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Abstract: Background: Tanacetum vulgare L. (Asteraceae) is a perennial herb that has been used
to treat multiple ailments. Regional variability of the chemical composition of T. vulgare essential
oils is well-known. Despite these regional chemotypes, most relevant studies did not analyze the
complete chemical composition of the T. vulgare essential oil and its constituents in relation to
their biological activities. Here, we assess the anti-inflammatory, antioxidant, antibacterial, and
cytotoxic activities of T. vulgare collected from northern Quebec (Saguenay-Lac-St-Jean), Canada.
Methods: Essential oil was extracted from plants by steam distillation and analyzed using GC-FID.
Biological activities of essential oil and its main constituents were evaluated in vitro. Results:
We identified the major compounds as camphor, borneol, and 1,8-cineole. The oil possesses
anti-inflammatory activity inhibiting NO production. It also inhibits intracellular DCFH oxidation
induced by tert-butylhydroperoxide. Anti-inflammatory activity of essential oil appears driven
mainly by α-humulene while antioxidant activity is provided by α-pinene and caryophyllene oxide.
Essential oil from T vulgare was active against both Escherichia coli and Staphylococcus aureus with
camphor and caryophyllene oxide responsible for antibacterial activity. Finally, T. vulgare essential oil
was slightly cytotoxic against the human healthy cell line WS1 while α-humulene and caryophyllene
oxide were moderately cytotoxic against A-549, DLD-1, and WS1. Conclusion: We report, for the first
time, links between the specific compounds found in T. vulgare essential oil and anti-inflammatory,
antioxidant, antibacterial, and cytotoxic activities. T. vulgare essential oil possesses interesting
biological properties.
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1. Introduction

Tanacetum vulgare L. is a perennial herb of the Asteraceae family. This plant grows widely
in Europe and Asia. Introduced into North America in the 18th century, it is well adapted to
northern climates [1]. Traditionally, T. vulgare has been used as an anthelmintic, tonic, emmenagogue,
antihypertensive, carminative, antispasmodic, antidiabetic, diuretic, and an anti-inflammatory
compound [2,3]. Most alcohol extracts of T. vulgare are reported to have biological effects including
anti-inflammatory, antioxidant, and antibacterial properties. Indeed, studies on rats and mice [4,5]
have found T. vulgare extracts to have anti-inflammatory properties. Flavonoids present in the plant
could be, in part, responsible for these biological effects [5,6]. Shinella et al. demonstrated that
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parthenolide was the main in vivo anti-inflammatory substance in T. vulgare [5]. Methanol extracts
from T. vulgare showed antioxidant activity, probably due to the presence of phenolic compounds [7].
The antibacterial properties of ethanolic extracts have also been reported in studies using Escherichia coli
and Staphylococcus aureus [8,9].

Regional variability of the chemical composition of T. vulgare essential oils is well-known and
many essential oil chemotypes have been reported in the literature [10–21]. For example, T. vulgare
essential oil chemotypes from Hungary and Argentina are mainly composed of β-thujone (72.4%
and 91.65%, respectively) [15,20]. However, T. vulgare essential oil chemotypes from Finland and
Lithuania [10,12] had, respectively, artemisia ketone (55.08% to 81.36%) and 1,8-cineole (3.6% to 39.7%)
as the main constituents. Kumar et al. [22] have thoroughly reviewed this chemotype variability of
Tanacetum. Despite the many regional chemotypes, many studies of the biological effects of T. vulgare
essential oils did not analyze the complete chemical composition of the oils nor its constituents in
relation to their biological properties.

In our study, the essential oil of T. vulgare, collected from an area in northern Quebec
(Saguenay-Lac-St-Jean, Chicoutimi, QC, Canada), was extracted by steam distillation and analyzed
using GC-FID (Agilent Technologies, Santa Clara, CA, USA). We assessed the essential oils and its
constituents for anti-inflammatory, antioxidant, antibacterial, and cytotoxic activities.

