =
2𝜎𝛽

𝜇 (2𝜇 + 𝜎 + 𝜏 + 𝜖)
(𝜇 + 𝜎) [𝜎𝜏 (𝜇 + 𝜔) −𝑀]

+ (𝜇 + 𝜎) 𝜎𝛼𝐴 [𝜇 (1 − 𝑝) + 𝜔] ,

𝑏 =
2𝜎𝐴 [𝜇 (1 − 𝑝) + 𝜔]

𝜇 (2𝜇 + 𝜎 + 𝜏 + 𝜖) (𝜇 + 𝜔)
.

(43)

Obviously 𝑏 is always positive. Therefore the sign of
the coefficient 𝑎 determines the local dynamics around the
disease-free equilibrium for 𝛽 = 𝛽∗ by Lemma 5.

Remark 7. Set 𝛼
0
= (𝑀 − 𝜎𝜏(𝜇 + 𝜔))/𝜎𝐴[𝜇(1 − 𝑝) + 𝜔].

The coefficient 𝑎 is positive if and only if 𝛼 > 𝛼
0
. Under this

circumstance, the direction of the bifurcation for system (3)
at𝑅
0
= 1 is backward. Considering condition (12), we get that

the condition 𝛼 > 𝛼
0
is equivalent to the condition 𝑅∗

1
< 1 at

the bifurcation, that is, when 𝑅
0
= 1.

Theorem 8. Let 𝑅
0
= 1. System (3) shows a backward

bifurcation when 𝑅∗
1
< 1 and a forward bifurcation when

𝑅
∗

1
> 1.
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Furthermore, taking the treated rate 𝜏 as the bifurcation
parameter, we can get the following.

Theorem 9. Let 𝑅
0
> 1. When 𝜏 passes through a critical

value, system (3) undergoes Hopf bifurcation at the positive
equilibrium 𝑃

∗.

Proof. If system (3) shows Hopf bifurcation, there must exist
𝜏 = 𝜏
∗, which satisfies the following conditions:

(i) ℎ (𝜏
∗
) ≡ 𝑐
1
(𝜏
∗
) 𝑐
2
(𝜏
∗
) − 𝑐
3
(𝜏
∗
) = 0, (44)

(ii) 𝑑

𝑑𝜏
Re (𝜆 (𝜏))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏∗
̸= 0. (45)

From (28) and (44), we can calculate the critical value 𝜏∗.
For 𝜏 = 𝜏∗, we have

𝑐
1
𝑐
2
= 𝑐
3
. (46)

From (26) and (46), we have

(𝜆
2
+ 𝑐
2
) (𝜆 + 𝑐

1
) = 0, (47)

which has three roots:

𝜆
1
= 𝑖√𝑐2, 𝜆

2
= −𝑖√𝑐2, 𝜆

3
= −√𝑐1. (48)

For all 𝜏, the roots are all in the following general forms:

𝜆
1 (𝜏) = 𝛼1 (𝜏) + 𝑖𝛼2 (𝜏) ,

𝜆
2
(𝜏) = 𝛼

1
(𝜏) − 𝑖𝛼

2
(𝜏) ,

𝜆
3
(𝜏) = − 𝑐

1
.

(49)

Next, we prove the transversality condition

𝑑

𝑑𝜏
Re (𝜆

𝑗
(𝜏))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏∗
̸= 0, 𝑗 = 1, 2. (50)

We substitute 𝜆
𝑗
(𝜏) = 𝛼

1
(𝜏) + 𝑖𝛼

2
(𝜏) into (47) and calculate

the derivative, getting

𝐽
1
(𝜏) 𝛼
󸀠

1
(𝜏) − 𝐺

1
(𝜏) 𝛼
󸀠

2
(𝜏) + 𝐾

1
(𝜏) = 0,

𝐺
1 (𝜏) 𝛼

󸀠

1
(𝜏) + 𝐽1 (𝜏) 𝛼

󸀠

2
(𝜏) + 𝐻1 (𝜏) = 0,

(51)

