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a b s t r a c t

We propose a new mathematical and computational modeling framework that in-
corporates fluid dynamics to study the spatial spread of infectious diseases. We model the
susceptible and infected populations as two inviscid fluids which interact with each other.
Their motion at the macroscopic level characterizes the progression and spread of the
epidemic. To implement the two-phase flow model, we employ high-order numerical
methods from computational fluid dynamics. We apply this model to simulate the COVID-
19 outbreaks in the city of Wuhan in China and the state of Tennessee in the US. Our
modeling and simulation framework allows us to conduct a detailed investigation into the
complex spatiotemporal dynamics related to the transmission and spread of COVID-19.

© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Although mathematical and computational models have tremendously advanced our understanding in epidemiology, an
accurate prediction of the spatial spread of infectious diseases still remains a challenge. Standard compartmental epidemic
models based on ordinary differential equations (ODEs) are not able to incorporate spatial dynamics. To overcome this
limitation, meta-population models (such as multi-patch and multi-group models) are developed to represent spatial het-
erogeneities and variations (Arino & van den Driessche, 2003; Cosner et al., 2009; Hanski, 1999; Hsieh, van den Driessche, &
Wang, 2007; Levins, 1969; Rodriguez & Torres-Sorando, 2001; Ruan, Wang, & Levin, 2006). Such models, however, typically
involve a large number of parameters, and estimating these parameters and determining their identifiability could be highly
nontrivial. Another common modeling approach is based on reaction-diffusion type partial differential equations (PDEs)
(Allen, Bolker, Lou, & Nevai, 2008; Bertuzzo, Casagrandi, Gatto, Rodriguez-Iturbe, & Rinaldo, 2010; Cantrell & Cosner, 2003;
Magal, Webb, & Wu, 2019; Thieme, 2009; Wang, Gao, & Wang, 2015; Wang & Zhao, 2012; Wu et al., 2008; Yang & Wang,
2020b). A drawback of these PDE models, however, is their limited applicability to practical problems, partly due to the
difficulty in calibrating key parameters such as the diffusion coefficients. Additionally, most of the currently available
mathematical and computational models may have difficulty in forecasting where and how an epidemic is spreading in real
time.

In an effort to address this challenge, we recently proposed a new epidemic flowmodel (Cheng &Wang, 2022) where the
infected population is represented as an inviscid fluid and its motion relative to the susceptible population characterizes the
unications Co., Ltd.
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spatial spread of an epidemic. This model was inspired by prior modeling studies on traffic flow where the movement of
vehicles is treated as an inviscid flow and described by the Euler equation (Newell, 1993; Sun, Lv,&Waller, 2011; Zhang,1999).
The present paper is a significant extension of the model in (Cheng & Wang, 2022), which contains only a single fluid, to a
two-phase fluid system for a more accurate investigation into the spatiotemporal epidemic dynamics. We will introduce two
different fluids to represent the susceptible and infected populations and study the epidemic flow through themovement and
interaction of the two fluids.

At the initial time of an epidemic, the susceptible population may occupy the entire spatial domain or most of it, whereas
the infected population may be concentrated in one or more small areas representing the onset location(s) of the disease
outbreak. Through the movement of the human hosts and the contact between infected and susceptible individuals, more
susceptible people become infected and the epidemic spreads out to larger areas. This process is modeled as the interaction
between two fluids, throughwhich the susceptible fluid is continuously transformed into the infected fluid. Consequently, the
densities of the two fluids and the areas occupied by them keep changing throughout the epidemic, the details of which are
described by our two-phase epidemic flow model.

As a demonstration of this new modeling framework, we apply it to the simulation of the transmission and spread of
COVID-19. Although there are numerous mathematical and computational models published for COVID-19 (see (Afzal et al.,
2022; Kevrekidis, Cuevas-Maraver, Drossinos, Rapti, & Kevrekidis, 2021; Kuhl, 2020; Leung, Wu, Liu, & Leung, 2020; Li, Pei,
et al., 2020; Padmanabhan et al., 2021; Viguerie et al., 2021; Wang, 2020) and references therein), these models have not
met our expectation in accurately predicting the progression and spatial spread of the disease. To address this limitation, we
perform a computationally intensive study of COVID-19 combining our new epidemic model with advanced numerical
methods from computational fluid dynamics (CFD). We conduct the simulation and validate the results using real epidemic
data from two places: (1) the city of Wuhan in China, the first epicenter of COVID-19; and (2) the state of Tennessee in the US.
Our modeling frameworkmakes it possible to study the detailed spatiotemporal dynamics of COVID-19 in these two different
scenarios.

A primary motivation of the present study is to take advantage of the well-developed theory and computational tech-
niques in fluid dynamics, which enjoy a long history of productivity (Batchelor, 1967; Lamb, 2006; Tannehill, Anderson, &
Pletcher, 1997), to improve our understanding in epidemiology, especially in the spatial spread of epidemics. Particularly,
we will employ high-order weighted essentially non-oscillatory (WENO) methods (Liu, Osher, & Chan, 1994; Shu, 1997) from
CFD to accurately resolve the spatial dynamics in our modeling investigation. We will demonstrate the accuracy of these
computational methods through both simple tests and realistic COVID-19 simulation.

