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MOTIVATION Revolutionary single-cell multiomics technologies have enabled acquiring characteristics of
individual cells across multiple modalities, such as transcriptome, epigenome, and surface proteins. How-
ever, computational methods for integrated analysis of complex and high-dimensional multimodal single-
cell data are currently limited. Here, we present scMM, a mixture-of-experts deep generative model for
integrated analysis of single-cell multiomics data. scMM effectively infers interpretable joint representa-
tions frommultimodal single-cell data. In addition, scMM learns underlying relationships acrossmodalities,
enabling crossmodal generation of single-cell data.
SUMMARY
The recentdevelopmentof single-cellmultiomicsanalysishasenabledsimultaneousdetectionofmultiple traits
at the single-cell level, providingdeeper insights into cellular phenotypesand functions indiverse tissues.How-
ever, currently, it is challenging to infer the joint representations and learn relationships amongmultiplemodal-
ities from complexmultimodal single-cell data. Here, we present scMM, a novel deep generativemodel-based
framework for the extraction of interpretable joint representations and crossmodal generation. scMM ad-
dresses the complexity of data by leveraging a mixture-of-experts multimodal variational autoencoder. The
pseudocell generation strategy of scMM compensates for the limited interpretability of deep learning models,
and the proposedapproach experimentally discoveredmultimodal regulatory programsassociatedwith latent
dimensions. Analysis of recently produced datasets validated that scMM facilitates high-resolution clustering
with rich interpretability. Furthermore, we show that crossmodal generation by scMM leads to more precise
prediction and data integration compared with the state-of-the-art and conventional approaches.
INTRODUCTION

Recent technological advances have enabled simultaneous ac-

quisitions of multiple omics data at the resolution of a single cell,

thus producing ‘‘multimodal’’ single-cell data (Zhu et al., 2019,

2020; Cao et al., 2018; Chen et al., 2019; Ma et al., 2020). These

technologies offer additional measurements, such as immuno-

phenotypes or chromatin accessibility in conjunction with

transcriptome information. Research studies using emerging

multimodal single-cell technologies have contributed to exciting,

biologically important discoveries in various fields, including im-

mune cell profile and cell fate decision, which could not have

been elucidated with the use of only one modality (Hao et al.,

2021; Ma et al., 2020).
Cell Reports
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Conversely, some obstacles need to be overcome to compu-

tationally extract useful knowledge from highly complex, sin-

gle-cell multimodal data. First, it is challenging to infer the

low-dimensional joint representations from multiple modalities

that can be used for downstream analyses such as clustering.

Second, althoughmultimodal single-cell data allow the learning

of relationships among modalities that could be used to train

prediction models, many-to-many predictions of single-cell

data (e.g., from single-cell transcriptome to chromatin accessi-

bility) with high accuracy remains an unsolved problem.

These problems are mainly attributed to the difficulties associ-

ated with capturing latent common factors and relationships

across modalities, which differ significantly in characteristics,

including data distribution, dimensionality, and sparsity.
Methods 1, 100071, September 27, 2021 ª 2021 The Author(s). 1
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Several existing methods have been recently developed for

the analysis of single-cell multimodal data. Although they aim

to address tasks such as latent feature extraction, their perfor-

mance is currently limited in different aspects. Methods based

on generalized linear models, such as Seurat and scAI, often fail

to capture complex structures in single-cell data (Hao et al.,

2021; Jin et al., 2020). One powerful approach to capture

nonlinear latent structures is the use of expressive variational

autoencoders (VAEs), which consist of a pair of neural networks

wherein one encodes data into the latent space, and the other

decodes them to reconstruct the data distribution (Kingma and

Welling., 2013; Lopez et al., 2018). scMVAE and totalVI are the

currently available VAE-based methods for single-cell multi-

modal data analysis (Zuo and Chen, 2020; Gayoso et al.,

2021). Nevertheless, scMVAE requires a simplified conversion

of chromatin accessibility to the transcriptome before training,

which is known to lead to the non-negligible loss of epigenetic

information (Jin et al., 2020). In addition, these models suffer

from the ‘‘black-box’’ nature of deep learning models, making

the interpretations of latent variables difficult. Finally, none of

these VAE-based methods were designed for predictions

across modalities.

To address these limitations, we have developed scMM, a

novel statistical framework for single-cell multiomics analysis

specialized for interpretable joint representation inference

and predictions across modalities. scMM is based on a

mixture-of-experts (MoE) multimodal deep generative model

and achieves end-to-end learning by modeling raw count

data in each modality based on different probability distribu-

tions (Shi et al., 2019). Using recently published datasets pro-

duced by cellular indexing of transcriptomes and epitopes

with sequencing (CITE-seq) and a simultaneous high-

throughput assay for transposase-accessible chromatin and

RNA expression with sequencing (SHARE-seq), we demon-

strate that scMM effectively extracts biologically meaningful

latent variables encoding multimodal information. We show

that these latent variables enable high-resolution clustering

to reveal cellular heterogeneity that was not discovered in

the original report (Hao et al., 2021; Ma et al., 2020). By

leveraging the generative nature of the model, scMM provides

users with multimodal ‘‘regulatory programs’’ that are associ-

ated with latent dimensions, thus aiding the interpretation of

the results. Finally, exploration of the crossmodal generation

of single-cell data by scMM demonstrated that it outper-

formed the state-of-the-art prediction tool and contributes to

more accurate integration of single-cell data from different

modalities.

RESULTS

The scMM model
scMM takesmultimodal single-cell data as input, which contains

measurements for multiple modalities across each cell. Let xn,m
be the feature vector for themth modality in cell n. Theoretically,

m can be any arbitrary number, although this study primarily

focuses on the dual-omics analysis because most recently

developed multiomics methods deal with information of twomo-

dalities. Wemodeled xn,mwith probability distributions capturing
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the characteristics of data distributions for each modality. For

transcriptome and surface protein data, a negative binomial

(NB) distribution was selected to explain non-negative counts

with overdispersion (Gayoso et al., 2021). In addition, chromatin

accessibility data are non-negative count data; however, this ex-

hibits extreme sparsity due to poor signal (only two loci exist for

each diploid cell), limited coverage, and closed chromatin.