where
𝐺
1
= 6𝛼
1 (𝜏) 𝛼2 (𝜏) + 2𝑐1 (𝜏) 𝛼2 (𝜏) ,

𝐻
1
= 2𝛼
1
(𝜏) 𝛼
2
(𝜏) 𝑐
󸀠

1
(𝜏) + 𝑐

󸀠

2
(𝜏) 𝛼
2
(𝜏) ,

𝐽
1
= 3𝛼
2

1
(𝜏) + 2𝑐

1
(𝜏) 𝛼
1
(𝜏) + 𝑐

2
(𝜏) − 3𝛼

2

2
(𝜏) ,

𝐾
1
= 𝛼
2

1
(𝜏) 𝑐
󸀠

1
(𝜏) + 𝑐

󸀠

2
(𝜏) 𝛼
1
(𝜏) + 𝑐

󸀠

3
(𝜏) − 𝑐

󸀠

1
(𝜏) 𝛼
2

2
(𝜏) .

(52)

For

𝐺
1
(𝜏
∗
)𝐻
1
(𝜏
∗
) + 𝐽
1
(𝜏
∗
)𝐾
1
(𝜏
∗
) ̸= 0, (53)

we obtain
𝑑

𝑑𝜏
Re (𝜆

𝑗 (𝜏))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏∗
=
𝐺
1
𝐻
1
+ 𝐽
1
𝐾
1

𝐽
2

1
+ 𝐺
2

1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏∗
̸= 0. (54)

Hence, the transversality condition is confirmed. This
verifies the result.

5. Global Stability of Equilibria

Theorem 10. Let 𝑅
0
(1 + 𝛼𝐴/𝜇) < 1. If 𝑅∗

1
> 1 the disease-free

equilibrium 𝑃
0
is globally asymptotically stable in Ω; if 𝑅∗

1
< 1

the disease-free equilibrium 𝑃
0
is globally asymptotically stable

in Ω when 𝑅
0
< 𝑅
∗

0
.

Proof. When 𝑅
0
(1 + 𝛼𝐴/𝜇) < 1, 𝑅

0
< 1. If 𝑅∗

1
> 1, 𝑃

0
is the

only equilibrium of (3) which is located in Ω. From the first
equation of (3), we obtain 𝑑𝑆/𝑑𝑡 ≤ (1 − 𝑝)𝐴 + (𝐴/𝜇)(𝜔 +

𝜏) − (𝜇 + 𝜔)𝑆. A solution of the equation 𝑑𝑦/𝑑𝑡 = (1 − 𝑝)𝐴 +
(𝐴/𝜇)(𝜔+𝜏)−(𝜇+𝜔)𝑦 is a upper solution of 𝑆(𝑡). Due to that
𝑦 → 𝐴[𝜇(1 − 𝑝) + (𝜔 + 𝜏)]/𝜇(𝜇 + 𝜔) when 𝑡 → ∞, we can
easily get that, for a small enough 𝜀 > 0 which is sufficiently
small, there exists a 𝑡

0
such that 𝑆(𝑡) ≤ 𝑦(𝑡) ≤ 𝐴[𝜇(1 − 𝑝) +

(𝜔 + 𝜏)]/𝜇(𝜇 + 𝜔) + 𝜀 as 𝑡 > 𝑡
0
.

Considering the Lyapunov function 𝐿 = 𝜎𝐸 + (𝜇 + 𝜎)𝐼,
thus

𝐿
󸀠
= 𝜎𝐸
󸀠
+ (𝜇 + 𝜎) 𝐼

󸀠

= 𝐼 [𝜎𝛽𝑆 (1 + 𝛼𝐼) − (𝜇 + 𝜎) (𝜇 + 𝜏 + 𝜖)] .

(55)

For𝑅
0
(1+𝛼𝐴/𝜇) < 1, we can choose 𝜀 small enough such

that (1 + 𝛼𝐴/𝜇)𝑅
0
− 1+ (1 +𝛼𝐴/𝜇)𝜀𝜎𝛽/(𝜇 +𝜎)(𝜇 + 𝜏+ 𝜖) < 0.

