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Abstract

Background: Triple‐negative breast cancer (TNBC) displays high heteroge-

neity. The majority of TNBC cases are characterized by high Ki‐67 expression.

TNBC with low Ki‐67 expression accounts for only a small fraction of cases

and has been relatively less studied.

Methods: This study analyzed a large single‐center multiomics TNBC data

set, combined with a single‐cell data set. The clinical, genomic, and metabolic

characteristics of patients with low Ki‐67 TNBC were analyzed.

Results: The clinical and pathological characteristics were analyzed in 2217

TNBC patients. Low Ki‐67 TNBC was associated with a higher patient age at

diagnosis, a lower proportion of invasive ductal carcinoma, increased altera-

tions in the PI3K‐AKT‐mTOR pathway, upregulated lipid metabolism path-

ways, and enhanced infiltration of M2 macrophages. High Ki‐67 TNBC ex-

hibited a higher prevalence of TP53 gene mutations, elevated nucleotide

metabolism, and increased infiltration of M1 macrophages.

Conclusions: We identified specific genomic and metabolic characteristics

unique to low Ki‐67 TNBC, which have implications for the development of

precision therapies and patient stratification strategies.
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1 | INTRODUCTION

Triple‐negative breast cancer (TNBC) is a subtype of
breast cancer that is characterized by the absence of three
receptors: estrogen receptor (ER), progesterone receptor
(PR), and human epidermal growth factor receptor 2
(HER‐2). TNBC accounts for approximately 15%–20% of
all breast cancers [1, 2]. Compared with other subtypes,
TNBC tends to exhibit more aggressive behavior [3] and
is characterized by a higher proliferation rate and typi-
cally larger tumor size [4]. TNBC shows insensitivity to
hormone receptor‐based endocrine therapy and HER‐2‐
targeted therapy [5]. Consequently, TNBC is associated
with a poor prognosis and represents a significant threat
to women's health [6].

Ki‐67 is a nonhistone nuclear protein that is closely
associated with cell proliferation activity. Ki‐67 is present
throughout all phases of the cell cycle except G0 and its
expression dynamically changes. Ki‐67 levels are rela-
tively low in the G1 and S phases of mitosis, peak in the
premitotic phase, and undergo a sharp decline during the
postmitotic phase [7]. Elevated Ki‐67 expression indi-
cates rapid cell proliferation and increased invasiveness
and is a significant indicator of poor prognosis [8, 9]. In
clinical pathology, Ki‐67 is commonly used as a prolif-
eration marker to assess the invasiveness of breast cancer
[10]. Some studies have explored the predictive value of
Ki‐67 for the efficacy of adjuvant chemotherapy in breast
cancer, but the results remain controversial [11].
Criscitiello et al. [12] reported that Ki‐67 expression
could identify patients benefiting from adjuvant chemo-
therapy in luminal‐B and lymph node‐positive breast
cancers. Andre et al. [13] reported no evidence support-
ing the predictive value of Ki‐67 staining for the effec-
tiveness of adjuvant chemotherapy.

TNBC displays high heterogeneity. TNBC predomi-
nantly consists of invasive ductal carcinoma (IDC), but it
also includes less aggressive tumor types, such as muci-
nous carcinoma, metaplastic carcinoma, secretory carci-
noma, and adenoid cystic carcinoma [14, 15]. TNBC
often exhibits high expression of the Ki‐67 proliferation
index [16, 17]. Srivastava et al. [18] reported that more
than three‐quarters of TNBC patients had Ki‐67 expres-
sion levels above 50%. TNBC with low Ki‐67 expression
accounts for only a small fraction of cases and has been
relatively less studied. One study conducted by Srivastava
et al. [18] demonstrated that triple‐negative low Ki‐67
proliferation (TNLP) tumors are characterized by a
predominance of low to intermediate‐grade apocrine
tumors. Compared with TNBC patients with high Ki‐67
expression, TNLP patients tend to be older, have smaller
tumor sizes at the time of diagnosis, and present with
lower tumor grades [18]. These findings suggest that low

Ki‐67 TNBC might represent distinctive disease entities.
However, the biological characteristics of low Ki‐67
TNBC remain unclear.

In this study, we conducted a comprehensive analysis
of multiomics data from Fudan University Shanghai
Cancer Center (FUSCC) to elucidate the clinico-
pathological features, metabolic pathway characteristics,
and immune microenvironment of low Ki‐67 TNBC. The
aim of this study was to investigate the distinctive bio-
logical behaviors of and potential therapeutic strategies
for low Ki‐67 TNBC.

