
Research and Applications

Mining reported adverse events induced by potential

opioid-drug interactions

Jinzhao Chen1, Gaoyu Wu2, Andrew Michelson2, Zachary Vesoulis3, Jennifer Bogner4,

John D. Corrigan4, Philip R.O. Payne 2, and Fuhai Li 2,3

1Department of Biostatistics, The Ohio State University, Columbus, Ohio, USA, 2Institute for Informatics (I2), Washington Univer-

sity School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA, 3Department of Pediatrics, Washington Uni-

versity School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA and4Department of Physical Medicine

and Rehabilitation, The Ohio State University, Columbus, Ohio, USA

Corresponding Author: Fuhai Li, PhD, Department of Pediatrics, Washington University School of Medicine, Washington

University in St. Louis, 4444 Forest Park Ave, Office 6313, St. Louis, MO, USA 63108; Fuhai.Li@wustl.edu

Jinzhao Chen and Gaoyu Wu contributed equally to this work.

Received 13 August 2019; Revised 17 December 2019; Editorial Decision 18 December 2019; Accepted 2 March 2020

ABSTRACT

Objective: Opioid-based analgesia is routinely used in clinical practice for the management of pain and allevia-

tion of suffering at the end of life. It is well-known that opioid-based medications can be highly addictive,

promoting not only abuse but also life-threatening overdoses. The scope of opioid-related adverse events (AEs)

beyond these well-known effects remains poorly described. This exploratory analysis investigates potential AEs

from drug-drug interactions between opioid and nonopioid medications (ODIs).

Materials and Methods: In this study, we conduct an initial exploration of the association between ODIs and se-

vere AEs using millions of AE reports available in FDA Adverse Event Reporting System (FAERS). The odds ratio

(OR)-based analysis and visualization are proposed for single drugs and pairwise ODIs to identify associations

between AEs and ODIs of interest. Moreover, the multilabel (multi-AE) learning models are employed to evalu-

ate the feasibility of AE prediction of polypharmacy.

Results: The top 12 most prescribed opioids in the FAERS are identified. The OR-based analysis identifies a di-

verse set of AEs associated with individual opioids. Moreover, the results indicate many ODIs can increase the

risk of severe AEs dramatically. The area under the curve values of multilabel learning models of ODIs for oxy-

codone varied between 0.81 and 0.88 for 5 severe AEs.

Conclusions: The proposed data analysis and visualization are useful for mining FAERS data to identify novel

polypharmacy associated AEs, as shown for ODIs. This approach was successful in recapitulating known drug

interactions and also identified new opioid-specific AEs that could impact prescribing practices.
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INTRODUCTION

Adverse events (AEs) are unexpected and potentially injurious side

effects and harms which occur during typical usage of a medica-

tion.1 In the United States, approximately 3–7% of hospitalizations

are caused by AEs, 10–20% of hospitalizations include AEs, and

10–20% of these AEs are severe.2 Opioids is a generic term for a

class of medications which activate central and peripheral opioid

receptors, producing analgesia and other physiological effects, such

as decreased heart and respiratory rates,3,4 which also can promote

addiction leading to potential overdose and death. In 2016, there
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were approximately 42 000 deaths involving opioids in the United

States, which represents a 21.4% increase from 2015.5 Additional

well-known AEs associated with opioids include nausea, vomiting,

dizziness, and constipation.6

In practice, opioids are often coprescribed for patients with a

complicated medical history who are concurrently taking a wide ar-

ray of additional medications.7 Beyond the aforementioned well-

described AEs; however, little is known about the potential for

drug-drug interactions between opioid and nonopioid medications.

As a result, opioids are often coprescribed with limited information

on opioid-drug interactions (ODIs).