Thus,

𝐿
󸀠
≤ [𝜎𝛽

𝐴 [𝜇 (1 − 𝑝) + (𝜔 + 𝜏)]

𝜇 (𝜇 + 𝜔)
+ 𝜀]

⋅ [(1 +
𝛼𝐴

𝜇
) − (𝜇 + 𝜎) (𝜇 + 𝜏 + 𝜖)] 𝐼

= (𝜇 + 𝜎) (𝜇 + 𝜏 + 𝜖)

⋅ [(1 +
𝛼𝐴

𝜇
)𝑅
0
− 1 +

(1 + 𝛼𝐴/𝜇) 𝜀𝜎𝛽

(𝜇 + 𝜎) (𝜇 + 𝜏 + 𝜖)
] 𝐼

≤ 0,

(56)

and 𝐿󸀠 = 0 if and only if 𝐼 = 0. The singleton 𝑃
0
is the

maximum positive invariant set in {(𝑆, 𝑉, 𝐸, 𝐼) ∈ Ω, 𝐿
󸀠
=

0}. The global stability of 𝑃
0
for every solution follows from

LaSalle’s Invariance Principle.
If 𝑅∗
1
< 1, system (3) has two endemic equilibrium when

𝑅
∗

0
< 𝑅
0
< 1. Furthermore, system (3) shows a backward

bifurcation. That means we should require that 𝑅
0
becomes

much smaller than unity (less than a critical value 𝑅∗
0
) so

that the disease can be eliminated. Thus, when 𝑅∗
1
< 1 the

disease-free equilibrium 𝑃
0
is globally asymptotically stable

in Ω when 𝑅
0
< 𝑅
∗

0
.

For system (3), we discuss global stability of the endemic
equilibrium 𝑃

∗ for 𝑅
0
> 1. Due to 𝑆 + 𝑉 + 𝐸 + 𝐼 → 𝐴/𝜇

when 𝑡 → ∞, we can determine 𝑉(𝑡) by 𝑆(𝑡), 𝐸(𝑡), and 𝐼(𝑡).
So system (3) can be changed into the following limit system:

̇𝑆 (𝑡) = 𝐴 (1 − 𝑝) + 𝜔(
𝐴

𝜇
− 𝑆 (𝑡) − 𝐸 (𝑡) − 𝐼 (𝑡))

+ 𝜏𝐼 − 𝜇𝑆 − 𝛽𝑆𝐼 (1 + 𝛼𝐼) ,
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𝐸̇ (𝑡) = 𝛽𝑆𝐼 (1 + 𝛼𝐼) − 𝜇𝐸 − 𝜎𝐸,

̇𝐼 (𝑡) = 𝜎𝐸 − 𝜇𝐼 − 𝜏𝐼 − 𝜖𝐼.

(57)

We need the following results [15] to obtain the result we
want.

Consider the system as follows:

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑡, 𝑥) , (58)

𝑑𝑦

𝑑𝑡
= 𝑔 (𝑦) , (59)

where𝑓 and 𝑔 are locally Lipschitz in 𝑥 ∈ 𝑅𝑛 and continuous.
And for all positive 𝑡 values its solutions exist. If 𝑓(𝑡, 𝑥) →
𝑔(𝑥) when 𝑡 → ∞ locally uniformly for 𝑥 ∈ 𝑅

𝑛, then
system (58) is defined as asymptotically autonomous with
limit system (59).

Lemma 11. Set 𝑃 is a locally asymptotically stable equilibrium
of (59) and 𝑥 is the 𝜔-limit set of a forward bounded solution
𝑥(𝑡) of (58). If 𝑥 includes a point 𝑦

0
such that the solution of

(59) with 𝑦(0) = 𝑦
0
converges to 𝑃 when 𝑡 → ∞, then 𝜔 = 𝑃;

that is, 𝑥(𝑡) → 𝑃 when 𝑡 → ∞.

Corollary 12. If solutions of system (58) are bounded and the
equilibrium 𝑃 of the limit system (59) is globally asymptotically
stable, then any solution 𝑥(𝑡) of system (58) satisfies 𝑥(𝑡) → 𝑃

when 𝑡 → ∞.

Next, we obtain sufficient conditions that endemic equi-
librium 𝑃

∗ is globally asymptotically stable for 𝑅
0
> 1 by

the geometrical approach [9]. Firstly, we briefly introduce this
geometrical approach.