2. Experimental Section

2.1. Chemicals

We used standard compounds for GC analyses and biological testing from Sigma-Aldrich
(St. Louis, MO, USA) (1,8-cineole, bornyl acetate, α-terpinene, β-pinene, α-pinene, γ-terpinene,
ρ-cymene, camphene, camphor, caryophyllene oxide, limonene, terpinene-4-ol, terpinolene), Fluka
(Fluka Chemie GmbH, Buchs, Switzerland) (α-humulene), and Takasago (Takasago International
Corporation, Tokyo, Japan) (β-caryophyllene).

2.2. Plant Material and Extraction of Essential Oil

The aerial portions of T. vulgare were collected in July 2014 in Chicoutimi, Quebec, QC, Canada.
Voucher specimen no. QFA0610840 has been filed at the Louis-Marie herbarium of Laval University,
Quebec, QC, Canada. Essential oil was obtained from freshly harvested aerial parts by industrial steam
distillation over a 3-h period (Groupe BoréaRessources, Ferland-Boileau, QC, Canada). The essential
oil extraction yields depended on the total amount of the raw material. The extracted essential oil was
then stored in the dark at a temperature of 4 ◦C.

2.3. GC-MS Analysis

All chromatographic analyses were run on an Agilent 6890N GC (Agilent Technologies,
Santa Clara, CA, USA) equipped with a non-polar DB-5 column (Agilent Technologies, Santa Clara, CA,
USA) and a polar SolGel-Wax column (30 m × 0.25 mm × 0.25 mm) (Agilent Technologies, Santa Clara,
CA, USA) as well as two FID detectors (Agilent Technologies, Santa Clara, CA, USA). The oils were
injected in an undiluted (0.1 µL injection volume, split 1:235) and undried state. The temperature
program was 40 ◦C for 2 min, 2 ◦C·min−1 up to 210 ◦C, and then 210 ◦C for 13 min. Samples were also
injected on an Agilent 7890A GC (Agilent Technologies, Santa Clara, CA, USA) coupled to an Agilent
5975C InertXL EI/CI mass spectrometer (Agilent Technologies, Santa Clara, CA, USA), equipped
with a DB-5MS column (Agilent Technologies, Santa Clara, CA, USA) using the same temperature
program as above and a split of 1:1000. Compounds were identified from their retention indexes as
calculated from even-numbered C8 to C36 alkane standards and/or from MS databases NIST08, HPCH
2205 and custom libraries built from pure compounds (Laboratoire LASEVE, UQAC, QC, Canada).
Quantification was derived from the FID detector response on the DB-5 column without any correction
factor. All standards were co-injected to validate the identification.
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2.4. Cell Culture

Human skin fibroblasts WS1 (ATCC CRL-1502), human lung carcinoma A-549 (ATCC CCL-185),
human colon adenocarcinoma DLD-1 (ATCC CCL-221), and murine macrophage RAW 264.7
(ATCC TIB-71) were obtained from the American Type Culture Collection (Manassas, VA, USA).
The human keratinocytes HaCaT cell line was obtained from Dr. Mammoud Rouhabia (Laval University,
Québec, QC, Canada). Cells were grown in a humidified atmosphere at 37 ◦C in 5% CO2, in Dulbecco’s
Minimum Essential Medium supplemented with 10% fetal calf serum (Hyclone, Logan, UT, USA),
1 × solution of sodium pyruvate, 1 × vitamins, 1 × non-essential amino acids, 100 IU of penicillin and
100 µg·mL−1 streptomycin (Cellgro®, Mediatech, Manassas, VA, USA).

2.5. Measurement of Anti-Inflammatory Activity

We evaluated the inhibition NO production by T. vulgare essential oil and compounds as described
by Legault et al. [23]. Control L-NAME was used as positive control. Murine macrophage RAW
264.7 cells were incubated with essential oil or dissolved compounds in DMSO and then stimulated
with 100 ng·mL−1 LPS and incubated at 37 ◦C. After 24 h, we collected the cell-free supernatants and
immediately determined the NO concentration using the Griess reaction. We read the absorbance
at 540 nm using an automated Varioskan Ascent plate reader (Labsystems, Milford, MA, USA), and
quantified the presence of nitrite by comparing with a NaNO2 standard curve.