Therefore, we chose the zero-inflated negative binomial (ZINB)

distribution for chromatin accessibility data. Although transcrip-

tome data also show high sparsity, recent reports showed that

NB distribution is sufficient to explain the abundance of zeros

in the transcriptome data (Svensson, 2020; Grønbech et al.,

2020). In contrast to some recently developed probabilistic

models for chromatin accessibility involving binarization, scMM

models raw peak counts, allowing the natural increase of peak

counts with sequencing depth (Xiong et al., 2019; González-

Blas et al., 2019).
A conceptual view of scMM is shown in Figure 1. The scMM

model for dual-omics analysis consists of four neural net-

works in which an encoder-decoder pair is present in each

modality. Let z be the set of low-dimensional vectors of latent

variables (here, set to ten dimensions). Encoders are used to

infer the variational posterior q4m
ðzjxmÞ, from which zm is

sampled. Conversely, decoders calculate the parameters of

NB or ZINB distributions, which can be written as pqmðxmjzÞ.
Herein, 4m and qm denote the parameters for the encoder

and decoder for the mth modality, respectively. The scMM

uses an MoE to factorize the joint variational posterior (see

the STAR Methods). Accordingly, multimodal latent variables

encoding information on two modalities can be obtained

from MoE: qF

�
zjx1; x2Þ =

P2
m=1

1
2q4m

ðzjxm
�
.

The ability to determine which features in each modality are

associated with each latent dimension is beneficial in terms of

the interpretability of the output of the model. One of the

downsides of deep generative models is the difficulty of inter-

preting latent variables compared with linear models, such as

principal-component analysis (Svensson et al., 2020). We

overcame this limitation by using the generative nature of

VAE (Figure 1B) (see the STAR Methods). By sequentially

generating pseudocells from different latent values in one

dimension with remaining fixed values, we calculated the

Spearman correlation for each latent dimension and set of

features in each modality. This enabled the visualization of

strongly associated features with each latent dimensions,

which can be interpreted as multimodal regulatory programs

governing them.
A unique learning procedure of scMM involves the training

of encoders to infer latent variables that can reconstruct the

probability distributions not only for their own modalities but

also for others, as it learns to maximize the expectation

Ezm�q4m ðzjxmÞ½logpQðx1:MjzmÞ� (see STAR Methods). Therefore,

the trained scMM model can generate data associated with

the missing modality from unimodal single-cell data in both di-

rections, thus achieving crossmodal generation (Figure 1C).

Notably, unlike conventional prediction methods, crossmodal

generation by scMM can be performed in both directions across

modalities.
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Figure 1. Conceptual view of single-cell multimodal data analysis by scMM

(A) The underlying model of scMM. scMM takes feature vectors of each modality as input to separate encoders. The model is then trained to learn low-

dimensional joint variational posterior factorized by an MoE. Decoders reconstruct the underlying probability distributions for data in each modality from latent

variables. During the training processes, latent variables from one modality are used to reconstruct data in both modalities.

(B) Schematic view of procedure for finding latent dimension-associated multimodal features by independently traversing each dimension.

(C) Schematic view of crossmodal generation by trained scMM model when one modality is missing. For further details, see the STAR Methods section.
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scMM extracts biologically meaningful latent variables
from multimodal data on single-cell transcriptomes and
surface proteins
To validate the performance of scMM in the joint analysis of

multimodal single-cell data, we applied our proposed method

to a recently published CITE-seq dataset of peripheral blood

mononuclear cells (PBMCs) from vaccinated patients, which

consisted of the transcriptome and 224 surface protein mea-

surements for over 160,000 cells (Hao et al., 2021). In total,

80% of the cells were randomly selected as training data, and

the remaining 20% were used as testing data. After training the

model, all cells were mapped in the latent space and clustering

on latent variables was performed with PhenoGraph (Levine

et al., 2015). Latent variables for each modality and multimodal

latent variables were visualized with UMAP (McInnes et al.,

2018) (Figures 2A–2C). To eliminate the possibility of overfitting,

we confirmed that the training and testing datasets were

embedded in shared latent space (Figure S1). Clustering by

PhenoGraph discovered 54 cell populations that can be

matched with known cell populations (Figure 2C). Abbreviations

for cell types were assigned as shown parenthetically in the

following list of types considered: CD4-positive T cell (CD4 T),
CD8-positive T cells (CD8 T), gamma-delta T cells, double-nega-

tive T cells, mucosal-associated invariant T cells, B cells, natural

killer (NK) cells, CD14-positive monocytes (CD14 Mono), CD16

Mono, classical dendritic cell 1 (cDC1), cDC2, plasmacytoid

dendritic cells, hematopoietic stem and progenitor cells

(HSPCs), and erythrocytes. Interestingly, compared with the

weighted nearest neighbor (WNN) analysis by Seurat, latent vari-

ables inferred by scMM separated CD4 and CD8 T into two

distinct subgroups (Figure 1D) (Hao et al., 2021). We found that

these subgroups have differential expressions of surface pro-

teins that are known to be associated with T cell activation,

such as CD30, CD275, and Podoplanin (Figures 1D and S2A).

Furthermore, scMM discovered a clear heterogeneity in CD14

Mono populations that was not revealed by Seurat (Figure S2B).

The superior performance of the proposed model might be

attributed to the rich expressive power of the neural networks

used in scMM, whereas the WNN analysis was based on a linear

model with limited expressive power. It was thus unable to cap-

ture complex structures in single-cell multimodal data.

Next, we compared the performance of our model on dimen-

sionality reduction against totalVI, which is also a VAE-based

method that can directly analyze multimodal data comprising
Cell Reports Methods 1, 100071, September 27, 2021 3
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Figure 2. scMM analysis on the PBMC CITE-seq dataset

(A–C) UMAP visualization of unimodal latent variables for transcriptome, surface protein, and multimodal latent variables, respectively. Each dot represents a

single cell and is color coded according to the clustering performed on multimodal latent variables.

(D) CD8 and CD4 T cells annotated in scMM and Seurat analysis are color coded in the UMAP visualization.

(E) Top: multimodal UMAP visualization colored according to the latent dimension values. Shown in themiddle and on the bottom is a UMAP visualization colored

according to the transcriptome and protein counts for cell type markers, respectively.

(F) Genes (left) and surface proteins (right) associated with latent dimension 1. Each feature was aligned on the basis of the Spearman correlation coefficient. The

y axis represents the absolute correlation coefficient, and red and blue represent positive and negative correlations, respectively.

(G) NBmean parameters reconstructed from surface protein or transcriptome counts were plotted against original surface protein counts for each cell. The mean

parameters were plotted for all available proteins. Pearson correlation coefficients are shown in the plots.