Let a 𝐶1 function 𝑥 → 𝑓(𝑥) ∈ 𝑅
𝑛 be in an open set

𝐷 ∈ 𝑅
𝑛. Consider the differential equation

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑥) . (60)

Denote 𝑥(0, 𝑥
0
) = 𝑥
0
by 𝑥(𝑡, 𝑥

0
)which is the solution to (60).

We establish the following two assumptions.

(H1) There exists a compact absorbing set𝐾 ⊂ 𝐷.
(H2) Equation (60) has a unique equilibrium 𝑥 in𝐷.

If the equilibrium 𝑥 is locally stable, it is globally stable
in 𝐷 and all trajectories in 𝐷 converge to 𝑥. For 𝑛 ≥ 2, we
mean a condition satisfied by 𝑓 which rules out the existence
of nonconstant periodic solutions of (60) by Bendixson’s
criterion. The classical Bendixson’s condition div𝑓(𝑥) < 0

for 𝑛 = 2 is robust under 𝐶1 local perturbations of 𝑓. About
higher-dimensional systems, the 𝐶1 robust properties have
been discussed.

If there exists a neighborhood 𝑈 of 𝑥
0
and 𝑇 > 0 such

that 𝑈 ∩ 𝑥(𝑡, 𝑈) is empty for all 𝑡 > 𝑇, then a point 𝑥
0
∈ 𝐷 is

called wandering for (59). For example, all limit points and
equilibria are nonwandering. We will introduce the global
stability principle in [19] which is suited for autonomous
systems.

Lemma 13 (see [19]). Assume that (𝐻1) and (𝐻2) hold.
And suppose that (60) satisfies Bendixson’s criterion that is
robust under 𝐶1 local perturbations of 𝑓 at all nonequilibrium
nonwandering points for (60). Then, 𝑥 is globally stable in 𝐷
provided it is stable.

To have the robustness required by Lemma 13, we show
the following Bendixson criterion [19]. Let 𝑥 → 𝑃(𝑥) be a
matrix-valued function that is 𝐶1 for 𝑥 ∈ 𝐷. Assume that
𝑃
−1
(𝑥) exists and is continuous for 𝑥 ∈ 𝐾, which is the

compact absorbing set. Define a quantity 𝑞
2
as

𝑞
2
= lim
𝑡→∞

sup sup
𝑥∈𝐾

1

𝑡
∫

𝑡

0

𝜇 (𝐵 (𝑥 (𝑠, 𝑥
0
))) 𝑑𝑠, (61)

where

𝐵 = 𝑃
𝑓
𝑃
−1
+ 𝑃

𝜕𝑓
[2]

𝜕𝑥
𝑃
−1
. (62)

By substituting the derivative in the direction of 𝑓 into each
entry 𝑝 of 𝑃, the matrix 𝑃

𝑓
is obtained. 𝜇(𝐵) is the Lozinski1̆

measure of 𝐵 in terms of a vector norm | ⋅ | in 𝑅𝑁:

𝜇 (𝐵) = lim
ℎ→0

+

|𝐼 + ℎ𝐵| − 1

ℎ
. (63)

If 𝐷 is simply connected, the condition 𝑞
2
< 0 excludes

the existence of any orbit that attracts a simple closed
rectifiable curve that is invariant for (62), such as homoclinic
orbits, heteroclinic cycles, and periodic orbits in [19]. And
it is robust under 𝐶1 local perturbations of 𝑓 near any
nonequilibriumpoint that is nonwandering. In particular, the
following lemma is proved in [19].

Lemma 14. Assume that 𝐷 is simply connected and that the
hypotheses (𝐻1) and (𝐻2) hold. Then, if 𝑞

2
< 0, the unique

equilibrium 𝑥 of (62) is globally stable in𝐷.

Next, we will obtain the main result.

Theorem 15. If 𝑅
0
> 1, system (3) admits a unique endemic

equilibrium 𝑃
∗. It is globally asymptotically stable in terms of

solutions of (3) initiating in the interior of Ω, provided that
inequality (77) or (78), and 𝑐

1
> 0, 𝑐
1
𝑐
2
− 𝑐
3
> 0 are satisfied.