2.6. Evaluation of Antioxidant Activity Using Cell-Based Assays

Antioxidant activity was evaluated using the DCFH-DA assay as described by Girard-Lalancette et al. [24].
To assess antioxidant activity, we incubated the human skin fibroblasts WS1 for 1 h with a growing
concentration of essential oil or dissolved compounds in DMSO. We then added 100 µL of 200 µM
tert-butylhydroperoxide and immediately measured fluorescence as well as again after 90 min later.
Measurements were performed on an automated plate reader (Fluoroskan Ascent FL, Labsystems,
Milford, MA, USA) using an excitation wavelength of 485 nm and an emission wavelength of
530 nm. Antioxidant activity was expressed as the concentration of extract inhibiting 50% (IC50) of
DCFH oxidation.

2.7. Evaluation of Antibacterial Activity

We tested the antibacterial activities of T. vulgare essential oil and compounds against
gram-negative Escherichia coli (ATCC bacteria 25922) and gram-positive Staphylococcus aureus (ATCC
bacteria 25923) using the antibacterial hydrophobic assay as described by Côté et al. [25]. This new
method was developed and used in this work as classical methods including disc diffusion and
microdilution assays are sometimes inefficient for testing a matrix or compounds of a hydrophobic
nature. Briefly, after microorganisms passed 16–18 h at 37 ◦C in a nutrient broth base (Difco),
we transferred 20 µL methanol containing growing concentrations of essential oil and compounds
(3.1 to 200 µg·mL−1) onto nutrient agar of 96-well plates. We then added bacterial strains having
a concentration of 5 × 103 colony forming units (CFU) per mL of nutrient broth. Bacterial suspension
without treatment was used as negative control and bacterial suspension plus solvent was tested in
parallel to demonstrate the absence of solvent toxicity. The blank consisted of culture medium only
and was subtracted from all subsequent measurements of every other well. The 96-well plates were
then incubated at 37 ◦C for 5 h to foster bacterial growth. We then added 100 µL of resazurin sodium
salt solution having a concentration of 50 µg·mL−1 (Sigma R-2127, St-Louis, MO, USA) to each well.
Fluorescence was read on an automated Fluoroskan Ascent FLTM plate reader (Labsystems, Milford,
MA, USA) after two hours for S. aureus and three hours for E. coli. The IC50 was determined as the
lowest concentration resulting in 50% inhibition of bacterial growth.
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2.8. Cytotoxic Assays

We plated in 96-well microplates—each containing a 100 µL culture medium—exponentially
growing cells of human skin fibroblasts WS1, human HaCaT keratinocytes, human lung carcinoma
A-549, and human colon adenocarcinoma DLD-1 at a density of 5 × 103 cells per well (Costar,
Corning Inc., Lowell, MA, USA). The cells were allowed to adhere for 16 h before treatment. We then
treated cells with T. vulgare essential oil or dissolved compounds in DMSO. The final concentration
of DMSO in the culture medium was 0.5% (v/v) to avoid solvent toxicity. After 48 h, we assessed the
cytotoxicity using the resazurin reduction test [26]. Fluorescence was measured on an automated
Fluoroskan Ascent FLTM plate reader (Labsystems, Milford, MA, USA) using an excitation wavelength
of 530 nm and an emission wavelength of 590 nm. Cytotoxicity was expressed as the concentration
that inhibited cell growth by 50% (IC50).

3. Results and Discussion

The essential oil of T. vulgare obtained by steam distillation method was yellow with a distinct
odor. The extraction yield obtained after 3 h was 0.23% (w/w). The refraction index was 1.4797, and the
density measured using pycnometer was 0.92396 g·mL−1. Table 1 presents the chemical composition
of the essential oil as determined by GC-FID analysis. The oil was mainly comprised of oxygenated
monoterpenes such as camphor (30.48%), borneol (14.80%), and 1,8-cineole (10.80%). The essential oil
also contained camphene (7.29%), bornyl acetate (5.53%), and α-pinene (4.43%). Our results confirm
the findings of Collin et al. [17] for T. vulgare essential oil from northern Quebec.

