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ABSTRACT

A proportion of previously defined benign variants or
variants of uncertain significance in humans, which
are challenging to identify, may induce an abnormal
splicing process. An increasing number of methods
have been developed to predict splicing variants, but
their performance has not been completely evalu-
ated using independent benchmarks. Here, we manu-
ally sourced ∼50 000 positive/negative splicing vari-
ants from > 8000 studies and selected the indepen-
dent splicing variants to evaluate the performance
of prediction methods. These methods showed dif-
ferent performances in recognizing splicing variants
in donor and acceptor regions, reminiscent of differ-
ent weight coefficient applications to predict novel
splicing variants. Of these methods, 66.67% exhib-
ited higher specificities than sensitivities, suggest-
ing that more moderate cut-off values are neces-
sary to distinguish splicing variants. Moreover, the
high correlation and consistent prediction ratio val-
idated the feasibility of integration of the splicing
prediction method in identifying splicing variants.

We developed a splicing analytics platform called
SPCards, which curates splicing variants from pub-
lications and predicts splicing scores of variants
in genomes. SPCards also offers variant-level and
gene-level annotation information, including allele
frequency, non-synonymous prediction and compre-
hensive functional information. SPCards is suitable
for high-throughput genetic identification of splicing
variants, particularly those located in non-canonical
splicing regions.

INTRODUCTION

Pre-mRNA splicing, a process in which introns of nascent
pre-mRNA are removed, followed by exon ligation, plays an
indispensable role in maintaining protein diversity and com-
plicated biological functions in humans (1). Over 90% of
human multi-exon genes undergo alternative splicing, gen-
erating > 10 mature mRNAs per gene, which are involved
in tissue- or cell-specific biological processes (2,3). The cis-
acting regulatory elements within pre-mRNAs, including
the 5′ and 3′ splice sites, branch site, polypyrimidine tract
and splicing enhancer or silencer elements (4), interact with
trans-acting factor-related proteins and regulate alternative
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splicing processes (5–9). Disruption of these cis-acting regu-
latory elements frequently results in abnormal splicing pro-
cesses and diseases.

With the development of molecular genetics, particu-
larly whole-exome sequencing (WES) and whole-genome
sequencing (WGS), > 100 000 pathogenic variants have
been detected in patients in recent decades (10,11). Approx-
imately 15–60% of rare pathogenic variants are located in
cis-acting regulatory elements (11–14). These variants can
affect alternative splicing processes by disrupting splicing
sites, generating novel cryptic splice sites and disrupting
splice-site usage (15). In addition, splicing quantitative trait
loci (sQTLs) have been used to explore the splicing mech-
anisms underlying human diseases (16). Although next-
generation sequencing has accelerated our understanding
of splicing variants, the detailed splicing mechanisms re-
main unknown. Jagadeesh et al. found that > 500 potential
splicing-related variants were classified as variants of uncer-
tain clinical significance in typical patients (10). However,
a proportion of variants of uncertain clinical significance
were validated to affect the splicing process and improve
prenatal diagnosis and preimplantation genetic testing (17).
Therefore, there is an urgent need to further decipher splic-
ing mechanisms and develop high-performance predictive
methods to screen potential pathogenic splicing variants in
humans.

Previous studies have reported on the development of nu-
merous splicing variant prediction methods, such as MM-
splice (18) and CADD-Splice (19) (Supplementary Table
S1), based on functionally validated splicing variants, but
their performance has not been completely evaluated using
independent benchmarks. Moreover, the majority of splic-
ing variants are reported in thousands of studies, making
it challenging for general bioinformatic scientists, geneti-
cists and biologists to obtain first-hand information regard-
ing certain splicing variants and genes of interest. There-
fore, there is a need to develop an integrated splice variant
database. Several studies have attempted to integrate splice
variant datasets, such as DBASS (20), MutSpliceDB (21)
and SQUIRLS (22). Moreover, although pathogenic splic-
ing prediction scores have been developed, most of these
are distributed in different databases or web servers, making
it time-consuming to retrieve the variants of interest. Sim-
ilar to the developed dbNSFP database that provides non-
synonymous deleterious variant prediction (23), integrated
splicing prediction scores are necessary to facilitate splicing
investigations.

To address this need, we developed a splicing analytics
platform called SPCards, curating 21 800 positive and 27
090 negative splicing variants. Furthermore, we integrated
splicing variant-predicted scores into SPCards and com-
pared the performance of different methods using bench-
mark datasets of the integrated splicing variants. Moreover,
we integrated other genomic data sources to provide com-
prehensive variant-level and gene-level annotation, includ-
ing (i) disease- and phenotype-related information, (ii) allele
frequencies in different populations, (iii) gene-level infor-
mation and (iv) drug–gene interactions. SPCards provides a
convenient interface for users to search for specific variants
of interest and analyze next-generation sequencing data to

screen potential splicing variants using integrated spliced
predicted scores.