We organize the remainder of this paper as follows. In Section 2, we present details of the formulation for our two-phase
epidemic flowmodel. In Section 3, we conduct a linear analysis for this model in the two-dimensional space. In Section 4, we
describe the numerical treatment of our CFD-based epidemic model and provide simple tests to verify the order of spatial
accuracy. In Section 5, we apply themodeling framework to the COVID-19 simulation in the Chinese city ofWuhan and the US
state of Tennessee and discuss the results. Finally, we conclude the paper in Section 6.
2. Model formulation

We let s (t, X), i (t, X) and r (t, X) denote the densities of the susceptible, infected (and infectious), and recovered in-
dividuals, respectively, at time t and location X. We also denote the total population density by

nðt;XÞ ¼ sðt;XÞ þ iðt;XÞ þ rðt;XÞ: (2.1)

We focus our attention on the two-dimensional (2D) space in this study so that X¼ (x, y) with the horizontal coordinate x and
vertical coordinate y. The functions s (t, X), i (t, X) and r (t, X) represent the numbers of susceptible, infected, and recovered
individuals per unit area. Since this study is concerned with the macroscopic behavior of the epidemic, we ignore the het-
erogeneity of individual characteristics and treat each individual host as having the same (averaged) mass. Consequently, s (t,
X), i (t, X) and r (t, X) may also represent the mass densities of the susceptible, infected, and recovered hosts, respectively,
subject to a constant multiplication. We will use both interpretations for the ‘density’ in this work.

If we consider a relatively short time period for an epidemic, then the total population density n (t, X) may be approxi-
mately regarded as a constant, given that the infection-induced death rate is typically low. This allows us to drop one variable,
r (t, X), and only study the other two: s (t, X) and i (t, X). Building on our prior work of epidemic flow modeling (Cheng &
Wang, 2022), we now treat the susceptible and infected populations as two inviscid fluids that move, mix, and interact
with each other. The density of the susceptible fluid decreases, while the density of the infected (and infectious) fluid in-
creases, through their interaction. The fluid motion thus depicts the spatial spread of the infection. Let Vs(t, X) and Vi(t, X)
denote the velocity fields of the susceptible and infected fluids, respectively. In the 2D space, each velocity consists of the
horizontal and vertical components:
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V sðt;XÞ ¼ ðusðt; x; yÞ; vsðt; x; yÞÞ; V iðt;XÞ ¼ ðuiðt; x; yÞ; viðt; x; yÞÞ: (2.2)

We note again that these velocities are defined at a macroscopic level and determined by the collective behavior of the
populations. They do not necessarily reflect the physical motion of individual hosts.

We now derive the governing equations for s (t, X), i (t, X), Vs(t, X), and Vi(t, X). If we let d be the density of a physical
quantity q in a 2D velocity field V, Then the generalized continuity equation (Attard, 2012; Pedlosky, 1987) states that

vd
vt

þ V,ðdVÞ ¼ s; (2.3)

where dV represents the flux of q and s is the generation of q per unit area per unit time. Applying the continuity equation
(2.3) separately to the susceptible and infected fluids, we obtain

vs
vt

þ V,ðsV sÞ ¼ �bsi

vi
vt

þ V,ðiV iÞ ¼ bsi� ðgþ uÞi;
(2.4)

where the epidemiological parameters b, g and u denote the disease transmission rate, the recovery rate, and the disease-
induced death rate, respectively. Equation (2.4) represents an extension of the classical SIR (susceptible-infected-recov-
ered) epidemic model with spatial movement.

Meanwhile, the velocity fields Vs(t, X) and Vi(t, X) are described by the Euler equations (Batchelor, 1967; Lamb, 2006) from
fluid dynamics:

s
vV s

vt
þ sV s,VV s ¼ �Vps; (2.5)

and

i
vV i

vt
þ iV i,VV i ¼ �Vpi: (2.6)

Here ps is the pressure of the susceptible fluid and pi the pressure of the infected fluid. Each pressure is usually characterized
in terms of other state variables through an equation of state (Attard, 2012; Tschoegl, 2000). In this model, we assume

ps ¼ css; (2.7)

and

pi ¼ cii; (2.8)

where cs and ci are constants, as the equations of state to close the system. Equations (2.7) and (2.8) indicate that themotion of
each fluid is driven by the gradient of the fluid density. An implication is that the epidemic would spread from high-
prevalence areas to low-prevalence areas. We compare these equations with the ideal gas law (Perrot, 1998; Tannehill
et al., 1997) that relates the fluid pressure p and fluid density d by

p ¼ RsTd; (2.9)

where Rs is the specific gas constant and T is the absolute temperature. Assume that T is a constant; i.e., the temperature does
not change. Then equation (2.9) is in a form similar to that of equations (2.7) and (2.8). Hence, wemay think of susceptible and
infected individuals as moving ‘particles’ that are not subject to interparticle interactions, so that at the macroscopic level the
motion of each population may be qualitatively analogous to an ideal gas flow.

Equations (2.4)e(2.8) thus constitute a two-phase flow model to describe the spread of an epidemic. Since the fluids are
miscible and inviscid, the no-slip condition (typically for immiscible viscous fluids) does not apply, and the two fluids may
have different velocities at the same location.