(H) Heatmap constructed from the original (left), unimodal generation (middle), and crossmodal generations. Rows and columns represent the measured

224 surface proteins and 54 clusters discovered by PhenoGraph, respectively.

4 Cell Reports Methods 1, 100071, September 27, 2021
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transcriptome and surface protein data. scMM and totalVI

showed similar evidence lower bound values (Figure S3A). In

addition, modularity scores were calculated by PhenoGraph,

which is indicative of how well cells were grouped in the latent

space, and the number of clusters detected was also similar in

both models (Figure S3A). However, a population of NK cells

was merged to CD8 T population in the UMAP projection of

latent variables inferred by totalVI, whereas they were clearly

separated in the scMM result (Figure S3B). To compare how

well latent variables inferred by scMM and totalVI preserved

structures in the original transcriptome and surface protein

space, we calculated the Jaccard index (JI) (Sun et al., 2019).

A higher JI indicates that neighborhoods in the original spaces

were better preserved in the latent space. The results showed

that, although the performances were similar for transcriptome

modality, the neighborhood structures were better preserved in

scMM compared with totalVI for surface protein modality (Fig-

ure S3C). Together, our results suggest that dimensionality

reduction performance of scMM is comparable with that of to-

talVI. It is worth noting that, as discussed below, scMM is imple-

mented with a method to support latent dimension interpretation

and also capable of crossmodal generation of missing modal-

ities, both of which are unavailable in totalVI.

scMM supports result interpretation by providing
multimodal features associated with latent dimensions
scMM uses a Laplace prior with different scale values in each

dimension, which encourages disentanglement of information

by learning axis-aligned representations (Shi et al., 2019) (see

STAR Methods). Visualizing values of latent variables revealed

similar patterns with canonical gene and surface protein markers

(Figure 2E). This might indicate axis-aligned encoding of infor-

mation related to certain cell types. For example, low values in

latent dimension 1 were concentrated to B cell and plasmablast

clusters (7, 17, 31, and 44), as indicated by the expression of the

CD19 gene and protein. Thismight suggest that latent dimension

1 encodes information on cellular characteristics of B cells and

plasmablasts. Figure 2E shows multimodal features strongly

associated with latent dimension 1. Genes showing negative

correlations include those related to immunoglobulin (Iglv1-44),

chemotaxis (Cxcr5), andmembrane trafficking (Rab30), and their

expressions in B cell and plasmablast clusters were confirmed

(Figures 2E and S4A). Surface proteins are well known to be

associated with the B cell and plasmablast phenotypes, such

as CD19, CD20, and CD22, which were also detected in nega-

tively correlated features (Figures 2E and S4B). Collectively,

these results validate the utility of interpretable latent represen-

tations learned by scMM.

Crossmodal generation by scMM accurately predicts
surface protein measurements from transcriptome data
A trained scMM model can generate surface protein measure-

ments conditioned on transcriptome observations (and vice

versa, although transcriptome counts are generally acquired

simultaneously when measuring surface proteins with

sequencing technologies) through crossmodal generation. Us-

ing held-out test data, estimates of mean parameters for NB dis-

tributions were plotted against original surface protein counts,
which exhibited a high correlation not only in transcriptome-to-

transcriptome but also in transcriptome-to-protein crossmodal

estimation. Through these NB distributions, surface protein

measurements were sampled for each cell, and heatmaps

were generated for 54 clusters (Figure 2H). Thus, the heatmap

of transcriptome data showed a high resemblance to that of

the original, confirming the performance of crossmodal genera-

tive data in scMM.

This feature of scMM can be used to predict surface protein

measurements from unimodal single-cell datasets, which

comprise transcriptome information only. We validated the per-

formance of scMM by predicting surface protein abundance by

using data from different experimental batches. To compare

predicted versus ground-truth data, we chose bone marrow

mononuclear (BMNC) CITE-seq data, containing approximately

30,000 cells with transcriptome and 25 with surface protein infor-

mation (Stuart et al., 2019). With scMM trained with the PBMC

training data, latent variables were obtained from transcriptome

measurements of BMNC data and visualized by using UMAP

(Figure 3A). Therefore, BMNC data were successfully embedded

in the latent space learned from the PBMC training data. Notably,

scMM correctly illustrated the enrichment of CD34-positive

HSPCs in the bonemarrow,where this population is scarce in pe-

ripheral blood (Figures 3B and S5A). In addition, it is noteworthy

that scMM embedded CD8 and CD4 T cells in BMNC datasets

with activated, CD30-positive T cell subsets found in the PBMC

dataset (Figures S5B–S5E). This finding is reasonable given

that CD30 marks memory T cells, and they reside mainly in the

bone marrow (Rosa and Pabst, 2005; Kennedy et al., 2006).

Subsequently, crossmodal data generation was performed

by sampling from NB distributions for surface proteins. Out of

25 surface proteins analyzed in the BMNC dataset, 24 were

shared with the PBMC dataset. For 19 clusters discovered by

PhenoGraph clustering, expression levels of the shared surface

proteins were visualized by using a heatmap. The result shows

that surface protein data generated by scMM captured the char-

acteristics of the original data well (Figure 3C). We benchmarked

the prediction accuracy of scMM against Seurat, which is

currently the state-of-the-art method to predict surface proteins

from single-cell transcriptomes (Stuart et al., 2019). For compar-

ison, we trained scMM and Seuratby using the PBMC training

data and used them to predict surface proteins of the BMNC

dataset. The sum of squared error per cell indicated that the pro-

posed method was more accurate than Seurat in predicting sur-

face proteins (Figure 3D). The higher variation in scMMmight be

attributed to stochastic sampling processes. Figure 3E illustrates

all 224 surface proteins predicted by scMM. Notably, prediction

by scMM recovered crucial features of cell populations. For

instance, B cell clusters (cluster 2 and 14) characterized by

CD19 expression in the original data were predicted to have

high expression levels of known B cell markers that weremissing

from the original data (CD72, CD73, CD22, CD20, CD21, CD24,

IgD, and IgM) (Figure 3E).

scMM analysis of single-cell transcriptome and
chromatin accessibility multimodal data
Next, we applied scMM to recently reported mouse skin single-

cell transcriptome and chromatin accessibility multimodal data
Cell Reports Methods 1, 100071, September 27, 2021 5
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Figure 3. Prediction of surface protein measurements for the BMNC dataset

(A) Joint UMAP embedding of transcriptome latent variables inferred from PBMC training data and the BMNC dataset. The black arrowhead indicates the HSPC

population.