MATERIALS AND METHODS

Data collection and manual curation

We collected splicing variants from scientific publica-
tions in PubMed using the search strategy ‘(mutation
[Title/Abstract] OR variant [Title/Abstract]) AND (splic-
ing [Title/Abstract] OR splice [Title/Abstract])’. We manu-
ally screened splicing variant-related publications based on
the abstracts downloaded from PubMed and then curated
splicing variants based on the full article or supplementary
materials. Three databases, DBASS (20), MutSpliceDB (21)
and SQUIRLS (22), focus on splicing variant collections in
previous studies. Two databases, Gene4Denovo and Clin-
Var, focus on de novo variant and clinically related vari-
ant collections, respectively. The Gene4Denovo and Clin-
Var databases also contain a large number of splicing vari-
ants. To obtain a comprehensive list of splicing variants,
we integrated splicing variants of five databases into SP-
Cards to make up for the missing splicing variants in the
PubMed-based collection. Only the canonical splicing vari-
ants of Gene4Denovo were integrated into SPCards. The
variants in ClinVar that satisfied the thresholds ‘pathogenic’
or ‘likely pathogenic’, ‘multiple submitters’ and ‘no con-
flicts’, and that were annotated as ‘splice donor’ or ‘splice
acceptor’, were integrated into SPCards.

The collected information for each splicing variant con-
tained the chromosomal location, start position, end posi-
tion, reference sequence, alternative sequence, distance of
variant to splice junctions, whether the variant is located
in the canonical splicing region or coding region, whether
the variant was located in the acceptor or donor region,
the detailed abnormal splicing description, phenotype, val-
idation method and PubMed identifier. In the case of un-
available information, the term ‘NA’ was used. The com-
plementary DNA (cDNA) information of splicing variants
was translated into genomic DNA (gDNA) positions us-
ing VarCards (24), the UCSC Genome Browser database
(25) or TransVar (26). Overlapping splicing variants (redun-
dant splicing variants) between different publications were
removed. All splice variants were checked by experienced
scientists.

Splicing variant annotation and splicing prediction algorithm
evaluation

We used ANNOVAR to perform a comprehensive annota-
tion of the integrated splicing variants. To uncover their de-
tailed impact, splicing variants were mapped into different
transcripts using RefSeq databases. We classified the splic-
ing regions ultimately into six types based on: (i) whether
the variant was located in a splicing donor or acceptor re-
gion and (ii) the potential confidence in variants in spe-
cific regions impacting the splicing process. For the first
two types, strong splicing regions were defined as canon-
ical splicing regions, including the donor canonical splic-
ing region (+1, +2) and the acceptor canonical splicing
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region (−1, −2). For the second two types, the moder-
ate splicing regions were defined as donor splicing consen-
sus regions (−3 to +8, except +1 and +2) and acceptor
splicing regions including splicing consensus regions, po-
tential polypyrimidine tract and a potential branch point
(−50 to +2, except −1 and −2). For the third two types,
the mild splicing regions were defined as other splicing
regions near the donor or acceptor. In addition, we an-
notated splicing variants using the scores of pathogenic
splicing prediction methods: CADD-splice (19), SpliceAI
(27), dpsi max tissue (28), dpsi zscore (28), dbscSNV ADA
(29), dbscSNV RF (29), MMSplice (18), regsnp (30), Max-
EntScan (31), GeneSplicer (32), ESRseq (33), Spliceogen
(34), SQUIRLS (22), KipoiSplice (35), SSF (36), SPiCE
(37) and Synvep (38) (Supplementary Table S1). Synvep was
used to predict pathogenic synonymous single nucleotide
variants (SNVs) and to identify splice-disrupting variants
(38). We integrated the Synvep prediction score into SP-
Cards.

As in our previous study (39), we evaluated the per-
formance of pathogenic splicing prediction methods based
on the following nine criteria: (i) positive predictive value
(PPV); (ii) negative predictive value (NPV); (iii) false-
negative rate (FNR); (iv) sensitivity (TPR, true-positive
rate); (v) false-positive rate (FPR); (vi) specificity (TNR,
true-negative rate); (vii) accuracy; (viii) Mathew correlation
coefficient (MCC); and (ix) area under the curve (AUC). We
used ‘pROC’ packages to evaluate the performance of the
pathogenic splicing prediction methods and generated the
suggested threshold based on the curated splicing variants.
If a variant lacked the prediction score of a specific method,
we omitted the variant during the performance evaluation
of that method.

Integrated variant-level and gene-level sources

We integrated variant-level and gene-level sources related
to splicing variants as in our previous Gene4Denovo study
(40). The integrated variant-level sources included the al-
lele frequency in different populations, splicing variant
predictive pathogenic scores and 47 predictive pathogenic
scores. The allele frequency databases included gnomAD
(41), ExAC (42), ESP6500 (43), 1000 Genomes Project (44),
Kaviar (45) and HRC (46). For the 18 integrated predicted
pathogenicity scores, 10 scores were generated, namely
those of MMSplice, MaxEntScan, GeneSplicer, ESRseq,
Spliceogen, SQUIRLS, KipoiSplice4, SPiCE, SPiCE MES
and SPiCE SSF that were based on a local computer,
and others were downloaded from corresponding web-
sites (Supplementary Table S1). We only provided pre-
diction score for SNVs. In addition to splicing variant-
predicted scores, we also provided the links to web-based
splicing prediction servers including NetGene2 (47), CRYP-
SKIP (48), EX-SKIP (49), ESEfinder (50) and SplicePort
(51). Moreover, to provide comprehensive variant informa-
tion, we integrated 47 predictive pathogenic scores (http:
//www.genemed.tech/spcards/analysis). We downloaded 46
of the 47 predictive pathogenic scores from dbNSFP v4
(23) and generated ReVe scores based on our previous
study (39).