The Food and Drug Administration’s (FDA) Adverse Event

Reporting System (FAERS)8 is a database that contains reported AEs

and medication errors involving FDA-approved drugs. The AE reports

in FAERS previously have been mined previously to identify potential

AEs for specific drugs.9–11 Using FAERS data, some common severe

AEs, such cardiovascular incidents, abuse, death, and overdose have

been associated with pain-killers, such as nonsteroidal anti-

inflammatory drugs (NSAIDs), acetaminophen, and opioids.12

Despite widespread use of opioids and the significant burden of

opioid-related adverse outcomes, to the best of our knowledge; how-

ever, the linkage of AEs and ODIs have not been well investigated. It

is common for opioids to be prescribed to patients taking other medi-

cations (polypharmacy), often in the setting of complex medical con-

ditions (eg, traumatic brain injury7) but medical providers lack

general safety parameters to guide decision making when combining

opioids with other medications. In this preliminary study, we explore

the association between ODIs and severe AEs using AE reports in the

FAERS database. Using the odds ratio (OR) analysis of single and

pairwise ODIs, we identify a set of opioid-specific ODIs that are

highly associated with the risk for a set of severe AEs. We also imple-

ment a novel visualization method to show the ODIs associated with

increased risk of individual AEs. Lastly, we applied multilabel ma-

chine learning models to evaluate the feasibility of predicting the asso-

ciation of a specific AE for the use of multiple medicine including

opioids to improve the safety of medical treatment. The rest of the pa-

per is organized as follows. First, we identify the mostly commonly

reported opioids in the FAERS database along with their reporting fre-

quency. We then introduce the approaches for data preprocessing and

AE identification for the most commonly prescribed opioids, as well

as the methods employed for the OR analysis of both single-drug and

pairwise ODIs, as well as the evaluation of multilabel learning models

to predict the AEs of polypharmacy. In the Results section, we provide

the top 20 associated AEs for the top 5 reported opioids, the list and

visualization of top-ranked ODIs are associated with each of 18 se-

lected AEs for oxycodone and hydrocodone, as well as AE prediction

evaluation using 3 multilabel learning models. The article concludes

with the Discussion and Conclusion sections.

MATERIALS AND METHODS

Opioids
In this preliminary study, we conducted our analysis on the top 12

opioids reported in the FAERS database, which is an expanded list

of the most commonly prescribed opioids according to the National

Institute on Drug Abuse (Table 1).6,7,13

AE reports in the FAERS database and preprocessing
To study the AEs of opioids induced by ODIs, we collected AE

reports from the FAERS database reported over the past 14 years,

from October 1, 2003 through September 30, 2017. AEs are defined

as the Medical Dictionary for Regulatory Activities (MedDRA).14

MedDRA is a medical terminology dictionary and is the dictionary

of AE classification. In total, there were 9 805 596 case records

reported with at least one of AE by this criterion. In this study, we

limited our scope to FDA-approved small molecular drugs. A list of

2521 FDA-approved small molecule opioids was retrieved from

DrugBank (version 5.1.0).15 After comparing drug names in the

FAERS database with FDA-approved drugs, we removed 5 756 511

AEs (58.7%) that did not contain any drug in the FDA-approved

list. In addition, we limited our interest to drugs reported at least

1000 times with an AE proportion of no less than 0.5% in the

FAERS database. In the end, we collected 4 094 084 AE reports as-

sociated with 774 drugs and 151 AEs. The procedure of data pre-

processing is demonstrated in Figure 1.

OR analysis to identify and visualize associations

between ODIs and increased risk of severe AEs
OR is a technique to quantify the risk of an event with data presented

in a 2-by-2 contingency table (see Figure 2). In the contingency table,

both the column variable (AE of interest) and the row variable (drug

of interest) are binary: present (þ) or absent (�). The co-occurrence of

any drug-AE pair is categorized into 4 conditions: “–,” “�þ,” “þ�,”

and “þþ”. Then, we convert the FAERS data into a series of 2-by-2

contingency tables with populated numbers of counts: N11, N12, N21,

and N22. The OR is calculated as OR ¼ N11N22

N12N21
.

For each AE, we calculated all the ORs of all individual drugs,

denoted as Drug.OR for nonopioid drugs and Opioid.OR for indi-

vidual opioids, and calculated the ORs of all pairwise ODIs (with

one opioid drug colisted with another nonopioid drug), denoted as

Pair.OR. For example, if oxycodone is colisted with 3 other nonop-

ioid drugs in an AE report, 3 different Pair.OR’s would be calcu-

lated, one for each opioid-nonopioid combination. Then, the

Fisher’s exact test was performed to confirm the ORs of specific AEs

of given ODIs. In order to control the experiment-wise false alarm

rate at 0.05, a Bonferroni correction was applied.