(B) UMAP embedding of the BMNC dataset was colored according to the protein expression levels of CD34.

(C) Heatmaps constructed from original (left) and predicted (right) surface protein counts. Rows and columns represent 24 shared surface protein markers and

clusters discovered by PhenoGraph, respectively.

(D) Benchmarking on surface protein prediction performance of scMM against Seurat. Centered log-transformed data were used to calculate the sum of squared

error (SSE) per cell and plotted for each prediction result. Statistical analysis was performed with the two-sided Wilcoxon signed-rank test.

(E) Heatmap constructed with the predicted 224 surface protein markers. Rows and columns represent surface protein markers and clusters, respectively. Black

arrowheads denote B cell clusters, and their markers are indicated.
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obtained by SHARE-seq (Ma et al., 2020). As described above,

training and testing data were obtained by an 80%/20% random

split. Latent variables for transcriptome and chromatin accessi-

bility, and multimodal latent variables were visualized by UMAP

(Figures 4A–4C). In addition, embeddings of training and testing

datasets into a shared latent space were confirmed (Figure S1B).

PhenoGraph clustering on multimodal latent variables showed

clusters corresponding to known cell types present in epidermis

and hair follicles (Joost et al., 2020). As above, abbreviations

for cell types are given parenthetically as follows: cycling interfol-

licular epidermis (IFE C), basal IFE, suprabasal IFE, upper hair

follicle, sebaceous gland, outer bulge, outer root sheath, com-

panion layer, germinative layer (GL), inner root sheath (IRS), cor-

tex/cuticle, medulla (MED), fibroblast, dermal sheath, dermal

papilla, macrophage, endothelial cell, vascular smooth muscle,

melanocyte. Visualization of latent variables per dimension re-

vealed similar patterns with certain gene expression levels,

thus indicating axis-aligned encoding of information associated
6 Cell Reports Methods 1, 100071, September 27, 2021
with cell types (Figure 4D). For example, latent dimension 9

seemed to correlate positively with the DNA topoisomerase

gene Top2a expression levels. Top2a is a marker for cells

entering mitosis and is upregulated in proliferative keratinocyte

subsets including IFE C, GL, MED, and IRS. By sequentially

generating pseudocells while independently traversing latent di-

mensions, we found genes and peaks strongly associated with

the latent dimension 9 (Figure 4E). Consistent with the cell anno-

tations, genes closely related to the cell cycle, such as Stil,

Brca1, and Cdca2, were found in positively associated features.

We then sought motif enrichment in detected peaks to reveal

latent dimension-associated motifs. Motif enrichment analysis

discovered significantly enriched motifs, including FOS:JUNB

(p = 6.08 3 10�21), TP63 (p = 2.86 3 10�13), POUF3F3

(p = 1.16 3 10�11), and MEOX2 (p = 1.39 3 10�4) (Figure 4F).

By visualizing expression levels and motif scores, we confirmed

enrichment of associated genes and motifs in proliferative kera-

tinocyte subsets (Figures S6A and S6B).
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Figure 4. scMM analysis on mouse skin SHARE-seq dataset

(A–C) UMAP visualization of unimodal latent variables for transcriptome, chromatin accessibility, andmultimodal latent variables. Each dot represents a single cell

and is color coded according to the clustering performed on multimodal latent variables.

(D) Top: multimodal UMAP visualization color coded on the basis of latent dimension values. Shown in the middle and on the bottom is a UMAP visualization

colored according to transcriptome counts for cell type markers.

(E) Genes (left) and peaks (right) associated with latent dimension 9. Each feature was aligned on the basis of Spearman correlation coefficient. The y axis

represents the absolute correlation coefficient, where red and blue colors represent positive and negative correlations, respectively.

(F) Motif plot for representative motifs significantly enriched in peaks positively associated with latent dimension 9.
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Crossmodal generation of transcriptome
measurements contribute to accurate data integration
The prediction of chromatin accessibility from the transcriptome

and vice versa is a more difficult task than the prediction of the

surface proteins, because of their high dimensionality and spar-

sity. Specifically, there are only limited methods available for the

prediction of chromatin accessibility. A conventional method for

predicting the transcriptome from chromatin accessibility is per-

formed by merely summing peak counts within the +2 kb up-

stream of the gene transcription start site (TSS), which returns

the ‘‘gene activity matrix (GAM)’’ (Stuart et al., 2019). Although

GAM corresponds with the transcriptome status of cells to

some extent, it is associated with an inevitable loss of informa-

tion because it ignores the distant interaction of enhancers and

TSSs (Jin et al., 2020).

Regarding the current limitations associated with the predic-

tion of transcriptome and chromatin accessibility from one

information set to another, we sought to achieve crossmodal

generation by scMM in these modalities. The plot of the esti-

mated means of the NB parameters against the original
transcriptome counts showed high correlations in both tran-

scriptome-to-transcriptome and accessibility-to-transcriptome

reconstruction (Figure 5A). Figure 5B shows heatmaps for 25

clusters on 1,126 statistically significant deferentially expressed

genes. The heatmap for crossmodal generation showed similar

patterns to those of the original transcriptome data, suggesting

that generated data captured the characteristics of the original

clusters well.

Integration of single-cell data from different modalities is

among the most important goals of modern computational

biology. Recently developed single-cell integration tools,

including LIGER and Seurat, require the conversion of chromatin

accessibility to transcriptome by creating GAM to perform

integration (Stuart et al., 2019; Welch et al., 2019). Recent

research using single-cell multimodal data as ground-truth has

reported that this approach often fails to identify corresponding

cells correctly (Jin et al., 2020). We reasoned that the use of

crossmodal generated transcriptome data by scMM might lead

to more accurate integration, as it considers all chromatin sites

upon prediction. First, we obtained predicted transcriptome
Cell Reports Methods 1, 100071, September 27, 2021 7



A B

C D

Figure 5. Crossmodal generation from chromatin accessibility to transcriptome leads to better data integration

(A) NB mean parameters reconstructed from transcriptome or chromatin accessibility counts are plotted against original transcriptome counts for each cell.

Pearson correlation coefficients are shown in the plots.

(B) Heatmaps constructed from original, unimodal generation, and crossmodal generation transcriptome data. Rows and columns represent deferentially ex-

pressed (DE) genes and clusters discovered by PhenoGraph, respectively.