We integrated gene-level sources related to splicing vari-
ants from NCBI Gene (52), Gene Ontology (53) and In-

Bio Map protein–protein interaction (54). Gene tolerance
scores were retrieved from RVIS (55), LoFmethod (56),
GDI (57), Episcore (58), Aggarwala (59), pLI (42) and
HIPred (60). In addition, we collected information about
gene-related diseases or phenotypes from OMIM, ClinVar,
HPO and MGI. Gene-related expression information was
collected from BrainSpan, GTEx and the Human Protein
Atlas, and information on drug–gene interactions was col-
lected from DGIdb.

Platform construction and interface

The online SPCards (http://www.genemed.tech/spcards)
was developed using JavaScript, PHP (Hypertext Prepro-
cessor) and Python on a Linux platform on a Nginx web
server. A front-and-back separation model was used. The
front-end was based on vue and used the UI Method-
Kit element, which supports all modern browsers across
platforms, including Microsoft Edge, Safari, FireFox and
Google Chrome. The back-end was based on Laravel, a
PHP web framework. SPCards was developed and sup-
ported by versatile browsing and searching functionalities.
All of the data are stored in the MySQL database. Users
can freely access the genetic data through this web interface.
The web interface of SPCards contains search, browse and
download modules.

RESULTS

Dataset of positive and negative splicing variants

Based on the splicing variant-related keyword search strat-
egy in PubMed, we primarily found 41 555 splicing-related
studies (Supplementary Figure S1). We further curated
each study based on the abstract or full articles and inte-
grated splicing variant-related databases. There are 48 890
splicing-related variants in SPCards, comprising 21 800 pos-
itive and 27 090 negative variants (Figure 1). A total of
21 800 positive splicing variants were identified in 3345
genes from 8025 studies, comprising 21 244 SNVs and 556
insertion/deletion variants (Table 1). The deepest splicing
variant, IVS1 + 36947C > T, created a pseudoexon in the
intron. There were 14 335 canonical splicing variants, made
up of 8168 and 6167 variants located in the splicing donor
and acceptor regions, respectively. The remaining 7465 vari-
ants were located in the non-canonical splice region. We
classified non-canonical splicing variants into four types:
donor splicing consensus region (−3 to +8, except +1 and
+2); other splicing regions near the donor; acceptor splicing
region (−50 to +2, except −1 and −2) including the splicing
consensus region, potential polypyrimidine tract and poten-
tial branch point; and other splicing regions near the accep-
tor. There were 2676, 1619, 2003 and 1167 non-canonical
splice variants mapped to the donor splicing consensus re-
gion, other splicing regions near the donor, acceptor splic-
ing region and other splicing regions near the acceptor,
respectively. Of the non-canonical splice variants, 93.62%
(6989/7465) were validated using assays including reverse
transcription–polymerase chain reaction (RT–PCR), mini-
gene assay, RNA-seq and multiplex functional assay of
splicing using Sort-seq (MFASS). Furthermore, we curated
27 090 assay-validated negative splicing variants, most of

http://www.genemed.tech/spcards/analysis
http://www.genemed.tech/spcards
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Figure 1. The workflow of SPCards.

Table 1. Summary of positive splicing variants in SPCards

Donor Acceptor

Method N-gene N-variant CSV
−3 to +8 except

CSV
Other splicing

variants CSV
−50 to +2

except CSV
Other splicing

variants

RT–PCR 1084 3669 1080 852 322 750 431 234
Minigene 364 1142 232 327 121 166 186 110
RNA-seq 176 2080 96 101 760 78 496 549
MFASS 479 1051 164 111 224 85 273 194
Experiment 1081 7736 3319 1024 144 2719 490 40
In silico analysis 2063 6122 3277 261 48 2369 127 40
Total 3345 21 800 8168 2676 1619 6167 2003 1167

RT–PCR, reverse transcription–polymerase chain reaction; MFASS, multiplex functional assay of splicing using Sort-seq; Experiment, the variants were
validated by experimental evidence including minigene assay, site-directed mutagenesis or patient-derived RNA sample analysis in the SQUIRLS database;
CSV, canonical splicing variants. As the validation method of variants in ClinVar was not available, we classified these variants as in silico analysis. −3
to +8 except CSV, the donor splicing consensus region except canonical splicing variants; −50 to +2 except CSV, the region including the donor splicing
consensus region, polypyrimidine tract and branch point except canonical splicing variants.

which were validated using MFASS, in 1700 genes (Supple-
mentary Table S2).

Benchmark selection for performance evaluation

To compare the performance of different pathogenic splic-
ing prediction methods, we used integrated positive splic-
ing variants as benchmark datasets. As the splicing variants
in SPCards overlapped with the training dataset of splic-
ing prediction methods, we excluded a large proportion of
splicing variants from the benchmark to perform an unbi-
ased evaluation of the splicing prediction methods (Supple-
mentary Table S3). First, we removed the in silico analy-
sis variants. Second, we only retained splicing variants pub-
lished from 2019 to 2021, which did not contain the training
datasets of developed splicing prediction methods, such as
the latest methods CADD-splice and SQUIRLS. A total of

3403 validated positive splicing variants were used for the
performance analysis.