To proceed, we combine equations (2.4)e(2.6) into a single system:

Ut þ FðUÞx þ GðUÞy ¼ SðUÞ; (2.10)

with U ¼ ½ i; iui; ivi; sus; svs; s �T ; and
922
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FðUÞ ¼

0
BBBBBB@

iui
iðuiÞ2 þ pi

iuivi
sðusÞ2 þ ps

susvs
sus

1
CCCCCCA
; GðUÞ ¼

0
BBBBBB@

ivi
iuivi

iðviÞ2 þ pi
susvs

sðvsÞ2 þ ps
svs

1
CCCCCCA
; SðUÞ ¼

0
BBBBBB@

ðbs� g� uÞi
ðbs� g� uÞiui
ðbs� g� uÞivi

�bsius
�bsivs
�bsi

1
CCCCCCA
;

where ps ¼ scs and pi ¼ ici based on equations (2.7) and (2.8). We now write system (2.10) as

vU
vt

þ vF
vU

vU
vx

þ vG
vU

vU
vy

¼ SðUÞ; (2.11)

where the Jacobian matrices are given by

vF
vU

¼

0
BBBBBBBBBBBB@

0 1 0 0 0 0
ci � u2i 2ui 0 0 0 0
�uivi vi ui 0 0 0
0 0 0 2us 0 cs � u2s
0 0 0 vs us �usvs
0 0 0 1 0 0

1
CCCCCCCCCCCCA

and

vG
vU

¼

0
BBBBBBBBBBBB@

0 0 1 0 0 0
�uivi vi ui 0 0 0
ci � v2i 0 2vi 0 0 0

0 0 0 vs us �usvs
0 0 0 0 2vs cs � v2s
0 0 0 0 1 0

1
CCCCCCCCCCCCA

:

It is easy to prove that for any real numbers a and b, the matrix ða vF=vU þ b vG=vUÞ has six real eigenvalues:

aui þ bvi; �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ci
�
a2 þ b2

�r
þ aui þ bvi;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ci
�
a2 þ b2

�r
þ aui þ bvi;

aus þ bvs; �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cs
�
a2 þ b2

�r
þ aus þ bvs;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cs
�
a2 þ b2

�r
þ aus þ bvs;

and a complete set of eigenvectors. Hence, system (2.11) is hyperbolic.
3. Linear analysis

Mathematical analysis of the nonlinear system (2.10) is difficult. Nevertheless, a linear analysis of the model could provide
useful insight. System (2.10) has a constant solution

U0 ¼ ½0; 0; 0; 0; 0; 1�T ; (3.1)

after a rescaling of the total population density to 1. Equation (3.1) represents a homogeneous steady state of the model, with
s ¼ s0 ¼ 1, i ¼ i0 ¼ 0, and us ¼ vs ¼ ui ¼ vi ¼ 0 everywhere in the domain. This is commonly referred to as a disease-free
equilibrium. We now linearize system (2.11) around the steady-state solution U0. We have
923
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vF
vU

ðU0Þ ¼
vF
vU

jU¼U0
¼

0
BBBBBB@

0 1 0 0 0 0
ci 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 cs
0 0 0 0 0 0
0 0 0 1 0 0

1
CCCCCCA

and

vG
vU

ðU0Þ ¼
vG
vU

jU¼U0
¼

0
BBBBBB@

0 0 1 0 0 0
0 0 0 0 0 0
ci 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 cs
0 0 0 0 1 0

1
CCCCCCA
:

Meanwhile, we have

SðUÞzSðU0Þ þ
vS
vU

ðU0ÞðU � U0Þ; (3.2)

with S(U0) ¼ 0. The Jacobian matrix is

vS
vU

¼

0
BBBBBB@

bs� g� u 0 0 0 0 bi
0 bs� g� u 0 0 0 biui
0 0 bs� g� u 0 0 bivi

�bsus 0 0 �bi 0 0
�bsvs 0 0 0 �bi 0
�bs 0 0 0 0 �bi

1
CCCCCCA
:

In particular, we have

vS
vU

ðU0Þ ¼

0
BBBBBB@

b� g� u 0 0 0 0 0
0 b� g� u 0 0 0 0
0 0 b� g� u 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
�b 0 0 0 0 0

1
CCCCCCA
:

The linearized form of system (2.11) is then given by

vU
vt

þ vF
vU

ðU0Þ
vU
vx

þ vG
vU

ðU0Þ
vU
vy

¼ vS
vU

ðU0ÞU; (3.3)

where we have made a variable transformation U � U0 / U. For convenience, we keep the same notation U in the linearized
system (3.3), but U now represents a small perturbation to the equilibrium solution U0.

To proceed, we introduce the ansatz

Uðt; x; yÞ ¼ ~UeltejðkxþmyÞ; (3.4)

where j is the imaginary unit satisfying j2 ¼ �1, and k and m are wave numbers associated with the horizontal and vertical
spatial directions, respectively. Substituting (3.4) into equation (3.3), we obtain

�
lI �

�
vS
vU

ðU0Þ � jk
vF
vU

ðU0Þ � jm
vG
vU

ðU0Þ
��

~U ¼ 0; (3.5)

where I denotes the identity matrix. To ensure a nontrivial solution for ~U, l must be an eigenvalue of the matrix vS
vU ðU0Þ�

jk vF
vU ðU0Þ� jm vG

vU ðU0Þ; i.e.,
924
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0
BBBBBB@

b� g� u �jk �jm 0 0 0
�jkci b� g� u 0 0 0 0
�jmci 0 b� g� u 0 0 0

0 0 0 0 0 �jkcs
0 0 0 0 0 �jmcs
�b 0 0 �jk �jm 0

1
CCCCCCA
:

The six eigenvalues associated with this matrix are

l1 ¼ b� g� u; l2;3 ¼ ðb�g�uÞ±j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
,

ffiffiffiffi
ci

p
;

and

l4 ¼ 0; l5;6 ¼ ±j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
,

ffiffiffiffi
cs

p
:

The first three eigenvalues (l1, l2 and l3) characterize the wavefront of the infected fluid, with a bi-directional propagation
speed

ffiffiffiffi
ci

p
along the directions determined by the unit vectors ±4, where 4 ¼

�
kffiffiffiffiffiffiffiffiffiffiffiffi

k2þm2
p ; mffiffiffiffiffiffiffiffiffiffiffiffi

k2þm2
p

�
. The last three eigenvalues

(l4, l5 and l6) characterize the wavefront of the susceptible fluid, with a bi-directional propagation speed
ffiffiffiffi
cs

p
along the same

directions ±4. Meanwhile, we note that when b� g�u > 0, the eigenvalues l1, l2 and l3 all have positive real parts, indicating
that the disease-free equilibrium is unstable. Consequently, any tiny number of infection introduced into the system, which
represents a small perturbation to the steady state U0, would grow away and spread out. This implies that if we define

R0 ¼ s0b
gþ u

¼ b

gþ u
; (3.6)

then R0 >1 would indicate the persistence and spread of the infection. Note that R0 defined in equation (3.6) is the same as
the basic reproduction number associated with the standard SIR model based on ordinary differential equations; i.e., system
(2.4) with the spatial derivative terms removed, where s0 ¼ 1.

A simplified analysis is presented in the Appendix for a special scenario where a radial symmetry is assumed.
4. Numerical methods and tests

We now consider the original system (2.10). With the incorporation of fluid dynamics into epidemic modeling, the
governing system (2.10) is strongly nonlinear and requires nontrivial computational methods from CFD. In particular, we seek
to accurately resolve the spatial dynamics by using a fifth-order weighted essentially non-oscillatory (WENO) method (Liu
et al., 1994; Shu, 1997). Specifically, we divide the spatial domain into uniform meshes marked by k ¼ 1, 2, …, Nx in the x
direction and j ¼ 1, 2, …, Ny in the y direction. We denote the numerical approximation of U at the grid node (k, j) by Ukj. We
then formulate the following finite difference scheme to discretize the governing equation (2.10):

dUkj

dt
¼ Lkj½U� ¼ SðUkjÞ �

F̂kþ1=2; j � F̂k�1=2; j

Dx
� Ĝk; jþ1=2 � Ĝk; j�1=2

Dy
; (4.1)

where Dx and Dy denote the mesh size in the x and y directions, respectively, and where k ¼ 1, 2, …, Nx and j ¼ 1, 2, …, Ny. In
this equation, the numerical fluxes F̂k±1=2; j and Ĝk; j±1=2 in the x and y directions, respectively, are computed by the fifth-order
WENO method. Interested readers are referred to (Shu, 1997) for details of constructing these numerical fluxes with the
WENO technique.

For temporal discretization, we employ the third-order TVD Runge-Kutta scheme (Shu & Osher, 1988) to advance the
numerical solution from the time step n to time step n þ 1:

Uð1Þ
kj ¼ Un

kj þ DtLkj½U�;

Uð2Þ
kj ¼ 3

4
Un

kj þ
1
4
Uð1Þ

kj þ 1
4
DtLkj½Uð1Þ�;

Unþ1
kj ¼ 1

3
Un

kj þ
2
3
Uð2Þ

kj þ 2
3
DtLkj½Uð2Þ�;

(4.2)

for 1 � k � Nx, 1 � j � Ny, and n ¼ 0, 1, 2, /.
Since the spatial spread of the epidemic is our main focus, the accuracy of our numerical methods for spatial discretization

is particularly important. In what follows, we verify the spatial accuracy of our numerical treatment using simple tests. For
that purpose, we pick a known function U*(t, x, y), and replace equation (2.10) by
925
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vU
vt

þ vFðUÞ
vx

þ vGðUÞ
vy

� SðUÞ ¼ E*; (4.3)

where

E* ¼ vU*

vt
þ vFðU*Þ

vx
þ vGðU*Þ

vy
� SðU*Þ:

The functionU* is obviously an exact solution of equation (4.3). Our numerical methods described before can be applied to the
left-hand side of equation (4.3), while the right-hand side of equation (4.3) can be computed by using the known function U*.

In our tests, we set the computational domain as a square [�p, p] � [�p, p], and assign the parameter values as
b ¼ g ¼ u ¼ cs ¼ ci ¼ 1. We use a small time step size

Dt ¼ 0:6
maxðjuij þ

ffiffiffiffi
ci

p
; jusj þ ffiffiffiffi

cs
p Þ	Dx5=3 þmaxðjvij þ

ffiffiffiffi
ci

p
; jvsj þ ffiffiffiffi

cs
p Þ	Dy5=3

to ensure numerical stability. As described before, the fifth-order WENO method is applied for spatial discretization. We run
the numerical solution from t ¼ 0 until t ¼ 0.5, and compare with the analytical solution U* to obtain the numerical error.
Standard grid refinement studies are performed to check the order of accuracy for the numerical method.

Example 4.1. We take the following analytical solution for U*:

iðt; x; yÞ ¼ sinðtþ xþ yÞ þ 2; uiðt; x; yÞ ¼ 3; viðt; x; yÞ ¼ 3;

usðt; x; yÞ ¼ 3; vsðt; x; yÞ ¼ 3; sðt; x; yÞ ¼ 2� cosðtþ xþ yÞ;

with a periodic boundary condition. At t¼ 0.5, the L2 error and L∞ error for i (t, x, y)with different mesh sizes are displayed in Table
1, where Nx and Ny denote the number of points in the x and y directions, respectively. It is clear that fully fifth-order spatial
accuracy is achieved as the grid is refined. The results for other variables are similar and not presented here.

Example 4.2. We now change the function i(t, x, y) in Example 4.1 by incorporating an exponentially decaying factor:

iðt; x; yÞ ¼ e�tsinðtþ xþ yÞ þ 2;

while keeping the other components the same. The L2 error and L∞ error for i(t, x, y) in this case are presented in Table 2. Again, we
clearly observe fifth-order spatial accuracy of our numerical treatment.
5. COVID-19 simulation

We now apply our modeling framework to simulate the transmission and spread of COVID-19, as a demonstration of real-
world applications. We will consider the city of Wuhan in China and the state of Tennessee in the US as two case studies.