Proof. The Jacobian of system (57) is as follows:

𝐽

=
[
[

[

−𝜇 − 𝜔 − 𝛽𝐼 (1 + 𝛼𝐼) −𝜔 −𝜔 + 𝜏 − 𝛽𝑆 (1 + 2𝛼𝐼)

𝛽𝐼 (1 + 𝛼𝐼) −𝜇 − 𝜎 𝛽𝑆 (1 + 2𝛼𝐼)

0 𝜎 −𝜏 − 𝜇 − 𝜖

]
]

]

.

(64)

From Theorem 3(ii), we obtain that there exists the
endemic equilibrium 𝑃

∗ and it is unique due to 𝑅
0
> 1. We

will analyse the stability of 𝑃∗ by the method in [9]. Due to
Lemma 14, the global stability of 𝑃∗ requires the following
sufficient conditions: (i) theremust exist a compact absorbing
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set in the interior of Ω (i.e., condition (H1)); (ii) 𝑃∗ in the
interior of Ω is unique (i.e., condition (H2)); and (iii) the
requirement 𝑞

2
< 0.

System (3) satisfies (H1)-(H2) under the assumption𝑅
0
>

1. Actually, 𝑃
0
is unstable when 𝑅

0
> 1. As 𝑃

0
is unstable and

𝑃
0
∈ 𝜕Ω, we can obtain the uniform persistence.
As Ω is bounded, the uniform persistence implies that

there exist a compact absorbing set in the interion of Ω for

system (3) (see [20]). Therefore, (H1) is verified. Also, 𝑃∗ is
the only equilibrium in the interior ofΩ, so that 𝑃∗ is unique;
that is, (H2) is verified, too.

Next we will look for conditions which satisfied (H3).
Consider the Jacobianmatrix (64) and get the second additive
compound matrix 𝐽[2](𝑆, 𝐸, 𝐼):

𝐽
[2]
=
[
[

[

−2𝜇 − 𝜔 − 𝜎 − 𝛽𝐼 (1 + 𝛼𝐼) 𝛽𝑆 (1 + 2𝛼𝐼) 𝜔 − 𝜏 − 𝛽𝑆 (1 + 2𝛼𝐼)

𝜎 −2𝜇 − 𝜔 − 𝜏 − 𝜖 − 𝛽𝐼 (1 + 𝛼𝐼) −𝜔

0 𝛽𝐼 (1 + 𝛼𝐼) −2𝜇 − 𝜎 − 𝜏 − 𝜖

]
]

]

. (65)

Let 𝑝(𝑥) = 𝑃(𝑆, 𝐸, 𝐼) = diag{𝐸/𝐼, 𝐸/𝐼, 𝐸/𝐼}. Then
𝑃
𝑓
𝑃
−1
= diag{𝐸󸀠/𝐸 − 𝐼󸀠/𝐼, 𝐸󸀠/𝐸 − 𝐼󸀠/𝐼, 𝐸󸀠/𝐸 − 𝐼󸀠/𝐼}. Thus,

the matrix 𝐵 = 𝑃
𝑓
𝑃
−1
+𝑃𝐽
[2]
𝑃
−1 can be written in block form

as

𝐵 = [

𝐵
11
𝐵
12

𝐵
21
𝐵
22

] , (66)

where

𝐵
11
=
𝐸
󸀠

𝐸
−
𝐼
󸀠

𝐼
− 𝛽𝐼 (1 + 𝛼𝐼) − 2𝜇 − 𝜔 − 𝜎,

𝐵
12
= [𝛽𝑆 (1 + 2𝛼𝐼) , 𝛽𝑆 (1 + 2𝛼𝐼) + 𝜔 − 𝜏] ,

𝐵
21
= [𝜎, 0]

𝑇
,

𝐵
22
=
[
[
[

[

𝐸
󸀠

𝐸
−
𝐼
󸀠

𝐼
− 𝛽𝐼 (1 + 𝛼𝐼) − 2𝜇 − 𝜔 − 𝜏 − 𝜖 −𝜔

𝛽𝐼 (1 + 𝛼𝐼)
𝐸
󸀠

𝐸
−
𝐼
󸀠

𝐼
− 2𝜇 − 𝜎 − 𝜏 − 𝜖

]
]
]

]

.