Moreover, we source-validated negative splicing variants
as benign benchmark datasets for performance evaluation.
The number of negative splicing variants (27 090) was
significantly larger than that of positive splicing variants
(3403). To remove the potential bias of performance evalua-
tion among the different methods, we selected the 3403 neg-
ative splicing variants as benign benchmarks (Supplemen-
tary Table S4). First, we selected a more rigorous thresh-
old (delta percent spliced in < 0.01) for identifying splic-
ing variants using the MFASS method compared with that
of the primary study (delta percent spliced in < 0.5). Sec-
ond, we used the downsampling method, which randomly
selected 3403 variants from the retained 4669 negative splic-
ing variants, comprising 4262 and 407 variants validated us-
ing MFASS and other traditional methods, respectively.
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Table 2. Performance evaluation based on the SPCards splicing data

Methods
Positive

variant (%)
Negative

variant (%) PPV NPV Specificity FPR Sensitivity FNR Accuracy MCC AUC

CADD-splice 2998 (88.10) 3378 (99.27) 0.63 0.70 0.65 0.35 0.68 0.32 0.66 0.33 0.73
dbscSNV ADA 1492 (43.84) 446 (13.11) 0.95 0.66 0.83 0.17 0.87 0.13 0.86 0.65 0.92
dbscSNV RF 1492 (43.84) 446 (13.11) 0.94 0.58 0.83 0.17 0.82 0.18 0.82 0.59 0.89
dpsi max tissue 2900 (85.22) 3360 (98.74) 0.84 0.63 0.94 0.06 0.37 0.63 0.68 0.38 0.75
dpsi zscore 2900 (85.22) 3360 (98.74) 0.72 0.67 0.82 0.18 0.53 0.47 0.68 0.37 0.75
ESRseq 2995 (88.01) 3377 (99.24) 0.52 0.56 0.67 0.33 0.41 0.59 0.55 0.08 0.54
GeneSplicer 995 (29.24) 855 (25.12) 0.74 0.61 0.76 0.24 0.58 0.42 0.66 0.35 0.72
KipoiSplice4 2739 (80.49) 3253 (95.59) 0.89 0.71 0.94 0.06 0.53 0.47 0.76 0.53 0.72
MaxEntScan 2965 (87.13) 3377 (99.24) 0.57 0.68 0.52 0.48 0.72 0.28 0.62 0.25 0.63
MMsplice 2897 (85.13) 3377 (99.24) 0.97 0.63 0.99 0.01 0.32 0.68 0.68 0.43 0.71
regsnp 1773 (52.10) 1557 (45.75) 0.89 0.71 0.90 0.10 0.67 0.33 0.78 0.58 0.84
SPiCE 1622 (47.66) 459 (13.49) 0.92 0.68 0.70 0.30 0.91 0.09 0.86 0.60 0.90
SPiCE MES 1622 (47.66) 460 (13.51) 0.94 0.60 0.80 0.20 0.85 0.15 0.84 0.59 0.89
SPiCE SSF 1622 (47.66) 460 (13.51) 0.94 0.53 0.82 0.18 0.79 0.21 0.80 0.53 0.88
SpliceAI 1680 (49.37) 159 (4.67) 0.98 0.23 0.84 0.16 0.73 0.27 0.74 0.34 0.83
Spliceogen 2995 (88.01) 3377 (99.24) 0.83 0.66 0.91 0.09 0.48 0.52 0.71 0.44 0.72
Squirl 2995 (88.01) 3377 (99.24) 0.74 0.70 0.81 0.19 0.61 0.39 0.71 0.43 0.78
Synvep 373 (10.96) 585 (17.19) 0.45 0.67 0.56 0.44 0.56 0.44 0.56 0.12 0.59

SpliceAI, SpliceAI score > 0.1 was integrated into SPCards. The number of true-positive variants and false-positive variants in benchmark data was 3403,
respectively. PPV, positive predictive value; NPV, negative predictive value; FNR, false-negative rate; Sensitivity, true-positive rate; FPR, false-positive
rate; Specificity, true-negative rate; MCC, Mathew correlation coefficient; AUC, area under the curve. Values in bold are the top performances of predicted
methods.

Performance of splicing methods based on AUC

The prediction methods, including CADDsplice, ESRseq,
Spliceogen, Squirl, MaxEntScan, dpsi max tissue,
dpsi zscore and MMsplice, were available for positive
splicing variant-predicted values > 85% (Table 2; Sup-
plementary Table S3). SpliceAI is a genomic prediction
method. We integrated highly confident variants with
SpliceAI > 0.1 into SPCards and only detected scores in
49.37% of positive and 4.67% of negative splicing variants.
Using SpliceAI > 0.1, a significantly higher number of pos-
itive variants than negative variants was detected [Fisher’s
exact test, P = 3.37E-262, odds ratio (OR) = 10.56, con-
fidence interval (CI) = 8.91–12.59], indicating the ability
of SpliceAI to detect splicing variants. In addition, the
available splicing prediction values for KipoiSplice4 were
> 80%.

We evaluated the performances of these methods by
measuring the AUC scores and found that dbscSNV ADA
(AUC = 0.9154) and SPiCE (AUC = 0.9046) exhibited
AUC scores > 0.9 and showed the best performance com-
pared with other methods, followed by SPiCE MES
(AUC = 0.8887), dbscSNV RF (AUC = 0.887),
SPiCE SSF (AUC = 0.8813) and regsnp (AUC = 0.8368)
(Figure 2A; Supplementary Table S5). These six methods
focused on splicing region hotspots, such as the splicing
consensus region (Supplementary Table S3). The best per-
forming global genome prediction methods were SpliceAI
(AUC = 0.8332) and Squirls (AUC = 0.7819) (Figure 2A).
The four prediction methods GeneSplicer (AUC = 0.7178),
MaxEntScan (AUC = 0.6276), Synvep (AUC = 0.5905)
and ESRseq (AUC = 0.5436) exhibited the lowest power
to distinguish splicing variants (Figure 2A).