(C) Joint visualization of original and predicted single-cell transcriptome data integrated by LIGER and Seurat. For the prediction, either scMM or GAMwas used.

(D) Boxplot showing entropy of batch mixing for each integration. Statistical test performed with two-sided Wilcoxon rank-sum test. *p < 2.2 3 10�22.
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measurements for each cell in test data by either crossmodal

generation of scMM or by the construction of GAM. Then, we in-

tegrated predicted and original single-cell transcriptome data

into space shared by LIGER and Seurat. Quantitative evaluation

of the integration was performed by calculating the entropy of

batch mixing, which is a measurement of how well samples

from two batches are integrated, where a higher entropy indi-

cates better integration (Haghverdi et al., 2018). With both LIGER

and Seurat, integration of cells generated by scMM resulted in

better embedding with original cells compared with those per-

formed with GAM (Figures 5C and 5D). Collectively, these results

suggest that scMM has a promising potential in generating tran-

scriptome data that precisely reflect chromatin accessibility, and

significantly contributes to single-cell integration analysis when

used in combination with existing methods.

scMM achieves chromatin accessibility prediction
Next, we investigated the prediction of chromatin accessibility

from the transcriptome. In contrast to the transcriptome mea-

surements, where counts continue to increase with the abun-

dance of mRNA in each cell, there are theoretically only two

states of chromatin accessibility: open or closed. Therefore,

larger peak counts only reflect sequences with favorable Tn5

binding, or they are just random events. Thus, the prediction

model is required to discriminate zero and nonzero values,
8 Cell Reports Methods 1, 100071, September 27, 2021
rather than predict the absolute counts. Figure 6A shows the

estimated mean parameters of the ZINB distribution for held-

out test datasets against the original peak counts. Generally,

estimated mean parameters were lower than the original peak

counts, which might reflect the low detection rate of open chro-

matin. Of note, for the peaks with zeros of the original count,

the mean ZINB parameter concentrated at zero, thus indicating

that scMM accurately captured the closed chromatin (Fig-

ure 6A). Unimodal and crossmodal generation of chromatin

accessibility measurements for test datasets was performed

by sampling the estimated ZINB distributions. Interestingly,

4,018 statistically significant deferentially accessible heatmap

peaks showed high similarities for crossmodal generation and

original data (Figure 6B). In addition, Motif scores in original

clusters were accurately recovered by crossmodal generation

(Figure 6C). To investigate the crossmodal generated chromatin

accessibility data, we analyzed coverage peaks in the Lef1 and

Krt1 gene regions, which are essential markers for anagen hair

follicle keratinocytes and permanent epidermis keratinocytes,

respectively. Coverage plots showed chromatin accessibility

data generated by scMM reconstructed peaks specifically

detected in the keratinocyte subsets, further confirming the

crossmodal data generation performance of scMM (Fig-

ure 6D). Notably, crossmodal generation by sampling from

predicted ZINB distributions allows the formulation of sparse
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Figure 6. scMM accurately predicts chromatin accessibility from transcriptome data

(A) ZINBmean parameters reconstructed from transcriptome or chromatin accessibility counts are plotted against original chromatin accessibility counts for each

cell. Twenty-five million data points were randomly selected for plotting.

(B) Heatmaps constructed from original, unimodal generation, and crossmodal generation chromatin accessibility data. Rows and columns represent defer-

entially accessible (DA) peaks and clusters discovered by PhenoGraph, respectively.

(C) Heatmaps of motif scores for original and crossmodal generation data. Rows and columns represent motif scores and clusters, respectively.

(D) Coverage plots for representative clusters within regions of Lef1 and Krt1.

Article
ll

OPEN ACCESS
representations of high-dimensional chromatin accessibility

data that are memory efficient compared with dense represen-

tations. For 6,955 cells in the test dataset, the memory sizes of

the two representations were 504 MB for sparse representa-

tions (sampled peak counts) versus 10.6 GB for dense repre-

sentations (ZINB mean parameters).

DISCUSSION

The rapidly evolving field of single-cell multimodal analysis re-

quires the development of methods for the joint analysis of the

obtained data. scMM was designed to meet this demand. In

this study, we have shown that scMM extracts low-dimensional

latent variables from multimodal single-cell data that are useful

for downstream analysis, such as clustering.
We have also shown that scMM was able to identify cell pop-

ulations that were difficult to detect by existing methods. The

expressive deep generative model captured complex, nonlinear

structures that could not be captured by the linear model used

in Seurat. The improved performance of scMM compared with

totalVI might be attributed to the incorporation of the MoE pos-

terior. scMM estimates posterior distributions independently for

each modality and then mixes them equally by MoE. In

contrast, totalVI estimates the single posterior by taking both

modalities as input. This might lead to the undesirable domi-

nance of a certain modality that can mask information in the

other modality.

In addition, we leveraged the data generative nature of scMM to

compensate for the difficulties in interpreting deep generative

models. Exploring themultimodal regulatory programsassociated
Cell Reports Methods 1, 100071, September 27, 2021 9
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with each latent dimension is expected to provide deeper insights

into the clusters discovered in scMM analyses.

Furthermore, the experimental results show that crossmodal

generation with scMMachieved accurate prediction ofmeasure-

ments in different modalities. In addition, these predictions can

be used for integrating multiple unimodal datasets. Bench-

marking of scMM against the state-of-the-art prediction tool

and conventional integration approaches demonstrated the su-

periority of scMM on these tasks. These features of scMM will

lead to the effective utilization of accumulating unimodal sin-

gle-cell databases that are annotated and well characterized.

One of the strengths of scMM is its extensibility, as it can be

applied to any modality by constructing the model with different

distributions. In addition to the modalities considered in this

study, applications to other multimodal data, such as the sin-

gle-cell transcriptome and DNAmethylome, are promising direc-

tions for future research (Hu et al., 2016). Extending scMM to

several multimodal single-cell data might decipher novel cellular

states or functions regarding transcriptomes, epigenomes, and

proteomes. Application to single-cell data with spatial informa-

tion would be an exciting research question because, in contrast

to other modalities, coordinates in spatial data are meaningful

only in the context of positional relationships with other cells (Ro-

driques et al., 2019). In essence, we expect that the proposed

model will establish a foundation for deep generative models

for multimodal single-cell data from the scope of interpretable

latent feature extraction and crossmodal generation.