To facilitate the visualization of ODIs with increased risk of

specific AEs, we implemented a new type of visualization plot (see

Figures 3–5). As can be seen in the upper panels of Figures 3–5, the

x-axis and y-axis are the relative OR for both ODIs, Pair.OR/Opioi-

d.OR, and relative OR of drugs, Drug.OR/Opioid.OR. Thus,

opioid-specific ODIs (eg, oxycodone [opioid]-anagrelide[drug] inter-

action, represented by “anagrelide”) that are above the solid-bold

Table 1. Frequency of opioids-involved adverse events in the

FAERS database

Opioid Frequency %

1 Oxycodone 91 073 2.25

2 Hydrocodone 80 163 1.98

3 Morphine 78 320 1.93

4 Fentanyl 75 844 1.87

5 Codeine 51 308 1.27

6 Methadone 27 236 0.67

7 Hydromorphone 15 971 0.39

8 Buprenorphine 8024 0.20

9 Heroin 5084 0.13

10 Dihydrocodeine 3755 0.09

11 Tapentadol 1287 0.03

12 Alfentanil 663 0.02

Abbreviations: FAERS: FDA Adverse Event Reporting System.
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Figure 1. Data preprocessing scheme. Data were extracted from the FDA Adverse Event Reporting System (FAERS) from reports dated October 1, 2003 through Sep-

tember 31, 2017. The list of FDA-approved drugs was retrieved from DrugBank database on May 22, 2018 (version 5.1.0; released on 2018-04-02). N denotes the num-

ber of reports in FAERS, Q indicates the number of adverse effects (AEs), and P represents the number of drugs co-prescribed with opioids.

Figure 2. Example of 2-by-2 contingency table for computing the odds ratio of a drug (i.e., oxycodone) for inducing an adverse effect (AE) (e.g., renal failure).

Figure 3. Visualization of top 5 ODIs (green nodes) for oxycodone and hydrocodone (purple nodes), respectively, causing increased risk of 5 selected example ad-

verse events (orange nodes) (cardiorespiratory arrest, cardiac arrest, renal failure, diabetes mellitus, and pulmonary embolism). Abbreviation: ODIs: opioid-drug

interactions.
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line are associated with an increased risk of severe AEs (eg, renal

failure). ODIs with more than a 1.5-fold Opioid.OR and a P value

< .05, ODIs with an Opioid.OR � 0.75 and � 1.5 and a P value �
.05, and ODIs with an Opioid.OR < 0.75 and a P value < .05 are

labeled as “þ,” “o,” and “D” symbols, respectively. Moreover, the

OR density plots (lower panel) indicate the odd ratios of the speci-

fied AEs are increased by interacting with the opioid. In other

words, the Pair.OR (ORs of DOIs) has a heavier tailed distribution

compared with Drug.OR (ORs of single drugs). The OR of the opi-

oid is also plotted. In addition, names of the top 10 ranked drugs

interacting with the given opioid are displayed. The ODI plots can

be updated conveniently by changing specific parameters.

AE prediction of polypharmacy using multilabel

learning models
In addition to the identification of pairwise ODIs using the OR anal-

ysis and visualization, we further evaluated the feasibility of predict-

ing ODI AEs containing multiple drugs and oxycodone (the most

reported opioid in FAERS).

Problem formulation

Let n be the number of AE reports (n¼91 073), p be the number of

total drugs involved in all reports (P¼774), and m represent types

of AE. For example, in this preliminary study, 5 type of AEs are

Figure 4. Visualization of top-ranked oxycodone-drug interactions causing increased risk of adverse events. Abbreviations: ADE: •••; OR: odds ratio.
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selected, that is, renal failure, pulmonary embolism, cardiac arrest,

cardiorespiratory arrest, and pneumonia. Mathematically, let

X ¼ x1; . . . ; xp

� �
be the vector of individual reports, where

xi ¼ x
1ð Þ

i ; . . . ; x
nð Þ

i

� �T
and x

jð Þ
i 2 f0; 1g, i 2 f1; � � � ;pg; j 2 f

1; � � � ; ng indicate if a drug included in a report (1) or not (0). Let

Y ¼ y1; . . . ; ymð Þ be the AEs, where yk ¼ y
1ð Þ

k ; . . . ; y
nð Þ

k

� �T
and

y
jð Þ

k 2 f0; 1g, k 2 f1; � � � ;mg; j 2 f1; � � � ; ng, which indicates

if a report is associated with a given AE (1) or not (0). Then the

matrix; X , will be used as the input and Y will be used as the output

(AEs labels) of the multi-AE prediction problem.