Table 1. Chemical composition of T. vulgare essential oil from northern Quebec, Canada.

RI DB-5 1 RI S-Wax 2 Identified Compounds Relative CONCENTRATION (%)

903 991 Tricyclene 0.11
911 1010 α-Thujene 0.58
917 1006 α-Pinene 4.43
933 1035 Camphene 7.29
962 1085 Sabinene 2.02
965 1069 β-Pinene 2.51
982 1160 dehydro-1,8-Cineole 0.23

1011 1148 α-Terpinene 0.09
1019 1242 ρ-Cymene 1.20
1023 1172 Limonene 0.16 2

1025 1181 1,8-Cineole 10.80 2

1053 1222 γ-Terpinene 0.29
1061 1443 cis-Sabinene hydrate 0.11
1082 1254 Terpinolene 0.09
1096 1405 Filifolone 0.15
1100 1531 Linalol 0.38
1102 1386 α-Thujone 0.08
1109 1405 β-Thujone 3.66
1117 1468 Chrysanthenone 3.76
1132 1614 trans-Pinocarveol 0.64
1136 1471 Camphor 30.48
1153 1522 Pinocarvone 0.27
1160 1664 Borneol 14.80
1171 1570 Terpinen-4-ol 0.81
1176 1601 Thuj-3-en-10-al 0.45
1185 1667 α-Terpineol 0.69
1187 1579 Myrtenal 0.11
1190 1752 Myrtenol 0.09
1216 1799 trans-Carveol 0.10
1257 1539 cis-Chrysanthenyl acetate 0.10
1282 1545 Bornyl acetate 5.53
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Table 1. Cont.

RI DB-5 1 RI S-Wax 2 Identified Compounds Relative CONCENTRATION (%)

1352 2113 Eugenol 0.16
1370 1648 Isobornyl propionate 0.75
1391 1880 cis-Jasmone 0.08
1411 1556 β-Caryophyllene 0.09
1446 1629 α-Humulene 0.21
1475 1667 Germacrene D 1.13
1482 1674 β-Selinene 0.12
1491 1690 Bicyclogermacrene 0.16
1496 1698 α-Muurolene <−Muuro
1505 1701 β-Bisabolene 0.09
1499 1735 Germacrene A 0.09
1503 1721 δ-Amorphene 0.17
1509 1719 γ-Cadinene (1513) 0.15
1519 1742 β-Sesquiphellandrene 0.17
1522 1728 δ-Cadinene 0.63
1536 1865 α-Calacorene 0.19
1573 1922 Caryophyllene oxide 1.13
1593 1976 Ledol 0.65
1597 1970 Rosifoliol 0.07
1622 2015 1-epi-Cubenol 0.05
1624 2124 γ-Eudesmol 0.11
1631 2138 τ-Muurolol 0.66
1635 2131 τ-Cadinol 0.19
1641 2171 β-Eudesmol <−Eudes
1647 2178 α-Cadinol 0.05
1663 2044 Valeranone 0.07
1713 1880 Pentadecanal <entade

Total 99.23
1 RI: Retention indices were obtained with a DB-5 column; 2 RI: Retention indices were obtained with
a SolGel-Wax column.

We evaluated the biological properties of T. vulgare essential oil, including anti-inflammatory,
antioxidant, antibiotic, and cytotoxic effects, in vitro using cellular models. Our results for
anti-inflammatory activity (Table 2), showed that the T. vulgare essential oil inhibited NO production
(induced by LPS) with an IC50 of 72 µg·mL−1. Evaluation of the anti-inflammatory properties of the
main compounds present in the oil showed that the most active compound was α-humulene with an
IC50 of 15 µg·mL−1 (Table 2). Fernandes et al. [27] reported that α-humulene reduced rat paw edema
that had been induced by carrageenan. It also inhibited COX-2 and iNOS expression. Moreover, the
authors concluded that α-humulene might represent an important compound for the management
and/or treatment of inflammatory diseases [27]. Other compounds, including α-terpinene, α-pinene,
and β-pinene were also effective with an IC50 ranging from 30 to 46 µg·mL−1 while caryophyllene
oxide also inhibited NO production induced by LPS with an IC50 of 183 µg·mL−1. In a previous
study, α-pinene was shown to inhibit NF-κB and JNK activation as well as the expression of iNOS [28].
The anti-inflammatory properties of β-pinene and α-terpinene have also been reported [29,30] as has
caryophyllene oxide in vivo on mice models [31].