Limitations of study
A limitation of scMM is that it might be challenging to generate

cell populations that were not present in data used to train the

model. It is expected that, as the construction of large-scale

multimodal single-cell atlas progresses, more training data will

become available, which would mitigate the problem (Bakken

et al., 2020).
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González-Blas, C.B., Minnoye, L., Papasokrati, D., Aibar, S., Hulselmans, G.,

Christiaens, V., Davie, K., Wouters, J., and Aerts, S. (2019). cisTopic: cis-regula-

tory topic modeling on single-cell ATAC-seq data. Nat. Methods 16, 1–4.

Grønbech, C.H., Vording, M.F., Timshel, P.N., Sønderby, C.K., Pers, T.H., and

Winther, O. (2020). scVAE: variational auto-encoders for single-cell gene

expression data. Bioinformatics 36, 4415–4422.

Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A.,

Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis

of multimodal single-cell data. Cell 84, 3573–3587.e29.

Haghverdi, L., Lun, A.T.L., Morgan, M.D., and Marioni, J.C. (2018). Batch ef-

fects in single-cell RNA-sequencing data are corrected by matching mutual

nearest neighbors. Nat. Biotechnol. 36, 421.

Hu, Y., Huang, K., An, Q., Du, G., Hu, G., Xue, J., Zhu, X., Wang, C.-Y., Xue, Z.,

and Fan, G. (2016). Simultaneous profiling of transcriptome and DNA methyl-

ome from a single cell. Genome Biol. 17, 88.

https://doi.org/10.1016/j.crmeth.2021.100071
https://doi.org/10.1016/j.crmeth.2021.100071
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref1
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref1
https://doi.org/10.1101/2020.03.31.016972
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref3
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref3
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref3
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref3
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref4
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref4
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref4
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref5
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref5
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref5
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref6
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref6
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref6
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref7
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref7
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref7
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref8
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref8
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref8
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref9
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref9
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref9
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref10
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref10
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref10


Article
ll

OPEN ACCESS
Jin, S., Zhang, L., and Nie, Q. (2020). scAI: an unsupervised approach for the

integrative analysis of parallel single-cell transcriptomic and epigenomic pro-

files. Genome Biol. 21, 25.

Joost, S., Annusver, K., Jacob, T., Sun, X., Dalessandri, T., Sivan, U., Sequeira,

I., Sandberg, R., and Kasper, M. (2020). The molecular anatomy of mouse skin

during hair growth and rest. Cell Stem Cell 26, 441–457.e7.

Kennedy, M.K., Willis, C.R., and Armitage, R.J. (2006). Deciphering CD30

ligand biology and its role in humoral immunity. Immunology 118, 143–152.

Kingma, D.P., and Welling, M. (2013). Auto-encoding variational Bayes. arXiv,

1312.6114.

Levine, J.H., Simonds, E.F., Bendall, S.C., Davis, K.L., Amir, E.D., Tadmor,

M.D., Litvin, O., Fienberg, H.G., Jager, A., Zunder, E.R., et al. (2015). Data-

driven phenotypic dissection of AML reveals progenitor-like cells that correlate

with prognosis. Cell 162, 184–197.

Lopez, R., Regier, J., Cole, M.B., Jordan, M.I., and Yosef, N. (2018). Deep

generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053–

1058.

Ma, S., Zhang, B., LaFave, L.M., Earl, A.S., Chiang, Z., Hu, Y., Ding, J., Brack,

A., Kartha, V.K., Tay, T., et al. (2020). Chromatin potential identified by shared

single-cell profiling of RNA and chromatin. Cell 183, 1103–1116.e20.

McInnes, L., Healy, J., andMelville, J. (2018). UMAP: uniformmanifold approx-

imation and projection for dimension reduction. arXiv, 1802.03426.

Reddi, S.J., Kale, S., and Kumar, S. (2019). On the convergence of Adam and

beyond. arXiv, 1904.09237.

Robert, C.P., and Casella, G. (2004). Monte Carlo Statistical Methods

(Springer Texts Statistics), pp. 511–543. https://doi.org/10.1007/978-1-

4757-4145-213.

Rodriques, S.G., Stickels, R.R., Goeva, A., Martin, C.A., Murray, E., Vander-

burg, C.R., Welch, J., Chen, L.M., Chen, F., and Macosko, E.Z. (2019).

Slide-seq: a scalable technology for measuring genome-wide expression at

high spatial resolution. Science 363, 1463–1467.

Rosa, F.D., and Pabst, R. (2005). The bone marrow: a nest for migratory mem-

ory T cells. Trends Immunol. 26, 360–366.

Schep, A.N., Wu, B., Buenrostro, J.D., and Greenleaf, W.J. (2017). chromVAR:

inferring transcription-factor-associated accessibility from single-cell epige-

nomic data. Nat. Methods 14, 975–978.
Shi, Y., Siddharth, N., Paige, B., and Torr, P.H.S. (2019). Variational mixture-of-

experts autoencoders for multi-modal deep generative models. arXiv,

1911.03393.

Sønderby, C.K., Raiko, T., Maaløe, L., Sønderby, S.K., and Winther, O. (2016).

Ladder variational autoencoders. arXiv, 1602.02282.

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M.,

Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive inte-

gration of single-cell data. Cell 177, 1888–1902.e21.

Stuart, T., Srivastava, A., Lareau, C., and Satija, R. (2020). Multimodal single-

cell chromatin analysis with Signac. bioRxiv. https://doi.org/10.1101/2020.11.

09.373613.

Sun, S., Zhu, J., Ma, Y., Zhou, X., Sun, S., Zhu, J., Ma, Y., and Zhou, X. (2019).

Accuracy, robustness and scalability of dimensionality reduction methods for

single-cell RNA-seq analysis. Genome Biol. 20, 269.

Svensson, V. (2020). Droplet scRNA-seq is not zero-inflated. Nat. Biotechnol.

38, 147–150.

Svensson, V., Gayoso, A., Yosef, N., and Pachter, L. (2020). Interpretable fac-

tor models of single-cell RNA-seq via variational autoencoders. Bioinformatics

36, 3418–3421.

Welch, J.D., Kozareva, V., Ferreira, A., Vanderburg, C., Martin, C., and Ma-

cosko, E.Z. (2019). Single-cell multi-omic integration compares and contrasts

features of brain cell identity. Cell 177, 1873–1887.e17.