Three multilabel prediction models

In this study, 3 supervised learning models are employed, that is,

the binary relevance method using logistic regression as the base

learner (BR.lr),16 the classifier chains method using regression as

the base learner (CC.lr),17,18 and the multivariate classification

and regression random forest model (RFSRC).19 The “mlr”20 R

Figure 5. Visualization of top-ranked hydrocodone-drug interactions causing increased risk of adverse events. Abbreviations: ADE: •••; OR: odds ratio.
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package was used to call the BR.lr and CC.lr models, and the

“randomforestSRC”21 R package was used to call the RFSRC

model. We evaluate the prediction models by dividing the dataset

using 5-fold cross-validation, that is, the dataset is randomly di-

vided into 5 folds, and 4 folds (80% of the data) are used as train-

ing data, and the rest 20% are used as the testing data. The

average of the following metrics is used to evaluate the perfor-

mance of the models.

Prediction evaluation metrics

The prediction performance was evaluated using the following

metrics (ie, hamming loss, subset 0/1 loss, f1 score, accuracy, and

precision). Let C x ið Þ� �
¼ by ið Þ

1 ; . . . ; by ið Þ
m

� �
and y(i) ¼ y

ið Þ
1 ; . . . ; y

ið Þ
m

� �
represent the predicted and actual AE labels for individual reports,

then the evaluation metrics are defined as follows20:

Hamming loss :
1

mn

Xn

i¼1

Xm
k¼1

1�
y
ðiÞ
k
6¼ by ðiÞk

�

Subset 0=1 loss :
1

n

Xn

i¼1

1�
yðiÞ 6¼C

�
xðiÞ

��

Accuracy :
1

mn

Xn

i¼1

Xm
k¼1

1�
y
ðiÞ
k
¼by ðiÞk

�

Precision :
1

n

Xn

i¼1

Pm
k¼1 1�

y
ðiÞ
k
¼1 and by ðiÞk ¼1

�
Pm

k¼1 1�by ðiÞk ¼1

�

F1 score :
1

n

Xn

i¼1

2
Pm

k¼1 1�
y
ðiÞ
k
¼1 and by ðiÞk ¼1

�
Pm

k¼1

�
1�

y
ðiÞ
k
¼1

� þ 1�by ðiÞk ¼1

��

For interpretation purposes, hamming loss is defined as the frac-

tion of the wrongly predicted AE labels (0 or 1) to the total number

of AE labels (a report might be associated with multiple AEs). Subset

0/1 loss is defined as the fraction of reports that have at least one AE

label predicted wrongly. Accuracy is defined as the fraction of cor-

rectly predicted AE labels to the total number of AE labels. Precision

is defined as the fraction of true positive and also predicted positive

AE labels to the predicted positive AE labels. F1 score is defined as

an average of the fraction of true positive and also predicted positive

AE labels to the predicted positive AE labels, and the fraction of true

positive and also predicted positive AE labels to the true positive AE

labels.

RESULTS

Top 20 AEs for the 5 most commonly reported opioids
Table 2 shows the top 20 AEs associated with the top 5 reported

opioid drugs in FAERS. Not surprisingly, the top 20 AEs for the

individual opioid drugs are different but encompass many of the

well-known, opioid AEs, such as abuse, overdose, and vomiting.

Aside from the expected AEs associated with opioids, each medica-

tion has a unique subset of additional AEs, for instance, epistaxis

was more commonly reported with codeine than the other opioids.

It suggests that opioid-specific ODIs and associated AEs should be

investigated separately.