Wewill simulate the initial phase of the COVID-19 outbreak within a relatively short time period in each of the two places.
For simplicity, we assume that the total population density is uniform in space and time for each case; i.e., n (t, x, y) ≡Const,
given that the disease-induced mortality rate is relatively low. Without loss of generality, we normalize this constant total
density to 1; i.e.,

nðt; x; yÞ ¼ 1; (5.1)

for any time t and space location (x, y). Consequently, s (t, x, y), i (t, x, y) and r (t, x, y) can be regarded as the percentages of the
susceptible, infected and recovered components, respectively, in the total population density.
Table 1
Numerical errors of i (t, x, y) in Example 4.1

Nx � Ny L2 error order L∞ error order

10 � 10 6.49E-03 1.11E-02
20 � 20 2.63E-04 4.63 3.83E-04 4.86
40 � 40 8.98E-06 4.87 1.43E-05 4.75
80 � 80 2.89E-07 4.97 4.57E-07 4.96
160 � 160 9.12E-09 4.99 1.44E-08 4.99
320 � 320 2.85E-010 5.00 4.51E-010 5.00
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Table 2
Numerical errors of i (t, x, y) in Example 4.2

Nx � Ny L2 error order L∞ error order

10 � 10 5.13E-03 7.48E-03
20 � 20 2.19E-04 4.55 3.34E-04 4.48
40 � 40 7.56E-06 4.85 1.15E-05 4.86
80 � 80 2.44E-07 4.95 3.93E-07 4.86
160 � 160 7.69E-09 4.99 1.24E-08 4.98
320 � 320 2.41E-010 5.00 3.89E-010 5.00
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For the simulation results, we will focus our attention on the spatiotemporal evolutions of the infected fluid i (t, x, y) and
its velocity field, as these will provide essential quantitative information on the spread and progression of the epidemics.

5.1. COVID-19 in Wuhan, China

With a population about 9 million in 2020, the city of Wuhan has an urban area of 1528 square kilometers (Wikipedia:
Wuhan). We approximate the shape of the city as a square with 40 km on each side, and define the corresponding spatial
domain as

U ¼ fðx; yÞ j �20 km� x�20 km; �20 km� y�20 kmg: (5.2)
The main onset location of the COVID-19 outbreak in Wuhan is commonly believed to be the Huanan Seafood Market (Li,
Guan, et al., 2020). The market is within a chief administrative and commercial district (i.e., the Jianghan District) located
in the central region of Wuhan city. It is reported that the market has a total floor area (including multi-storey space) of about
50,000 squaremeters. We assume that the lot area covered by themarket is 40,000 squaremeters (or, 0.04 square kilometers)
and represent it by a square in the center of the domain U:

G ¼ fðx; yÞ j �0:1 km� x�0:1 km; �0:1 km� y�0:1kmg: (5.3)
We start our model simulation from January 24, 2020, immediately after the lock-down of Wuhan city ordered by the
Chinese government (Li et al., 2020a, 2020b). Since that date was considered in the very beginning of the epidemic, we
assume that the number of recovered individuals was sufficiently low that can be reasonably ignored. We then set the
normalized initial densities as

ið0; x; yÞ ¼ 0:05; sð0; x; yÞ ¼ 1� ið0; x; yÞ; rð0; x; yÞ ¼ 0; for ðx; yÞ2G; (5.4)

and

ið0; x; yÞ ¼ 10�4; sð0; x; yÞ ¼ 1� ið0; x; yÞ; rð0; x; yÞ ¼ 0; for ðx; yÞ2U� G: (5.5)

We refer to (Cheng & Wang, 2022) for a detailed justification of this initial condition. The susceptible fluid and infected fluid
are both assumed to be stationary initially; i.e.,

V sð0; x; yÞ ¼ 0; V iðt; x; yÞ ¼ 0; ðx; yÞ2U: (5.6)

For the boundary conditions, a simple extrapolation (Tannehill et al., 1997) for the variables is applied on the four edges of the
domain U.

We assume that all the model parameters (i.e, the transmission rate b, the recovery rate g, the disease-induced death rate
u, and the pressure coefficients cs and ci) are constants. The first three of these are standard epidemiological parameters
whose values can be found from prior COVID-19 modeling studies for Wuhan (Yang &Wang, 2020a; Zhuang &Wang, 2021):
b ¼ 0.347 per day, g ¼ 1/15 per day, and u ¼ 0.01 per day. Note that the value of b has been rescaled by the total population
size. The last two parameters cs and ci are related to fluid dynamics. Through the linear analysis in Section 3, however, we see
that

ffiffiffiffi
cs

p
and

ffiffiffiffi
ci

p
represent the propagation speeds of the wavefronts associated with the susceptible and infected fluids,

respectively. For simplicity, we assume that the susceptible and infected wavefronts move at the same speed; i.e., cs ¼ ci.
We then estimate the value cs¼ ci through a fitting to the real epidemic data. To that end, we compare the numerical result

and the reported data based on the cumulative cases. From our model, the number of the cumulative cases at time t can be
approximated by
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N
AðUÞ

Z
U

iðt; x; yÞdxdyþ N
AðUÞ

Z
U

rðt; x; yÞdxdyþ N
AðUÞ

Zt

0

Z
U

uiðt; x; yÞ dxdy dt; (5.7)

where N is the total population size, A(U) is the area of the domain U, and N/A(U) is the (unnormalized) total population
density. The three integrals in equation (5.7) measure the numbers of active infections, recovered individuals, and disease-
induced deaths, respectively, as of time t.