The essential oil of T. vulgare demonstrated antioxidant activity by significantly inhibiting
the oxidation of DCFH induced by tert-butylhydroperoxide with an IC50 of 51 µg·mL−1 (Table 2).
Using in vitro methods including DPPH, ABTS, and FRAP assays, Shaparov et al. [32] also reported
a moderate level of antioxidant activity of T. vulgare essential oil. Unfortunately, the chemical
composition of the oil was not analyzed and the compounds responsible for the activity were not
identified. The antioxidant activity of essential oils is often attributed to terpenoids such as carvacrol,
thymol, and eugenol [33]. However, our results for T. vulgare essential oil showed two compounds,
α-pinene and caryophyllene oxide, to be particularly effective having a respective IC50 of 3.4 and
6.2 µg·mL−1. A moderate level of antioxidant activity for α-pinene, based on a DPPH assay, had been
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previously reported by Dai et al. [34]. However, to the best of our knowledge, this is the first time the
antioxidant activity of caryophyllene oxide has been reported.

Table 2. Anti-inflammation, antioxidant, antibacterial, and cytotoxic activities of T. vulgare essential oil
and its main constituents

Compounds Anti-Inflammation
IC50 (µg·mL−1)

Antioxidant
IC50 (µg·mL−1)

Antibacterial IC50
(µg·mL−1)

Cytotoxicity IC50
(µg·mL−1)

E. coli S. aureus A549 DLD1 WS1

Essential oil 72 ± 9 51 ± 11 241 ± 13 59 ± 5 232 ± 51 105 ± 18 292 ± 17
1,8-Cineole >200 >200 >200 >200 >200 >200 >200
α-Humulene 15 ± 2 >200 >200 >200 28 ± 1 43 ± 3 24 ± 3
α-Pinene 30 ± 4 3.4 ± 0.2 nd nd 35 ± 6 58 ±18 57 ± 4

α-Terpinene 46 ± 4 >200 >200 >200 63 ± 10 73 ± 7 53 ± 12
β-Caryophyllene >200 >200 >200 >200 55 ± 5 97 ± 6 59 ± 7

β-Pinene 46 ± 9 >200 >200 >200 43 ± 4 49.4 ± 0.3 29 ± 14
γ-Terpinene >200 >200 >200 50 ± 9 112 ± 15 >200 82 ± 15
p-Cymene >200 >200 >200 >200 >200 >200 >200

Borneol >200 >200 >200 >200 >200 >200 >200
Bornyl acetate >200 >200 >200 >200 >200 >200 >200

Camphene >200 >200 >200 >200 72 ± 2 75 ± 5 49 ± 1
Camphor >200 >200 22 ± 1 26 ± 3 >200 >200 >200

Caryophyllene oxide 183 ± 15 6.2 ± 0.5 97 ± 2 10.4 ± 0.9 36 ± 2 43 ± 3 50 ± 4
Limonene >200 >200 >200 >200 71 ± 6 31 ± 3 53 ± 12

Terpinen-4-ol >200 >200 >200 >200 >200 >200 >200
Terpinolene >200 >200 >200 >200 >200 >200 >200

nd: not determined; L-NAME (1 mM), used as an anti-inflammatory positive control, produced an inhibition of
NO production of 64.1%; Quercetin, used as an antioxidant positive control, had an IC50 of 0.043 ± 0.002 µg·mL−1;
Gentamycin and chloramphenicol were used as antibiotic positive controls. Gentamycin had an MIC90 of
0.9 ± 0.2 µg·mL−1 for E. coli and 0.0050 ± 0.00005 µg·mL−1 for S. aureus. Chloramphenicol had an MIC90 of
0.9 ± 0.1 µg·mL−1 for E. coli and 0.73 ± 0.03 µg·mL−1 for S. aureus; Etoposide, used as a cytotoxic positive
control, had an IC50 of 2.3 ± 0.2 µM, 2.8 ± 0.4 µM and 19 ± 3 µM for A-549, DLD-1, and WS1, respectively;
All the experiments were carried out in triplicate and presented results are representative of at least three
different experiments.