(67)

Set (𝑘, 𝑙, 𝑚) be the vectors in 𝑅3. We choose a standard in
𝑅
3 as |(𝑘, 𝑙, 𝑚)| = max{|𝑘, 𝑙 + 𝑚|} and set 𝜇 be the Lozinski1̆

measure in term of this standard. Applying the technique in
[21], the following can be obtained:

𝜇 (𝐵) ≤ sup {𝑔
1
, 𝑔
2
} , (68)

where

𝑔
1
= 𝜇
1
(𝐵
11
) +

󵄨󵄨󵄨󵄨𝐵12
󵄨󵄨󵄨󵄨 , 𝑔

2
= 𝜇
1
(𝐵
22
) +

󵄨󵄨󵄨󵄨𝐵21
󵄨󵄨󵄨󵄨 . (69)

We can obtain

𝜇
1
(𝐵
11
) = 𝐵
11
=
𝐸
󸀠

𝐸
−
𝐼
󸀠

𝐼
− 𝛽𝐼 (1 + 𝛼𝐼) − 2𝜇 − 𝜔 − 𝜎,

󵄨󵄨󵄨󵄨𝐵21
󵄨󵄨󵄨󵄨 = 𝜎,

𝜇
1
(𝐵
22
) = max{𝐸

󸀠

𝐸
−
𝐼
󸀠

𝐼
− 2𝜇 − 𝜔 − 𝜏 − 𝜖,

𝐸
󸀠

𝐸
−
𝐼
󸀠

𝐼
− 2𝜇 − 𝜎 − 𝜏 − 𝜖 − 𝜔}

=
𝐸
󸀠

𝐸
−
𝐼
󸀠

𝐼
− 2𝜇 − 𝜔 − 𝜏 − 𝜖,

󵄨󵄨󵄨󵄨𝐵12
󵄨󵄨󵄨󵄨 = max {𝛽𝑆 (1 + 2𝛼𝐼) , 𝛽𝑆 (1 + 2𝛼𝐼) + 𝜔 − 𝜏}

=
{

{

{

𝜔 − 𝜏 + 𝛽𝑆 (1 + 2𝛼𝐼) , 𝜔 − 𝜏 > 0,

𝛽𝑆 (1 + 2𝛼𝐼) , 𝜔 − 𝜏 < 0.

(70)

From the second and third equations of system (57), we
can obtain

𝐸
󸀠

𝐸
=
𝛽𝑆𝐼 (1 + 𝛼𝐼)

𝐸
− (𝜇 + 𝜎) ,

𝐼
󸀠

𝐼
=
𝜎𝐸

𝐼
− (𝜇 + 𝜏 + 𝜖) .

(71)
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Thus, we obtain
𝑔
1
= 𝜇
1
(𝐵
11
) +

󵄨󵄨󵄨󵄨𝐵12
󵄨󵄨󵄨󵄨

=

{{{{{{{{{

{{{{{{{{{

{

𝐸
󸀠

𝐸
−
𝐼
󸀠

𝐼
− 𝛽𝐼 (1 + 𝛼𝐼) − 2𝜇 − 𝜎

+𝛽𝑆 (1 + 2𝛼𝐼) − 𝜏, 𝜔 > 𝜏,

𝐸
󸀠

𝐸
−
𝐼
󸀠

𝐼
− 𝛽𝐼 (1 + 𝛼𝐼) − 2𝜇 − 𝜔 − 𝜎

+𝛽𝑆 (1 + 2𝛼𝐼) , 𝜔 < 𝜏,

𝑔
2
= 𝜇
1
(𝐵
22
) +

󵄨󵄨󵄨󵄨𝐵21
󵄨󵄨󵄨󵄨 =

𝐸
󸀠

𝐸
−
𝐼
󸀠

𝐼
− 2𝜇 − 𝜔 − 𝜏 − 𝜖 + 𝜎.

(72)

We can get

𝑔
1
≤

{{{{{{{{{

{{{{{{{{{

{

𝐸
󸀠

𝐸
− 𝜇 − 𝜎 + 𝜖 − 𝛽𝐼 (1 + 𝛼𝐼)

+ 𝛽𝑆 (1 + 2𝛼𝐼) , 𝜔 > 𝜏,

𝐸
󸀠

𝐸
− 𝜇 − 𝜔 − 𝜎 + 𝜖 − 𝛽𝐼 (1 + 𝛼𝐼)

+ 𝛽𝑆 (1 + 2𝛼𝐼) , 𝜔 < 𝜏,

𝑔
2
≤
𝐸
󸀠

𝐸
− 𝜇 − 𝜔 + 𝜎.