We use our model to fit the number of reported cumulative cases in Wuhan for a period of 17 days, from January 24, 2020
to February 10, 2020, corresponding to the ascending phase of the epidemic. We find that when cs ¼ ci ¼ 2.0, our model
prediction based on equation (5.7) best fits the reported data. Fig. 1 displays this data fitting result.

Fig. 2 shows the contour plots of i (t, x, y) at several different times: day 5, day 7, day 10, and day 17. By our setting, the
center of the domain has the highest concentration of infection at the initial time. We observe that at t ¼ 5.0 (i.e., day 5), the
epidemic wave has spread out from the domain center, with the outer wavefront forming a circle that has a radius around
10 km. Meanwhile, the largest value of i occurs on the outer wavefront. Due to the symmetry of our domain and initial
conditions, the distribution of i (t, x, y) exhibits a radially symmetric pattern. A linear analysis in the Appendix shows that the
wavefront generated by the infected fluid propagates in the positive radial direction at a constant speed

ffiffiffiffi
ci

p
z1:414 km per

day, which would imply a radius of 7.1 km at t ¼ 5.0 for the outer wavefront circle. The difference between this and our
simulation result reflects the impact of nonlinear dynamics where the wave speed may not be a constant in general. We also
see that at t ¼ 10.0, the outer wavefront moving along the positive radial direction has already reached the boundary of the
domain. The highest infection density, however, occurs in a center region, an indication of the inner wavefront that moves
along the negative radial direction. At t ¼ 17.0, the infection density has developed a symmetric layered pattern, where the
value of i decreases from the center to the boundary, due to the mixing and interaction between the infected and susceptible
fluids.

Figs. 3 and 4 depict the profiles of the velocity components ui(t, x, y) and vi(t, x, y), respectively, for the infected fluid. The
velocity fields at t¼ 5.0 and t¼ 7.0 clearly show an expansion from the center toward the boundary of the domain. At t¼ 17.0,
both the horizontal and vertical velocities have developed a stripe pattern, where the bands of higher values are near the
boundary and the bands of lower values are near the center of the domain. The evolution of the velocity fields appears to be
consistent with that of the infection density, displayed in Fig. 2, in terms of space and time. Additionally, Fig. 5 shows the
contour plots of the susceptible fluid density s (t, x, y) at day 5, day 7, day 10, and day 17, with reference to the contour plots of i
(t, x, y) in Fig. 2. We again clearly observe a radial symmetry for the spatial distribution of the susceptible fluid.

5.2. COVID-19 in Tennessee, US

Located in the Southeastern US, the state of Tennessee has a total population of 6,916,897 in 2020 and covers roughly
42,000 square miles. Its shape is approximately a right-angled trapezoid, with a width (or, height) of 112 miles from north to
south and two parallel bases from east to west (Wikipedia: Geography of Tennessee). The upper side (i.e., the long base) is
about 440 miles long and the lower side (i.e., the short base) is about 310 miles long. We thus represent Tennessee in our
computational domain as

U ¼

�

x; yÞ j 0� y�112; 0� x�310þ130
112

y
�
; (5.8)
Fig. 1. Numerical simulation result (green line) versus reported data (red squares) for the cumulative COVID-19 cases in Wuhan from January 24, 2020 to
February 10, 2020.

928



Fig. 2. Contour plots of i (t, x, y) for the COVID-19 epidemic in Wuhan.
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where the length unit is mile in this domain.
Tennessee has 95 counties in total. However, about 23% of the COVID-19 cases reported in Tennessee are from the two

most populous counties: Shelby and Davidson. It indicates that the epidemic is heterogeneously distributed, with cases
concentrated in the most populous places. For simplicity, we represent each of the two counties by a square in our 2D setting.
They are marked by SC and DC, respectively, in the computational domain U.

Shelby County (SC), with its county seat at Memphis which is the second-most populous city in Tennessee, has a popu-
lation of 929,744 and a geographic area of 785 square miles (Wikipedia: Shelby County). Shelby County is located on the
southwestern corner of Tennessee. It is represented as a square with 28 miles on each side. Davidson County (DC) has a
population of 715,884 and an area of 526 square miles. Its county seat is Nashville, the state capital and largest city
(Wikipedia: Davidson County). We approximate Davidson County by a square with 23 miles on each side. It is located in the
northern part of the state with approximately the same distance from the east and west sides. The two subsets representing
these two counties in the domain U are described by

SC ¼ fðx; yÞ j0 � x � 28mi; 0 � y � 28mig;
DC ¼ fðx; yÞ j147mi � x � 170mi; 68mi � y � 91mig: (5.9)
We use the COVID-19 data reported by the Tennessee Department of Health (Tennessee Department of Health) to fit our
model. We set April 2, 2020 as day 0 in our simulation. There were 2895 cumulative cases reported in the entire state of
Tennessee on April 2, 2020. The two counties, Shelby and Davidson, had 653 and 694 cumulative cases, respectively.
Meanwhile, on the same day the numbers of active infections were 1303 for the entire state, and 398 and 237 for Shelby and
Davidson, respectively. The numbers of recovered cases were 1560 for the entire state, and 250 and 451 for Shelby and
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Fig. 3. Contour plots of ui(t, x, y) for the COVID-19 epidemic in Wuhan.
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Davidson, respectively. Within Shelby and Davidson, we assume that the infected and recovered individuals were uniformly
distributed at the initial time. The normalized initial densities for the infected fluid and the recovered population in these two
counties are then given by

ið0; x; yÞ ¼ 4:3� 10�4; rð0; x; yÞ ¼ 2:7� 10�4; for ðx; yÞ2SC;
ið0; x; yÞ ¼ 3:3� 10�4; rð0; x; yÞ ¼ 6:3� 10�4; for ðx; yÞ2DC:

(5.10)

These two counties have a total population of 1,645,628 and a combined number of 635 active cases and 701 recovered cases
on April 2, 2020. The other parts of Tennessee, with a total population of 5,271,269, had a combined number of 668 active
cases and 859 recovered cases at the initial time. We assume that the infected and recovered populations were uniformly
distributed in the other parts of Tennessee, where the normalized initial densities for the infected fluid and recovered
population are given by

ið0; x; yÞ ¼ 1:3� 10�4; rð0; x; yÞ ¼ 1:7� 10�4; for ðx; yÞ2U� fSC; DCg: (5.11)

The normalized initial density for the susceptible fluid is provided everywhere by

sð0; x; yÞ ¼ 1� ið0; x; yÞ � rð0; x; yÞ; for ðx; yÞ2U: (5.12)
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Fig. 4. Contour plots of vi(t, x, y) for the COVID-19 epidemic in Wuhan.
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We clearly see that the initial infection level in Shelby County and Davidson County was much higher than the remaining
parts of Tennessee. We now apply our model to simulate how the epidemic would spread out in the state, particularly, from
high-prevalence areas to low-prevalence areas.

For the epidemiological parameters, we use the same values as those in Section 5.1 for the recovery rate and the disease-
induced death rate: g¼ 1/15 per day, andu¼ 0.01 per day. The disease transmission rate b typically varies from place to place.
We use the transmission rate from prior modeling studies for COVID-19 in Tennessee (Yang and Wang, 2021a, 2021b),
rescaled by the total population: b ¼ 0.222 per day.

We assume cs¼ ci as before. To estimate this value, we run the simulation for a period of 30 days (from April 3, 2020 toMay
2, 2020) and fit the simulation result to the reported data for the cumulative cases, where the numerical calculation of the
cumulative cases is again based on equation (5.7). The best fit is obtained when cs ¼ ci ¼ 20.0 and the fitting result is shown in
Fig. 6. From the linear analysis in Section 3, we obtain that the propagation speed of the susceptible and infectedwavefronts is
about

ffiffiffiffiffiffi
20

p
z4:472 miles per day for Tennessee, which is much higher than

ffiffiffi
2

p
z1:414 kilometers per day for Wuhan. The

difference could be explained by the fact that Wuhan was under a complete lockdown during the entire period of our
modeling study and the movement of individuals was severely restricted, which significantly slowed down the spread of the
epidemic wave. In contrast, although Tennessee also implemented timelymitigation strategies for COVID-19, theyweremuch
more lenient than those extremely strong control measures implemented in Wuhan. This, under a linear approximation, led
to an epidemic propagation speed in Tennessee about 5-fold of that in Wuhan.

Fig. 7 displays the density of the infected fluid i (t, x, y) at day 0, day 5, day 10, day 20, and day 30. The panels illustrate how
the epidemic spreads from the two counties, Shelby and Davidson, of high infection density in the beginning (panel a), to their
neighboring places (panel b), then to areas further away from the two counties (panel c), and then to the entire state (panels
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Fig. 5. Contour plots of s (t, x, y) for the COVID-19 epidemic in Wuhan.

Fig. 6. Numerical simulation result (red line) versus reported data (green circles) for the cumulative COVID-19 cases in Tennessee from April 2, 2020 to May 2,
2020.
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Fig. 7. Contour plots of i (t, x, y) for the COVID-19 epidemic in Tennessee.
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d and e). The spatial spread and distribution of the infection show a non-symmetric pattern, which is in contrast to the radial
symmetry exhibited by the Wuhan simulation results. Fig. 8 displays the spatiotemporal evolution of the susceptible fluid
density s (t, x, y), also in a non-symmetric manner. Meanwhile, Figs. 9 and 10 show the profiles of the velocity field, which
includes the horizontal component ui(t, x, y) and the vertical component vi(t, x, y), at different times. These are consistent
with the pattern of the infection spread depicted in Fig. 7.
5.3. Discussion on simulation results

Ourmodeling and computation for the COVID-19 outbreaks inWuhan and Tennessee have focused on the ascending phase
of the epidemic for each place. The Wuhan simulation represents a scenario with a radial symmetry for the disease spread,
whereas the Tennessee simulation represents a non-symmetric scenario for the progression and spread of the epidemic. Our
model outputs are able to match the reported data of the cumulative cases with a good accuracy in each of these case studies.
More importantly, our model generates detailed predictions on the spatial distributions of the infection levels at any time, as
well as the velocity profiles of the epidemic waves at any location, throughout the course of the epidemic. These results
provide useful information regarding where and how fast the disease is spreading, which is important for the design of
effective prevention and intervention strategies. Furthermore, the simulation outcome can be used to compare the disease
risk at different spatial areas in terms of both the current situation and potential future development, so that public health
administrations could effectivelymanage the epidemic and strategically scale resources and efforts for different locations. Our
modeling framework thus can offer new insight and useful information, whichmay be difficult to obtain frommost (if not all)
of currently existing epidemic models, on the spatial dynamics of infectious diseases, particularly COVID-19.
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Fig. 8. Contour plots of s (t, x, y) for the COVID-19 epidemic in Tennessee.
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We also mention a few limitations in our COVID-19 simulation. To facilitate model implementation, we have utilized
relatively simple spatial domains for Wuhan and Tennessee. We have also made simplifying assumptions on the initial
distribution of population densities and infection levels. These modeling issues can be improved with more detailed data,
when available, on the demography, geography, and epidemiology for each place. We have assumed that all the model pa-
rameters are constants, though in practical scenarios these parameters likely vary with time and space. The parameter values
used in our simulation thus should be regarded as an average of their possible temporal and spatial variations. In addition, our
PDE model is developed from the basic SIR model, and factors such as the latency period and asymptomatic infection are not
considered. We can include additional compartments to account for such complications, and our epidemic flowmodel can be
extended to accommodate more sophisticated settings.
6. Conclusions