Top-ranked ODIs inducing 18 selected severe AEs
In this pilot study, we empirically chose 18 common and severe AEs

for further analysis: death, pneumonia, anemia, hypotension, depres-

sion, hypertension, myocardial infarction, renal failure, sepsis, over-

dose, completed suicide, cardiac arrest, hemorrhage, diabetes mellitus,

drug abuse, cardiorespiratory arrest, pulmonary embolism, and

thrombosis. Tables 3 and 4 show the top 5 ODIs, based on the

pair.OR, associated with an increased risk for the 18 selected severe

AEs for opioids for oxycodone and hydrocodone, respectively. As can

be seen, the top-ranked ODIs are diverse and heterogenous for differ-

Table 2. Top 20 AEs ranked by odds ratios for the most frequent opioids

Rank Oxycodone Hydrocodone Morphine Fentanyl Codeine

1 Drug abuse Completed suicide Drug hypersensitivity Drug abuse Drug hypersensitivity

2 Cardiorespiratory arrest Drug abuse Hypersensitivity Product quality issue Drug abuse

3 Cardiac arrest Cardiorespiratory arrest Lethargy Toxicity to various agents Hypersensitivity

4 Constipation Back pain Toxicity to various agents Emotional distress Overdose

5 Completed suicide Gastroesophageal reflux

disease

Drug abuse Drug effect decreased Toxicity to various agents

6 Sinusitis Anxiety Cardiac arrest Cardiac arrest Hallucination

7 Toxicity to various agents Emotional distress Somnolence Overdose Emotional distress

8 Back pain Sinusitis Overdose Hyperhidrosis Bronchitis

9 Dehydration Cardiac arrest Respiratory failure Back pain Completed suicide

10 Neuropathy peripheral Pulmonary embolism Hallucination Depression Deep vein thrombosis

11 Disease progression Amnesia General physical health

deterioration

Drug ineffective Epistaxis

12 Pulmonary embolism Depression Back pain Constipation Joint swelling

13 Injury Diabetes mellitus Pulmonary embolism Respiratory failure Sinusitis

14 Decreased appetite Cardiac failure congestive Death Amnesia Dysphagia

15 Pleural effusion Arthralgia Completed suicide Injury Drug interaction

16 Abdominal pain Deep vein thrombosis Disease progression Renal impairment Rheumatoid arthritis

17 Depression Neuropathy peripheral Constipation Renal failure Hyperhidrosis

18 Hypokalemia Hypoesthesia Depression Loss of consciousness Cerebrovascular accident

19 Emotional distress Weight increased Vomiting Cardiorespiratory arrest Thrombosis

20 Memory impairment Gait disturbance Loss of consciousness Urinary tract infection Cardiorespiratory arrest

Abbreviations: AE: adverse events.
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ent AEs, given the same opioid. In addition, we graphically represent

the top 5 ODIs and 5 associated AEs in a network map (see Figure 3),

which can clearly and intuitively display the ODI-AE associations. As

aforementioned, for given specific AEs, we implemented a new way to

visualize the pair.OR of opioid-specific ODIs. In Figures 4 and 5, we

show the top-ranked ODIs with 5 severe AEs (renal failure, pulmo-

nary embolism, cardiac arrest, cardiorespiratory arrest, and pneumo-

nia) for oxycodone and hydrocodone, respectively. As shown in the

figures, diverse and distinct ODI-AE pairs emerge for each opioid,

suggesting potential drug interactions that may necessitate different

prescribing practices to prevent specific AEs.

ODI AE prediction for oxycodone
In addition to the OR-based analysis to identify ODIs and associated

AEs, we further demonstrated the feasibility of applying multilabel

learning models to predict AEs in patients with multiple reports. We

selected 5 AEs of interest (ie, renal failure, pulmonary embolism, car-

diac arrest, cardiorespiratory arrest, and pneumonia) that were

reported with the presence of oxycodone. Three learning methods

have been evaluated (ie, BR.lr: Binary relevance with logistic regres-

sion; CC.lr: Classifier Chains with logistic regression; and RFSRC:

random forest adapted for multilabel classification). We used 5-fold

cross validation to evaluate the model performance based on the

Table 4. Top 5 hydrocodone-drug interactions associated with increased risk of 18 selected AEs