Xiong, L., Xu, K., Tian, K., Shao, Y., Tang, L., Gao, G., Zhang, M., Jiang, T., and

Zhang, Q.C. (2019). SCALEmethod for single-cell ATAC-seq analysis via latent

feature extraction. Nat. Commun. 10, 4576.

Zhu, C., Yu, M., Huang, H., Juric, I., Abnousi, A., Hu, R., Lucero, J., Behrens,

M.M., Hu, M., and Ren, B. (2019). An ultra high-throughput method for single-

cell joint analysis of open chromatin and transcriptome. Nat. Struct. Mol. Biol.

26, 1063–1070.

Zhu, C., Preissl, S., and Ren, B. (2020). Single-cell multimodal omics: the po-

wer of many. Nat. Methods 17, 11–14.

Zuo, C., and Chen, L. (2020). Deep-joint-learning analysis model of single cell

transcriptome and open chromatin accessibility data. Brief. Bioinform. 22,

bbaa287.
Cell Reports Methods 1, 100071, September 27, 2021 11

http://refhub.elsevier.com/S2667-2375(21)00123-5/sref11
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref11
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref11
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref12
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref12
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref12
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref13
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref13
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref14
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref14
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref15
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref15
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref15
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref15
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref16
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref16
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref16
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref17
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref17
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref17
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref18
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref18
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref19
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref19
https://doi.org/10.1007/978-1-4757-4145-213
https://doi.org/10.1007/978-1-4757-4145-213
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref21
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref21
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref21
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref21
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref22
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref22
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref23
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref23
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref23
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref24
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref24
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref24
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref25
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref25
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref26
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref26
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref26
https://doi.org/10.1101/2020.11.09.373613
https://doi.org/10.1101/2020.11.09.373613
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref28
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref28
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref28
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref29
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref29
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref30
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref30
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref30
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref31
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref31
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref31
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref33
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref33
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref33
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref34
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref34
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref34
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref34
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref35
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref35
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref36
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref36
http://refhub.elsevier.com/S2667-2375(21)00123-5/sref36


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT Or RESOURCE SOURCE IDENTIFIER

Deposited data

PBMC CITE-seq data Hao et al. (2021) https://satijalab.org/seurat/

BMNC CITE-seq data Stuart et al. (2019) https://satijalab.org/seurat/

Mouse skin SHARE-seq data Ma et al. (2020) GSE140203

Software and algorithms

scMM This paper https://github.com/kodaim1115/scMM,

https://doi.org/10.5281/zenodo.5149733

Python Python Software Foundation https://www.python.org/

PyTorch PyTorch community https://pytorch.org/

Optuna Preferred Networks https://www.preferred.jp/ja/projects/optuna/

R R Development Core Team https://www.r-project.org/

Seurat Stuart et al. (2019); Hao et al. (2021) https://satijalab.org/seurat/

Signac Stuart et al., 2020 https://satijalab.org/signac/

LIGER Welch et al. (2019) https://github.com/welch-lab/liger

Rphenograph Levine et al. (2015) https://github.com/JinmiaoChenLab/Rphenograph

Umap McInnes et al., 2018 https://cran.r-project.org/web/packages/umap/vignettes/umap.html

totalVI Gayoso et al. (2021) https://github.com/YosefLab/scvi-tools
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Teppei Shimamura

(shimamura@med.nagoya-u.ac.jp)

Materials availability
This study did not generate new unique reagents.

Data and code availability
All data used in this study is publicly available. PBMC and BMNCCITE-seq data are available at the official website of Seurat https://

satijalab.org/seurat/. Mouse skin SHARE-seq data is available under the NCBI GEO accession number GSE140203.

The scMMmodel was implemented with Python using PyTorch deep learning library, and code is available at https://github.com/

kodaim1115/scMM. All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are

listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Variational autoencoder model
Variational autoencoder (VAE)models are deep generative neural networkswidely used to perform dimensionality reduction and data

generation. Let x be data and z be the set of low-dimensional latent variables. VAE consists of a pair of encoder and decoder neural

networks, which parametrize qFðzjxÞ and pQðxjzÞ, respectively. Here, qFðzjxÞ is a variational posterior that approximates true pos-

terior pðzjxÞ, which is intractable. Additionally, pQðxjzÞ is a likelihood of the data given a sample from the variational posterior. In the

VAE objective function, maximization of the marginal likelihood p(x) is approximated by maximizing the ELBO, which can be written

with a reconstruction term and Kullback-Leibeler (KL) divergence regularization term:

ELBO = Ez�qFðzjxÞ

�
log

pðz; xÞ
qFðzjxÞ

�
(Equation 1)
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= Ez�qFðzjxÞ½logpQðxjzÞ� � KL½qFðzjxÞ k pðzÞ�; (Equation 2)

where p(z) is a prior. After optimization, an encoder learns a non-linear embedding of data into a low-dimensional latent space and a

decoder learns generation of data from a given low-dimensional representations.

Mixture-of-experts multimodal VAE model for single-cell multiomics data
This section describes MoE multimodal VAE (MMVAE), which scMM is based on (Shi et al., 2019). Suppose there is single-cell multi-

modal dataset x1:M. For current multimodal single-cell data, M = 2 in general. MMVAE aims to learn a multimodal generative model

pQðz; x1:MÞ=pðzÞQM
mpqm ðxmjzÞ (m = 1,.,M), where pqmðxmjzÞ represents the likelihood for each ofmth modality parameterized by the

decoder’s deep neural network. The training objective is to maximize the marginal likelihood pðx1:MÞ, which is approximated by opti-

mizing the ELBO by stochastic gradient descent (SGD). As shown in Equation 1, formulation of the ELBO requires approximation of

the true posterior by joint variational posterior qFðzjx1:MÞ.