For the donor splicing consensus region (donor
−3 to +8), Kipoisplice (AUC = 0.934), regsnp
(AUC = 0.9293), dbscSNV ADA (AUC = 0.9107),

Spliceogen (AUC = 0.9096) and SPiCE (AUC = 0.9059)
exhibited AUC scores > 0.9 (Figure 2B; Supplementary
Table S5). Spliceogen was the best global genome predic-
tion method, followed by MMsplice (AUC = 0.8854). For
the acceptor splicing region (acceptor −50 to +2), only
dbscSNV ADA (AUC = 0.9071) exhibited AUC scores >
0.9, followed by SPiCE (AUC = 0.8724), dbscSNV RF
(AUC = 0.8721) and regsnp (AUC = 0.8584) (Figure 2C;
Supplementary Table S5). CADD-splice (AUC = 0.8571)
and SpliceAI (AUC = 0.8278) exhibited a high performance
in global genome prediction.

The splicing prediction methods exhibited a better per-
formance in the canonical splicing region (+1 and +2 of the
splicing donor site and −1 and −2 of the splicing acceptor
site) than other regions. As a larger proportion of bench-
mark variants were located in the canonical splicing region,
the AUC of most prediction methods was > 0.7. To eval-
uate the performance of these methods in non-canonical
splicing regions, we removed the canonical splicing vari-
ants. The predicted methods also exhibited better perfor-
mance in the donor region (−3 to +8), except for canon-
ical splicing (Supplementary Figure S2A), and the accep-
tor region (−50 to +2), except for canonical splicing (Sup-
plementary Figure S2C; Supplementary Table S5). How-
ever, these methods showed a significantly reduced perfor-
mance in other regions near both the donor and accep-
tor sites (Supplementary Figure S2B, Supplementary Fig-
ure S2D; Supplementary Table S5). Despite the weak power
of the predicted methods for detecting splicing variants
with a long distance to the splicing site, four methods, i.e.
SpliceAI (0.7539, 0.6853), dpsi max tissue (0.6014, 0.631),
dpsi zscore (0.5885, 0.6295) and Squirls (0.5814, 0.6955),
exhibited better AUC performance in the donor and accep-
tor regions, respectively (Supplementary Figure S2B, Sup-
plementary Figure S2D; Supplementary Table S5).
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Figure 2. Performance of splicing prediction methods within three regions based on benchmark data. We used integrated functionally validated splicing
variants reported from 2019 to 2021 in SPCards. (A) All splicing variants. (B) Donor −3 to +8, donor splicing consensus region, the variant three bases
upstream and eight bases downstream of the donor site. (C) Acceptor −50 to +2, the variants 50 bases upstream and two bases downstream of the acceptor
site including the acceptor splicing consensus region, potential polypyrimidine tract and potential branch point.

Performance of splicing methods based on the prediction
threshold

The prediction threshold was used to further evaluate the
performance of the splicing prediction methods. Eleven of
the methods had suggestive prediction thresholds and the
primary thresholds were used to perform the analysis (Sup-
plementary Table S6). For the other seven methods, we
used pROC to generate the best threshold with high sen-
sitivity and specificity, based on the benchmark dataset
(Supplementary Table S6). The evaluated performance of
the methods is summarized in Table 2. The PPVs ranged
from 0.45 to 0.98, and were > 0.9 in the seven methods
(SpliceAI, MMsplice, dbscSNV ADA, SPiCE MES, dbsc-
SNV RF, SPiCE SSF and SPiCE). The NPVs of the meth-
ods were generally lower than those of the PPVs, ranging
from 0.23 to 0.71, except for CADD-splice, MaxEntScan,
ESRseq and Synvep. Only four of the methods (regsnp,
KipoiSplice4, Squirl and CADD-splice) had an NPV >
0.7. Moreover, the specificities (1–FPR) and sensitivities (1–
FNR) were in the range of 0.52–0.99 and 0.32–0.91, re-
spectively. The specificities of 66.67% of the methods were
higher than their sensitivities, particularly for MMsplice
and dpsi max tissue. This suggests that the benign vari-
ants were actually pathogenic and that more moderate cut-
off values need to be used to distinguish splicing variants.
The accuracies of the five methods, dbscSNV ADA (0.86),
SPiCE (0.86), SPiCE MES (0.84), dbscSNV RF (0.82) and
SPiCE SSF (0.8), were > 0.8, and exhibited the highest per-
formances compared with the other methods. Furthermore,
dbscSNV ADA (0.65), SPiCE (0.60), SPiCE MES (0.59)
and dbscSNV RF (0.59) exhibited the highest MCC scores.

Although we selected a matched number of positive and
negative splicing variants to remove bias during the perfor-

mance evaluation, the available scores for each method were
also imbalanced between the positive and negative splic-
ing variants (Table 2). The numbers of positive and nega-
tive variants were significantly different for six methods. To
test whether this imbalance influenced the performance of
the splicing prediction methods, we used the downsampling
method to select matched variant numbers among the pos-
itive or negative variant datasets. We found that this imbal-
ance only influenced the PPV and NPV of six significantly
available score biased methods, i.e. dbscSNV ADA, dbsc-
SNV RF, SPiCE, SPiCE MES, SPiCE SSF and SpliceAI
(Supplementary Table S7). The performance of other com-
putational methods, including specificity, FPR, sensitivity,
FNR, accuracy and MCC, was almost consistent with that
of the primary evaluation (Table 2; Supplementary Table
S7). This indicated that the robustness of the evaluation was
not impacted by biased numbers of positive and negative
variants.