AEs

Number of

reports

Number of drugs

with Pair.OR> 2 Top 5 drugs interacting with hydrocodone associated with the AEs

1 Hemorrhage 181 606 142 Acenocoumarol, alendronic acid, clofarabine, flutamide, remifentanil

2 Pneumonia 129 489 193 Acenocoumarol, bimatoprost, cilastatin, cyclizine, mycophenolic acid

3 Death 128 896 32 Cefaclor, clozapine, doxylamine, erlotinib, meprobamate

4 Anemia 111 336 239 Flutamide, melphalan, mycophenolic acid, thalidomide, ticlopidine

5 Renal failure 105 791 187 Dobutamine, flutamide, milrinone, mycophenolic acid, vasopressin

6 Depression 88 941 266 Aminophylline, cyclizine, flutamide, goserelin, thrombin

7 Hypertension 88 831 231 Aminophylline, domperidone, flutamide, mitoxantrone, mycophenolic acid

8 Hypotension 86 104 150 Calcium chloride, cilastatin, dobutamine, flutamide, norepinephrine

9 Overdose 83 635 35 Benzodiazepine, caffeine, meprobamate, nicotine, oxazepam

10 Thrombosis 70 395 206 Aminophylline, argatroban, ceftazidime, dacarbazine, mycophenolic acid

11 Myocardial infarction 70 028 128 Acetylcysteine, aminophylline, flutamide, morniflumate, nizatidine

12 Sepsis 64 938 117 Calcium chloride, micafungin, mitoxantrone, norepinephrine, temsirolimus

13 Diabetes mellitus 42 013 190 Aminophylline, fludarabine, fosinopril, mycophenolic acid, orlistat

14 Completed suicide 41 437 144 Desipramine, eszopiclone, ethanol, nicardipine, valproic acid

15 Pulmonary embolism 40 521 129 Bromocriptine, drospirenone, ethinyl estradiol, remifentanil, vecuronium

16 Cardiac arrest 38 331 79 Alendronic acid, dobutamine, mitoxantrone, nicardipine, saxagliptin

17 Drug abuse 26 042 59 Dextromethorphan, doxylamine, methamphetamine, oxymorphone, pentazocine

18 Cardiorespiratory arrest 21 056 80 Aripiprazole, benzodiazepine, bromocriptine, ethanol, nicardipine

Abbreviations: AE: adverse events; OR: odds ratio.

Table 3. Top 5 oxycodone-drug interactions associated with increased risk of 18 selected severe AEs