ELBO = Ez�qFðzjx1:MÞ

�
log

pQðz; x1:MÞ
qFðzjx1:MÞ

�
(Equation 3)

The key idea of MMVAE is to factorize the joint variational posterior with a MoE; qFðzjx1:MÞ =
PM

mamq4m
ðzjxmÞ, am = 1/M, where

q4m
ðzjxmÞ is the variational posterior for them-th modality parameterized by the encoder deep neural network. Using stratified sam-

pling (Robert and Casella, 2004), the ELBO can be formulated as:

ELBO =
1

M

XM
m

Ezm�q4m ðzjxmÞ

�
log

pQðzm; x1:MÞ
qFðzmjx1:MÞ

�
(Equation 4)
M n

=
1

M

X
m

Ezm�q4m ðzjxmÞ½logpQðx1:MjzmÞ� �KL
�
q4m

ðzjxmÞ k pðzÞ�o (Equation 5)

Intuitively, the first term could be interpreted as the goodness of reconstruction for allMmodalities from latent variables for themth

modality. Note that data for all modalities are reconstructed from latent variables for eachmodality, which enables cross-modal gen-

eration of data. The second term regularizes the model so that variational posterior follows the prior distribution.

For the prior p(z), we used the Laplacian distribution with a zero mean and a scaling constraint (
PD

d = 1bd = D, wherein bd is a scale

parameter for the dth dimension, and D is the number of latent dimensions) (Shi et al., 2019). Scale parameters for prior were learned

from data through SGD.

Likelihoods pqmðxmjzÞ were selected according to the data distribution characteristics of each single-cell modality. An NB distri-

bution was used for transcriptome and surface protein counts, and ZINB distribution was used for chromatin accessibility peak

counts.

For all modalities, row counts were normalized by dividing with the sequencing depth of each cell, multiplying with the scale factor

(10,000) and used as input to encoders. Mean parameters estimated by decoders were processed with reverse processes, and log

likelihoods were calculated with raw count data.

Model architecture and optimization
Optimization was performed with an Adam optimizer with AMSGrad (Reddi et al., 2019). Hyperparameter optimization was per-

formed by Optuna (Akiba et al., 2019). For CITE-seq data, three hidden layers with 200 hidden units were used for both modalities.

For SHARE-seq data, three hidden layers with 500 units for transcriptome and 100 hidden units for chromatin accessibility were used.

Learning rates were set to 2 3 10�3 and 1 3 10�4 for CITE-seq and SHARE-seq data, respectively. Minibatch sizes of 128 and 64

were used for CITE-seq andSHARE-seq data, respectively.We used a deterministic warm-up learning scheme for 25 and 50 epochs,

with maximum of 50 and 100 epochs for CITE-seq and SHARE-seq data, respectively (Sønderby et al., 2016). After deterministic

warm-up, early stopping with a tolerance of 10 epochs was applied. We observed that minor changes in hyperparameters did not

significantly affect the analyzed results.

Data preproccessing
For transcriptome count data, 5000 most variable genes were first selected by applying the Seurat FindMostVariable function to log-

normalized counts. Raw counts were used for model input. For chromatin accessibility data, the top 25% peaks were selected for

input using Seurat’s FindTopFeatures function. No preprocessing and feature selection were performed on surface protein count

data.

Cluster analysis
Clustering was performed with the R package Rphenograph with nearest neighbor numbers k = 20 and k = 15 for human PBMC/

BMNC CITE-seq data and mouse skin SHARE-seq data, respectively.
Cell Reports Methods 1, 100071, September 27, 2021 e2



Article
ll

OPEN ACCESS
For CITE-seq data, cell types were manually annotated with known surface protein markers and by referring to the original report

(Hao et al., 2021). For SHARE-seq data, manual annotations were performed with the mouse skin single-cell data portal http://

kasperlab.org/mouseskin.

Heatmaps were generated with the R package pheatmap. For gene, surface protein, and chromatin accessibility, z-scores for total

feature counts normalized by the total sequencing depth per cluster were used to generate heatmaps. For motif scores, z-scores for

median values were used.

Visualization of latent representations
Mean parameters for variational posteriors in each modality and MoE were used as latent variables. Latent variables obtained from

trained models were visualized on the two-dimensional space using the ‘‘umap’’ package in R.

Detection of latent dimension-associated features
We generated series of pseudocells by independently traversing latent dimensions. This approach was inspired by the study on the

original MMVAE paper (Shi et al., 2019). Using the learned standard deviation for the dth dimension sd, with other dimensions fixed to

zero, we linearly changed the dth dimension from�5sd to 5sd at a rate of 0.5sd. The obtained latent vectors were then decoded forM

modalities and resulted in 20 pseudocells. Spearman’s correlation coefficients were calculated for traversed latent dimensions and

features in each modality. Latent dimension-associated features were selected using p value thresholds that produced a reasonable

number of associated features, namely, p < 13 10�12, p < 13 10�3, and p < 13 10�21 for genes, proteins, and peaks, respectively.

Motif analysis
Motifs enriched in latent dimension-associated peaks were obtained by the FindMotifs function in Signac (Stuart et al., 2020). Motif

scores were calculated using the chromVAR wrapper function RunChromVAR in Signac (Schep et al., 2017).

Benchmarking of scMM
Surface protein prediction by Seurat was performed following the official tutorial. Specifically, anchors between PBMC training data

and BMNC data were calculated, and prediction was performed with theMapQuery function. Given that Seurat returns the centered

log-transformed measurements, the predicted results of scMM were also transformed to compare SSEs per cell.

For JI calculation, 10,000 cells were randomly chosen and k nearest neighbors in the original feature space (set A) and the latent

space (set B) were identified. We tested k = 10, 20, and 30. JI was calculated as the cardinality of neighbor sets: JI = jAXBj
jAWBj. JI for

sampled cells were averaged to obtain mean JI. This process was repeated 20 times with different randomly chosen cells.

GAM was generated by the GeneActivity function of Signac. Cross-modal transcriptome reconstruction by scMM and GAM were

integrated with original data by LIGER and Seurat following official tutorials with default parameters. The entropy of batch mixing was

calculated as described in a previous study (Haghverdi et al., 2018). Briefly, for 100 randomly chosen cells, their 100 nearest neigh-

bors were used to calculate the batch proportion xi, where x1+x2 = 1. Regional entropy was estimated according to E = x1logx1+x2-
logx2, and entropy of batch mixing was calculated as their sum. For boxplot, this process was repeated 100 times with different

randomly chosen cells.

QUANTIFICATION AND STATISTICAL ANALYSIS

The function findMarkers of the R package scranwas applied on log-normalized gene counts to detect DE genes (p value ¸ 0.05, FDR ¸

0.1). For detection of DA peaks, the function FindMarkers in the R package Signac was used with a logistic regression mode (p value ¸

0.05, log2-fold change 0.5). Wilcoxon signed-rank test and sum rank test were performed with the function wilcox.exact in the

R package exactRankTests.
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