Owing to the large number of genetic studies focused
on cancer-related disorders, we tested whether the perfor-
mance of the splicing prediction methods was different be-
tween cancer- and non-cancer-related genes. We sourced
1172 cancer-related genes in the COSMIC (61,62) and On-
coKB (63) databases (Supplementary Table S8) and found
12.61% (858/6806) of cancer-related variants in bench-
mark. An evaluation of the splicing prediction methods
for cancer- and non-cancer-related genes revealed that the
performance was slightly higher for cancer-related genes
than for non-cancer-related genes. However, we did not
find any significant difference between the two types of
genes (Supplementary Table S9). This indicated that splic-
ing prediction methods are unbiased for different kind of
genes.
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Figure 3. Correlation and consistent prediction ratio among splicing prediction methods. We retained only variants that had prediction scores in both
methods for the correlation and consistent prediction ratio analysis. (A) Pearson’s correlation coefficients (R). (B) Consistent prediction ratio of binary
predictions between pairs of splicing methods. The threshold of the splicing prediction methods is shown in Supplementary Table S6.

Correlation and consistent prediction ratio of computational
methods

For the prediction methods, we calculated the Pearson’s
correlation coefficient between any two methods based on
benchmark variants. The scores of regsnp, SPiCE MES
and SPiCE SSF were negatively correlated with those of
the other methods (Figure 3A). To perform a correla-
tion evaluation, we selected the absolute Pearson’s correla-
tion coefficient for further analysis. Of the average corre-
lations 55.56% were strong (> 0.5), and SPiCE (0.61), db-
scSNV ADA (0.59), dbscSNV RF (0.59) and KipoiSplice4
(0.59) exhibited the highest Pearson’s correlation coeffi-
cients with other methods, followed by the global genome
prediction method Squirl (0.55) (Figure 3A; Supplementary
Table S10). Furthermore, 33.33% of the correlations were
medium (0.3–0.5). The synvep (0.132) and ESRseq (0.126)
scores were weakly correlated with those of the other meth-
ods (Supplementary Table S10).

We then compared the consistent prediction ratios of
the binary predictions with the prediction scores based
on benchmark variants (Figure 3B). The average agree-
ment ratios of 66.67% of methods were > 0.6; this was
particularly true for dbscSNV ADA (0.73), SPiCE (0.72),
SPiCE MES (0.71), dbscSNV RF (0.71) and regsnp (0.71).
However, both synvep (0.43) and ESRseq (0.40) exhibited
relatively lower consistent prediction ratios compared with
those of the other methods (Supplementary Table S11). To
provide a more detailed performance evaluation, we ex-
amined the prediction methods for positive and negative
variants (Supplementary Figure S3). For the positive splic-
ing variants, the prediction ratios of SPiCE (0.76), dbsc-
SNV ADA (0.75), SPiCE MES (0.73) and dbscSNV RF
(0.72) were > 0.7 and exhibited higher power in identify-
ing pathogenic variants (Supplementary Table S12). More-

over, the predicted power of the negative splicing vari-
ants exhibited slight differences compared with that of the
positive splicing variants. MMsplice (0.79), regsnp (0.77),
spliceogen (0.74), KipoiSplice4 (0.73) and dpsi max tissue
(0.73) showed higher consistent prediction ratios. SPiCE
(0.56), dbscSNV ADA (0.65), SPiCE MES (0.62) and
dbscSNV RF (0.65) exhibited lower consistent predic-
tion ratios for negative splicing variants (Supplementary
Table S13).

We further analyzed the consistent percentage of pre-
dictions for the prediction methods in the different splic-
ing regions. The methods exhibited a higher consistent per-
centage of predictions (> 0.5) in the donor splicing con-
sensus region [93.20% (726/779) for −3 to +8] and ac-
ceptor splicing region [48.10% (468/973) for −50 to +2]
for positive splicing variants (Supplementary Table S14).
When canonical variants were removed, the predicted meth-
ods exhibited a higher consistent percentage of predictions
(> 0.5) in the donor regions [84.28% (134/159) for −3
to +8 except canonical splicing region] but not acceptor
regions [30.58% (222/726) for −50 to +2 except canoni-
cal splicing region] for positive splicing variants (Supple-
mentary Table S14). We found higher consistent percent-
age of predictions for negative splicing variants in donor
regions [84.28%, (134/159) for −3 to +8 except canonical
splicing region] and acceptor regions [96.69%, (700/724) for
−3 to +8 except canonical splicing region] (Supplementary
Table S15). For the other splicing regions, the splicing pre-
diction methods exhibited significant differences in the pre-
dictions of positive and negative splicing variants, and most
variants in these region were defined as benign, indicat-
ing the incomplete performance of the predicted methods
for deep intronic sequence variation (Supplementary Tables
S14 and S15).
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Table 3. Integrated data sources in SPCards

Category Data source

Variation-level
Allele frequency gnomAD, ExAC, ESP6500, 1000 Genomes Project, Kaviar, HRC
Splicing prediction CADDsplice, SpliceAI, dpsi max tissue, dpsi zscore, dbscSNV ADA, dbscSNV RF,

MaxEntScan, GeneSplicer, ESRseq, Spliceogen, Squirl, regsnp, MMsplice, KipoiSplice4,
Synvep, SPiCE SSF, SPiCE MES, SPiCE