(73)

Hence

𝜇 (𝐵) ≤

{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{

{

𝐸
󸀠

𝐸
+max {−𝜇 − 𝜔 + 𝜎,

− 𝜇 − 𝜎 + 𝜖

− 𝛽𝐼 (1 + 𝛼𝐼)

+ 𝛽𝑆 (1 + 2𝛼𝐼)} , 𝜔 > 𝜏,

𝐸
󸀠

𝐸
+max {−𝜇 − 𝜔 + 𝜎,

− 𝜇 − 𝜔 − 𝜎 + 𝜖

− 𝛽𝐼 (1 + 𝛼𝐼)

+ 𝛽𝑆 (1 + 2𝛼𝐼)} , 𝜔 < 𝜏.

(74)

Considering 𝑐 ≤ 𝑆, 𝐼 ≤ 𝐴/𝜇, where 𝑐 is the constant of
uniform persistence; it is obvious that

𝜇 (𝐵) ≤
𝐸
󸀠

𝐸
− 𝑑, (75)

where

𝑑 =

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

min{−𝜇 − 𝜔 + 𝜎,

− 𝜇 − 𝜎 + 𝜖 − 𝛽𝑐 (1 + 𝛼𝑐)

+ 𝛽
𝐴

𝜇
(1 + 2𝛼

𝐴

𝜇
)} , 𝜔 > 𝜏,

min{−𝜇 − 𝜔 + 𝜎,

− 𝜇 − 𝜔 − 𝜎 + 𝜖 − 𝛽𝑐 (1 + 𝛼𝑐)

+ 𝛽
𝐴

𝜇
(1 + 2𝛼

𝐴

𝜇
)} , 𝜔 < 𝜏.

(76)

And if
𝜇 + 𝜔 < 𝜎,

𝛽𝑐 (1 + 𝛼𝑐) + 𝜇 + 𝜎 − 𝜖 < 𝛽
𝐴

𝜇
(1 + 2𝛼

𝐴

𝜇
) , 𝜔 > 𝜏,

(77)

or
𝜇 + 𝜔 < 𝜎,

𝛽𝑐 (1 + 𝛼𝑐) + 𝜇 + 𝜔 + 𝜎 − 𝜖 < 𝛽
𝐴

𝜇
(1 + 2𝛼

𝐴

𝜇
) , 𝜔 < 𝜏,

(78)

holds, then 𝑑 > 0.
For each (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡)) ∈ Ω, we obtain

1

𝑡
∫

𝑡

0

𝜇 (𝐵) 𝑑𝑠 ≤
1

𝑡
∫

𝑡
1

0

𝜇 (𝐵) 𝑑𝑠 +
1

𝑡
∫

𝑡

𝑡
1

𝜇 (𝐵) 𝑑𝑠

≤
1

𝑡
∫

𝑡
1

0

𝜇 (𝐵) 𝑑𝑠 +
1

𝑡
log 𝐸 (𝑡)

𝐸 (𝑡
1
)
− 𝑑 ≤ −

𝑑

2
< 0.

(79)

Due to Theorem 4 and Lemma 14, if 𝑅
0
> 1, then the

endemic equilibrium 𝑃
∗ of system (3) is globally stable inΩ.

6. Numerical Simulations

Next, we show some numerical examples to support our
analytic results.

Example 1. We take parameters 𝑝 = 0.9, 𝐴 = 1000000,
𝜔 = 0.000005, 𝜇 = 2, 𝜏 = 40, 𝛽 = 0.00009, 𝛼 = 0.000005,
𝜎 = 0.006, and 𝜖 = 0.08. Then we can obtain𝑀 = 168.8254 >

𝜎𝜏(𝜇 + 𝜔) = 0.4800 and 𝑅
0
= 0.00031987 < 1 which

satisfies Theorem 2 and 𝑅
0
(1 + 𝛼𝐴/𝜇) = 0.0011 < 1 which

satisfies Theorem 10. Therefore, system (3) has a disease-
free equilibrium 𝑃

0
(50001, 450000, 0, 0) and it is globally

asymptotically stable (Figure 1).