AEs

Number of

reports

Number of drugs

with pair.OR> 2 Top 5 drugs interacting with oxycodone associated with the AEs

1 Hemorrhage 181 606 111 Anagrelide, aztreonam, nizatidine, norethisterone, sulfadiazine

2 Pneumonia 129 489 272 Anagrelide, argatroban, sulbactam, thalidomide, trichlormethiazide

3 Death 128 896 38 Carmustine, cimetidine, digitoxin, methamphetamine, palonosetron

4 Anemia 111 336 280 Anagrelide, flutamide, mitomycin, procarbazine, thalidomide

5 Renal failure 105 791 239 Anagrelide, dobutamine, galantamine, milrinone, rilmenidine

6 Depression 88 941 235 Adenosine, ampicillin, etomidate, tetracycline, trichlormethiazide

7 Hypertension 88 831 201 Methyldopa, mitomycin, nicardipine, raloxifene, trichlormethiazide

8 Hypotension 86 104 192 Calcium chloride, clofarabine, dobutamine, dopamine, trichlormethiazide

9 Overdose 83 635 76 Caffeine, deflazacort, etoricoxib, flurazepam, galantamine

10 Thrombosis 70 395 226 Adenosine, ampicillin, drospirenone, nicardipine, tetracycline

11 Myocardial infarction 70 028 75 Bimatoprost, dobutamine, morniflumate, nicardipine, prasugrel

12 Sepsis 64 938 183 Anagrelide, calcium chloride, cefotaxime, cilastatin, vasopressin

13 Diabetes mellitus 42 013 152 Deflazacort, dobutamine, nizatidine, perphenazine, trichlormethiazide

14 Completed suicide 41 437 94 Aripiprazole, ethanol, milnacipran, phenobarbital, quetiapine

15 Pulmonary embolism 40 521 136 Drospirenone, ethinyl estradiol, perphenazine, tipranavir, trichlormethiazide

16 Cardiac arrest 38 331 72 Benzodiazepine, dobutamine, ethanol, etomidate, perphenazine

17 Drug abuse 26 042 77 Dextromethorphan, doxylamine, methamphetamine, nimesulide, pentazocine

18 Cardiorespiratory arrest 21 056 70 Aripiprazole, benzodiazepine, ethanol, methamphetamine, rosiglitazone

Abbreviations: AE: adverse events; OR: odds ratio.
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aforementioned metrics, that is, hamming loss, subset 0/1 loss, f1

score, accuracy, and precision. Figure 6 (upper panel) shows the aver-

age values of these metrics on the 5 selected AEs. In addition, Figure 6

(lower panel) shows the average area under the curve values of the 3

models for the AEs. The results indicate that the random forest SRC

model outperformed the other models in all evaluation metrics.

DISCUSSION AND CONCLUSION

Opioids are a commonly prescribed class of medications and are fre-

quently taken in combination with other medications in the manage-

ment of patients with acute and chronic pain. Although there is

considerable potential for AEs, the associated AEs of ODIs has not

been well investigated. Herein, we conducted an initial exploration

of ODI-AE associations by mining millions of AE reports in the

FAERS database. Using this approach to AE identification, we were

able to recapitulate the well-known AEs associated with opioids, in-

cluding constipation, abuse, and cardiopulmonary arrest. Further-

more, through the pairwise analysis of opioid-associated AEs, we

were also able to recreate common, other well-known medication

AEs, such as estrogen-induced venous thromboembolism,

immunosuppressive-therapy associated risk of pneumonia, and

higher cardiopulmonary arrest with benzodiazepine use.22–24 To-

gether, this knowledge recreation lends credence to the methodology

used in this exploratory analysis.

Furthermore, the results of this study suggest individual opioids

have unique AEs, potentially related to drug-specific off-target

effects. For instance, fentanyl was associated with hyperhydrosis

while hydrocodone was associated with gastroesophageal reflux dis-

ease. It is certainly possible that many of the identified associations

are the result of underlying patient comorbidities that are being

treated rather than a direct medication effect, but it is also possible

Figure 6. Performance comparison of 3 multilabel classification models. Abbreviations: AUC: area under the curve; RFSRC: regression random forest model.
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that opioids potentiate the AEs reported. To further stratify these

associations, we will need to consider disease-specific treatments.

For instance, a strong association between hydrocodone, riociguat

and pulmonary embolism emerged in our cohort. However, rioci-

guat is a medication used to treat inoperable or persistent postsurgi-

cal chronic thromboembolic pulmonary hypertension, and as such,

it is unlikely that this association represents a true ODI between

hydrocodone and riociguat. By encompassing disease-level treat-

ment bundles into this tool, we can further enrich the results pro-

duced by this pipeline.

In addition, since the FAERS database does not contain a patient

cohort without the associated AE, the relative prevalence of the AEs

and ODIs may be over represented in the OR calculation. By incor-

porating additional patient characteristics, such as age, gender, and

comorbidities, the risk of specific AEs for a given ODI can be more

accurately measured. Also, it is not a trivial task for the drug name

comparison and normalization to make use of the reports more ac-

curately in FEARS database. Moreover, the OR analysis depends on

the properly constructed confusions matrix. It might be biased and

not accurate to use all reported AEs to calculate the negative cases

for OR calculation. Ideally, people who were given the drug but

reported no AEs should be used as the negative. However, these

data were not included in FAERS. Therefore, in addition to FAERS

data, it is important to integrate more electronic health record

(EHR) data and also big datasets of claims and pharmacy to identify

more and unbiased negative controls to further evaluate the poten-

tial ODIs and associated AEs. In the last section of this study, we

also create a process to use the FAERS database to train machine

learning models to predict potential AEs for given ODIs. These mod-

els could further be enhanced using sophisticated deep learning

models to integrate chemical structure features to identify ODIs as-

sociated with severe AEs. Once validated, it is our hope that this

pipeline could be helpful to facilitate the identification of additional

drug-drug interactions to improve safe prescribing practices.
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