Non-synonymous prediction ReVe, SIFT, SIFT4G, Polyphen2 HDIV, Polyphen2 HVAR, LRT, MutationTaster,
MutationAssessor, FATHMM, PROVEAN, VEST4, MetaSVM, MetaLR, MetaRNN,
M-CAP, REVEL, MutPred, MVP, MPC, PrimateAI, DEOGEN2, BayesDel addAF,
BayesDel noAF, ClinPred, LIST-S2, Aloft, CADD coding, DANN,
fathmm-MKL coding pred, fathmm-XF coding, Eigen-raw coding, Eigen-PC-raw coding,
GenoCanyon score, integrated fitCons, GM12878 fitCons, H1-hESC fitCons,
HUVEC fitCons, LINSIGHT, GERP++ RS, phyloP100way vertebrate,
phyloP30way mammalian, phyloP17way primate, phastCons100way vertebrate,
phastCons30way mammalian, phastCons17way primate, SiPhy 29way logOdds,
bStatistic converted

Disease-related Gene4Denovo, ClinVar, InterVar, ICGC, COSMIC, NCI
Gene-level
Basic information UniProtKB, UniProt, Gene Ontology, InterPro, InBio Map, BioSystems
Genic intolerance RVIS, LoFtool, GDI, Episcore, heptanucleotide context intolerance score, pLI
Disease-related OMIM, MGI, HPO
Gene expression BrainSpan, GTEx, The Human Protein Atlas
Target drug DGIdb

gnomAD, genome aggregation database; EXAC, The Exome Aggregation Consortium; ESP6500, NHLBI GO Exome Sequencing Project; Kaviar, Kaviar
Genomic Variant Database; HRC, haplotype reference consortium; RVIS, Residual Variation Intolerance Score; GDI, Human Gene Damage Index; pLI,
the probability of being loss-of-function intolerant; OMIM, online Mendelian inheritance in man; MGI, mouse genome informatics; ICGC, International
Cancer Genome Consortium; COSMIC, catalogue of somatic mutations in cancer; NCI, NCI-60 Human Tumor Cell Lines Screen; HPO, human phenotype
ontology; GTEx, Genotype-Tissue Expression; DGIdb, The Drug Gene Interaction Database.

Integrated variant-level and gene-level sources in SPCards

To accelerate the interpretation of potential splicing vari-
ants, we integrated the predicted splicing variant scores
into SPCards. Moreover, we integrated other genomic data
sources to provide comprehensive variant-level and gene-
level annotation information, including (i) allele frequency
in gnomAD (41), ExAC (42), ESP6500 (43), 1000 Genomes
Project (44), Kaviar (45) and HRC (46); (ii) 47 non-
synonymous prediction methods; (iii) disease-related vari-
ants in OMIM, MGI, HPO, Gene4Denovo, ClinVar, Inter-
Var, ICGC and NCI; (iv) gene basic information in UniPro-
tKB, UniProt, Gene Ontology, InterPro, InBio Map and
BioSystems; (v) genic intolerance in RVIS, LoFmethod,
GDI, Episcore, heptanucleotide context intolerance score
and pLI; (vi) disease-related genes in OMIM, MGI and
HPO; (vii) gene expression in BrainSpan, GTEx and The
Human Protein Atlas; and (viii) drug–gene interactions in
DGIdb (Table 3). Furthermore, SPCards provides a con-
venient interface for users to freely analyze their next-
generation sequencing data to screen for potential splic-
ing variants using integrated splicing prediction methods
(http://www.genemed.tech/spcards).

Search and analysis sections in SPCards

SPCards provides a batch search function that recognizes
gene symbols, genomic regions, transcripts, variants, co-
ordinates and distances to splicing junctions (http://www.
genemed.tech/spcards/search). SPCards also provides users
with a function to perform comprehensive analyses of
trio- and non-trio-based genetic data (http://genemed.tech/
spcards/analysis). Trio-based analysis can be used to iden-

tify de novo mutations, homozygous variants, compound
heterozygous variants and X-linked variants. Non-trio-
based analysis can be used to identify co-segregated rare
deleterious variants. Users can define the quality of the vari-
ant, the percentage of positive splicing prediction using 18
methods, the result of 47 pathogenic prediction methods,
clinically related information and allele frequency in the
general population. The results are sent to users via email.
Moreover, users can browse the splicing variants in SPCards
(http://www.genemed.tech/spcards/browse).

DISCUSSION

With the rapid development of next-generation sequencing
technology resulting in an explosion of genetic data, an in-
creasing number of human disease-associated splicing vari-
ants have been identified. Approximately 15–60% of rare
pathogenic variants are located in cis-acting regulatory ele-
ments (11–14), which might affect the alternative splicing
process (15). However, it is challenging to find potential
splicing variants owing to obscure mechanisms and limited
accurate prediction methods. Here, we curated almost 50
000 positive and negative variants using 18 prediction meth-
ods to provide comprehensive knowledge of splicing vari-
ants in SPCards. We also compared the performance of dif-
ferent scores using benchmark datasets of integrated splic-
ing variants.

There were 21 800 positive splicing variants, of which
71.92% (15 678/21 800) were validated using various meth-
ods. RT–PCR and RNA-seq were the most commonly used
validation methods, followed by minigene assay (Table 1).
Previous studies have reported inconsistent results using
minigene assay and RT–PCR, which might suggest tissue-

http://www.genemed.tech/spcards
http://www.genemed.tech/spcards/search
http://genemed.tech/spcards/analysis
http://www.genemed.tech/spcards/browse
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specific RNA processing (64). In addition, the use of mul-
tiple validation methods is necessary for mutual authen-
tication to eliminate the potential limitations of a specific
method.