Example 2. We take parameters 𝑝 = 0.6, 𝐴 = 1000000,
𝛽 = 0.00005, 𝛼 = 0.000005, 𝜇 = 0.02, 𝜔 = 0.05, 𝜎 = 45.6,
and 𝜖 = 23. Under these parameters, due to Theorem 9, we
calculate the critical value 𝜏∗ = 39.9918. If we take 𝜏 = 20 <
𝜏
∗, we can get 𝑀 = 137.3801 > 𝜎𝜏(𝜇 + 𝜔) = 63.8400,
𝑅
0
= 48.1293, 𝑅∗

1
= 267.6519, and 𝑅∗

0
= 0.0032. Therefore

𝑅
∗

0
< 1 < 𝑅

0
< 𝑅
∗

1
, due to Theorem 3 system (3) has a

disease-free equilibrium 𝑃
0
(41429000, 8571400, 0, 0) and an

endemic equilibrium 𝑃
∗
(432250, 187060, 198280, 8571400).

And we can calculate 𝑑 = 45.53 > 0which guarantees 𝑞
2
< 0.

From Theorem 15, we can get that the endemic equilibrium
is globally asymptotically stable, which is demonstrated by
Figure 2. If we take 𝜏 = 40 > 𝜏

∗, then the endemic
equilibrium 𝑃

∗ becomes unstable and a periodic orbits
bifurcates from 𝑃

∗, which is demonstrated by Figure 3.

7. Discussion

In this paper, considering disease-caused death and partial
permanent immunity, wemodified the SEIV epidemicmodel
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Figure 1: The global stability of disease-free equilibrium.
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Figure 2: The global stability of endemic equilibrium.

in [15]. Applying the method of [16], we calculated the basic
reproduction number 𝑅

0
and found that when 𝑅

0
= 1 and

𝑅
∗

1
< 1 system (3) shows backward bifurcation. If 𝑅∗

1
< 1,

system (3) has a unique endemic equilibrium when 𝑅
0
≥ 1

and has two endemic equilibria when 𝑅
0
< 1. If 𝑅∗

1
> 1,

system (3) has a unique endemic equilibrium when 𝑅
0
≥

1 and has no endemic equilibrium when 𝑅
0
< 1. Also

system (3) always has a disease-free equilibrium𝑃
0
. Local and

global asymptotic stability of the disease-free equilibrium are
determined by 𝑅

0
< 1 and 𝑅

0
(1 + 𝛼𝐴/𝜇) < 1, respectively.

Also we have studied the local and global asymptotic stability
of the endemic equilibrium. Moreover, taking the disease-
caused death rate 𝜏 as bifurcation parameter, we discussed the
Hopf bifurcation of system (3). We found that when 𝑅

0
> 1,

there is always a critical value 𝜏∗, such that system (3) exhibits
Hopf bifurcation at 𝑃∗ when 𝜏 passes through 𝜏∗.

From the sense of epidemiology, when 𝑅
0
(1 + 𝛼𝐴/𝜇) <

1, if 𝑅∗
1
> 1 holds or 𝑅∗

1
< 1, 𝑅

0
< 𝑅
∗

0
hold; system

(3) has one disease-free equilibrium which is globally stable.
Namely, the disease will be eradicated. And when 𝑅

0
> 1 and

inequality (77) or (78) holds, system (3) has a unique endemic
equilibrium 𝑃

∗ which is global asymptotically stable. Under
this circumstance, the infectious disease becomes endemic
disease. If 𝑅

0
> 1, system (3) has a unique endemic

equilibrium 𝑃
∗ and we found that when the rate 𝜏 becomes

sufficiently large the disease will break out periodically. And
differentiating the bifurcation coefficient 𝑎 partially with
respect to 𝑝, we can get 𝜕𝑎/𝜕𝑝 = −𝜎𝛼𝐴𝜇(𝜇 + 𝜎) < 0,
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Figure 3: The periodic solution of system (3).

which means that vaccinating more susceptible populations
decreases the likelihood of the occurrence of backward
bifurcation [15].
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