Numerous Tanacetum species produce essential oils that are known to have antibacterial activity
including T. balsamita, T. polycephalum, T. parthenium, T. longifolium, and T. cilicicum [35–37]. Antibacterial
activity of T. vulgare from Roumania [9] and Slovakia [38] were also reported against gram-positive
bacterial strains using the disc diffusion method. Moreover, T. vulgare essential oil from Tajikistan was
found to be weakly effective against E. coli and MRSA [32]. In our study, we used a new antibiotic
assay developed to test hydrophobic compounds as described in the Material and Methods section [25].
The results, presented in Table 2, show that T. vulgare essential oil was effective against S. aureus and
E. coli with an IC50 of 59 µg·mL−1 and 241 µg·mL−1, respectively. We also tested the antibacterial
activity of the main constituents of T. vulgare essential oil against E. coli and S. aureus. Camphor
was active against both bacterial strains having an IC50 ranging from 22 to 26 µg·mL−1. Moreover,
caryophyllene oxide and γ-terpinene were also active against S. aureus having a respective IC50 of
10.4 µg·mL−1 and 50 µg·mL−1. The antibacterial activity of camphor, caryophyllene oxide, and
γ-terpinene has been previously reported in the literature [39,40] although the results are sometimes
contradictory. For example, Kotan et al. [41] found camphor to be ineffective as an antibacterial
compound. Our use of a new method that is better suited to hydrophobic matrices and compounds [25]
may explain the differences in the study outcomes.

We assessed the cytotoxic activity of T. vulgare essential oil and its main compounds against
human lung carcinoma A-549, colon adenocarcinoma DLD-1, human keratinocytes HaCaT, and healthy
WS1 cell lines. T. vulgare essential oil was slightly cytotoxic against A-549 and WS1 with an IC50 higher
than 200 µg·mL−1 (Table 2). Essential oil was also slightly cytotoxic against human keratinocytes
HaCaT with an IC50 of 199 µg·mL−1. Interestingly, DLD-1 (colon adenocarcinoma) was more sensitive
to T. vulgare essential oil than other cell lines, having an IC50 of 105 µg·mL−1. To the best of our
knowledge, no studies have previously reported the cytotoxicity of T. vulgare essential oil against
cancer cell lines. The major constituents of camphor, borneol, and 1,8-cineole, were all inactive with an
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IC50 > 200 µg·mL−1. However, some minor compounds in the oil, including α-pinene, α-humulene,
α-terpinene, β-caryophyllene, β-pinene, γ-terpinene, camphene, caryophyllene oxide, and limonene
possessed a moderate cytotoxicity against all cell lines, including the tested cancer cell lines, with an
IC50 ranging from 28 to 112 µg·mL−1. The cytotoxicity of these compounds against various cancer cell
lines has also been previously reported [42–46].

4. Conclusions

Analysis of the chemical composition of T. vulgare essential oil from northern Quebec, QC, Canada,
demonstrated that it was mainly comprised of oxygenated monoterpene such as camphor, borneol, and
1,8-cineole. The essential oil inhibited NO production (stimulated by LPS and induced by RAW 264.7).
The compound α-humulene was, in part, responsible for this anti-inflammatory effect. The antioxidant
activity of the essential oil was, in part, due to α-pinene and caryophyllene oxide. Caryophyllene oxide
(as well as camphor) was also responsible for antibiotic activity. Finally, T. vulgare essential oil inhibited
the growth of colorectal cancer cells. In conclusion, T. vulgare essential oil possesses interesting
biological properties. This study reports, for the first time, the links between the compounds found
in T. vulgare essential oil and anti-inflammatory, antioxidant, antibacterial, and cytotoxic activities.
Additional investigations of T. vulgare should be carried out for its potential use for cosmetic or
pharmaceutical purposes.
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