We have proposed a two-phase fluid model to study the spatial spread of infectious diseases. This is an effort toward
partially filling the knowledge gap between the complexity of epidemic spreading and the limited insight from currently
available mathematical and computational models. Our new modeling framework allows us to investigate the details
regarding when, where and how a real epidemic would spread. An essential feature of this modeling framework is to
incorporate fluid dynamics into epidemic flow modeling and represent the susceptible and infected populations as two
inviscid fluids whosemotion characterizes the spatial spread of the epidemic. Through the use of a fifth-orderWENO scheme,
we are able to accurately compute the spatial dynamics described by our model.

The COVID-19 simulation illustrates a real-world application of ourmodel. We have implemented and validated ourmodel
for the COVID-19 epidemics in Wuhan, China and Tennessee, US. The different spreading patterns in these two scenarios,
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Fig. 9. Contour plots of ui(t, x, y) for the COVID-19 epidemic in Tennessee.

Fig. 10. Contour plots of vi(t, x, y) for the COVID-19 epidemic in Tennessee.
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generated by our simulation, highlight the complex nature of COVID-19 under different population and environmental
settings and demonstrate the applicability of our modeling approach.

Our currentmodel, based on the Euler equation from fluid dynamics, represents themotion of the susceptible and infected
populations as a convection process at the macroscopic level. We may additionally incorporate the effects of randomness in
human movement by introducing a diffusion process, thus extending the Euler equation to the Navier-Stokes equation, to
model the epidemic flow. This could be an interesting direction for our future research.
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Appendix. Radial symmetry

If we assume that the dynamical behavior of our model is radially symmetric, then the formulation and analysis could be
simplified. For this special case, the infection would spread to all directions with an equal probability and with the same
speed. Thus, the variables will only depend on the time, t, and the radial coordinate, r. We let Vs(t, r) and Vi(t, r) denote the
radial velocities for the infected and susceptible fluids, respectively.

With the coordinate transformation (t, x, y)/ (t, r) and the assumption of radial symmetry, equations (2.4)e(2.6) become

vs
vt

þ 1
r

v

vr
ðrsVsÞ ¼ �bsi;

s
vVs

vt
þ sVs

vVs

vr
¼ �cs

vs
vr
;

vi
vt

þ 1
r

v

vr
ðriViÞ ¼ bsi� ðgþ uÞi;

i
vVi

vt
þ iVi

vVi

vr
¼ �ci

vi
vr
;

(A.1)

where we have incorporated equations (2.7) and (2.8).
If we define U ¼ ½ i; iVi; sVs; s �T , we may also write system (A.1) in a vector form

v

vt
U þ v

vr
FðUÞ ¼ SðUÞ; (A.2)
with

FðUÞ ¼

0
BB@

iVi
iðViÞ2 þ cii
sðVsÞ2 þ css

sVs

1
CCA; SðUÞ ¼

0
BB@

ðbs� g� uÞi� iVi=r

ðbs� g� uÞiVi � iðViÞ2
.
r

�bsiVs � sðVsÞ2
.
r

�bsi� sVs=r

1
CCA:
Again, consider the disease-free equilibrium U0 ¼ ½0; 0; 0; 1 �T of system (A.2). A linearization around the constant so-
lution U0 and a change of variable U � U0 / U yield

vU
vt

þ vF
vU

ðU0Þ
vU
vr

¼ vS
vU

ðU0ÞU; (A.3)

where condition S(U0) ¼ 0 has been used. A substitution of the ansatz Uðt;rÞ ¼ ~Ueltejkr, where j is the imaginary unit and k is
the wave number associated with the radial direction, then leads to an eigenvalue problem

�
lI �

�
vS
vU

ðU0Þ � jk
vF
vU

ðU0Þ
��

~U ¼ 0; (A.4)

where
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vS
vU

ðU0Þ � jk
vF
vU

ðU0Þ ¼

0
BB@

b� g� u �jk� 1=r 0 0
�jkci b� g� u 0 0
0 0 0 �jkcs
�b 0 �jk� 1=r 0

1
CCA:

The four eigenvalues associated with this matrix satisfy

�
l1;2 � ðb� g� uÞ2 ¼ jkci

r
� k2ci

and

�
l3;4

�2 ¼ jkcs
r

� k2cs:

Consider a location that is relatively far from the origin; i.e., r is relatively large. Then we have

l1;2zðb�g�uÞ±jk ffiffiffiffi
ci

p
and l3;4z±jk

ffiffiffiffi
cs

p
:

We observe that the wavefronts of the susceptible and infected fluids move approximately at the speeds of
ffiffiffiffi
cs

p
and

ffiffiffiffi
ci

p
,

respectively, along the (positive and negative) radial directions. Meanwhile, the condition b � g � u > 0, or R0 >1 with R0
defined in equation (3.6), would indicate the instability of the disease-free equilibrium. These results are consistent with our
findings in Section 3.
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