In this study, we analyzed the performance of prediction
methods using nine criteria based on integrated validated
negative and positive splicing variants. To remove potential
bias during performance evaluation, we used three strate-
gies. First, we removed the in silico analysis variants. Sec-
ond, we excluded variants published before 2019 which con-
tained the training datasets of the 18 developed splicing
prediction methods. Third, as in a previous performance
analysis (39,65), we selected matched numbers of positive
and negative splicing variants. Although the matched avail-
able positive and negative splicing variants of specific meth-
ods were also used to explore performance, the only slight
change indicated the insusceptibility of these datasets.

According to the benchmark splicing variants, most
methods exhibited a high AUC, indicating better and more
robust performance in an independently validated dataset.
We further classified the splice variants into six types.
We observed convergence and divergence of the predicted
method performance between the donor and acceptor re-
gions. First, the predicted methods performed better for
variants in the donor than in the acceptor region, which
might be due to the relatively close distance of the donor
region (−3 to +8) compared with that of the acceptor splic-
ing region (−50 to +2). Second, for the donor consistent
region (−3 to +8) and acceptor splicing region (−50 to
+2), dbscSNV ADA and SPiCE exhibited the best perfor-
mance, but CADD-splice also showed a better performance
in the acceptor splicing region. Third, when the canonical
splicing variants were removed, although dbscSNV ADA
and SPiCE also exhibited a better performance, the other
predicted methods, including regsnp, KipoiSplice4, MM-
splice and Spliceogen, showed a significantly increased per-
formance. Fourth, for the other regions, the predicted meth-
ods that cover a relatively large region of the genome or
the whole genome, including SpliceAI, dpsi max tissue,
dpsi zscore and Squirl, showed the best performance. These
results indicate that the weight coefficient can be applied to
predict variants in different regions.

We found that 66.67% of the methods exhibited higher
specificity than sensitivity, particularly MMsplice and
dpsi max tissue. This suggests that the benign variants
were actually pathogenic and that clinicians and geneti-
cists should reanalyze the negative genetic data of diseases
with high heritability. Furthermore, we provided a sugges-
tive threshold for each predicted method based on the splic-
ing variant benchmark dataset (Supplementary Table S6).
The thresholds of dpsi max tissue and MMsplice were sig-
nificantly affected by the benchmark, while another inde-
pendent benchmark was necessary to further validate these
suggestive thresholds.

For the correlation and agreement ratio analyses, the
splicing prediction methods exhibited a close relationship
with each other. Of the average correlations, 55.56% were
strong (> 0.5), including those among the SPiCE (0.61), db-
scSNV ADA (0.59), dbscSNV RF (0.59) and KipoiSplice4
(0.59) scores. However, the scores of Synvep and ESRseq

were poorly correlated with those of other splicing predic-
tion methods, which may indicate different features in the
training model. A previous study also showed a poor cor-
relation of the Synvep score with other synonymous SNV
scores, such as those of CADD (38). The average agreement
ratios of 66.67% of the methods were > 0.6, particularly
those of dbscSNV ADA (0.73), SPiCE (0.72), SPiCE MES
(0.71), dbscSNV RF (0.71) and regsnp (0.71). All high-
performance prediction methods only focused on the splic-
ing variant hotspot region, which contains a large number
of training datasets. However, decoding variants in other re-
gions, although challenging, is urgently needed. For exam-
ple, deep intronic sequence variation results in pseudogenes
(66).

The comprehensive database was significantly helpful in
understanding pathogenic variants. dbNSFP (23) provides
> 40 types of non-synonymous and splice site SNV pre-
dictors, which are popular in the field of bioinformatics
and genetics and used to identify pathogenic variants (67).
We developed a comprehensive splicing platform that of-
fers more prediction methods than Alamut, dbNSFP (23)
and VannoPortal (68). A recent study reported the devel-
opment of ASpedia, which focuses on human alternative
splicing (69). ASpedia identified alternative splicing events
rather than splicing genetic variants of specific genes at the
mRNA level by comparing the different known isoforms in
Ensembl and RefSeq. The difference is that SPCards cata-
logued all the identified splicing genetic variants associated
with human diseases at the DNA level from thousands of
published studies. In addition, ASpedia requires alterna-
tive splicing events as input to retrieve overlapping func-
tional information around alternative splicing regions, such
as potential microRNA-binding sites, repeat sequences and
protein domains. SPCards can evaluate whether a genomic
variant causes an abnormal splicing process by using dif-
ferent integrated splicing prediction scores. Therefore, the
two platforms do not compete with each other, instead they
complement each other.

This study has some limitations. First, owing to the lack
of clearly suggested thresholds of some prediction meth-
ods, we generated the cut-off value with the best balance
of sensitivity and specificity using the pROC package based
on benchmark splicing variants, which might result in bias
of performance evaluation. Second, we integrated splicing
variants based on keywords in the title and abstract, which
might have missed many variants only present in full arti-
cles of a large cohort of genetic studies that did not focus
on splicing variants. Third, despite curating the most com-
prehensive validated splicing variant dataset, we cannot re-
move all the bias among splicing prediction methods. Inde-
pendent splicing variants are necessary to further validate
the performance of these methods.

To date, SPCards is one of the largest and most com-
prehensive platforms enabling researchers without prior
knowledge of bioinformatics to search for and analyze splic-
ing variants of genes of interest using multiple relevant pa-
rameters for future functional research. This platform is
suitable for high-throughput genetic identification of splic-
ing variants, particularly those located in non-canonical
splicing regions.
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