2 | MATERIALS AND METHODS

2.1 | Study cohorts

This study included female TNBC patients from FUSCC.
The inclusion criteria were a diagnosis of breast cancer at
our center between 2006 and 2016, with pathological
confirmation of ER‐negative, PR‐negative, and HER‐2‐
negative status. The exclusion criteria were bilateral
breast cancer; ductal or lobular atypical hyperplasia,
sarcomas, or phyllodes tumors; and missing Ki‐67 status
(Figure 1). Comprehensive clinical pathology and sur-
vival data were available for 2217 patients, RNA‐seq data
were available for 350 patients, and whole‐exome
sequencing (WES) data were available for 279 patients.
All patients provided informed consent for the appro-
priate use of their data and tissue [19]. The FUSCC
TNBC data set was deposited in the NCBI Gene Ex-
pression Omnibus (GSE118527) and Sequence Read
Archive (SRP157974). We categorized the patients into
two groups using the Ki‐67 index obtained from patho-
logical results: the low Ki‐67 group (Ki‐67 ≤ 20%) and the
high Ki‐67 group (Ki‐67 > 20%). The cutoff value of 20%
is used in clinical practice at our center.

scRNA‐seq data were obtained from external
cohorts and are accessible through the European
Genome‐phenome Archive under the accession number
EGAS00001004809 [20]. Using clinical data provided by
the public single‐cell sequencing database, we classified
TNBC patients with low and intermediate Ki‐67 levels
(Ki‐67 ≤ 25%) into the Ki‐67 low group and TNBC
patients with high Ki‐67 levels (>25%) into the Ki‐67
high group [20].

2.2 | Genome and transcriptome data
analyses

To analyze the genomic mutation profiles of different
patient groups, the maftools package (v2.14.0) in R was
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performed. The definitions and calculations of pathogenic
somatic mutations and homologous recombination defi-
ciency (HRD) scores were referenced from the study
conducted by Jiang et al. [19]. Somatic mutation pathways
were computed on the basis of 10 canonical cancer path-
ways comprising 335 genes [21]. If recurrent or known
driver alterations were detected in one or more genes
within a tumor sample, the corresponding cancer pathway
was considered to be altered in the tumor sample.

Differential gene expression analyses of RNA‐seq data
were performed using DESeq. 2 (v1.38.0) in R. Genes with
adjusted p‐value less than 0.05, after Benjamini–Hochberg
false discovery rate correction, were considered differentially
expressed genes (DEGs) [22]. Gene set variation analysis
(GSVA in R, v1.46.0) was used to calculate the pathway
enrichment score for each sample with transcriptomic data
using published metabolic pathway gene sets [23, 24].
CIBERSORTx (https://cibersortx.stanford.edu/) was used to

FIGURE 1 A schematic overview of the study workflow. A schematic overview of the analytical workflow and experimental design to
explore the genomic features and metabolic heterogeneity of low Ki‐67 TNBC is shown. ER, estrogen receptor; FUSCC, Fudan University
Shanghai Cancer Center; HER‐2, human epidermal growth factor receptor 2; PR, progesterone receptor; TNBC, triple‐negative breast cancer.
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examine the abundance of 22 immune cell infiltrates in the
tumor microenvironment [25].

2.3 | Cell cultures and reagents

Three human TNBC cell lines (MDA‐MB‐231, MDA‐MB‐
453, and BT‐549) were obtained from American Type
Culture Collection. Three mouse TNBC cell lines (4T1,
E0771, and AT3) were a gift from Prof. Kang's laboratory
(Princeton University). All cell lines were cultured in
DMEM (BasalMedia; L110) with 10% fetal bovine serum
(Gibco, Thermo Fisher Scientific; 10099141C) and 1%
penicillin‒streptomycin (BasalMedia; S110B) in a humid-
ified environment consisting of 95% air and 5% CO2 at
37°C. Cell lines were authenticated by short tandem
repeat profiling. Cells were cultured for 48 h for myco-
plasma detection and RNA‐extraction experiments. All
cell lines tested negative for mycoplasma contamination.

2.4 | Immunohistochemical (IHC)
staining

Tissue sections from patient samples were provided by
the Department of Pathology at FUSCC. For the breast
orthotopic tumor implantation experiment, 5 × 105 E0771
cells were injected into the mammary fat pad of 6‐week‐
old female C57BL/6J mice, and 5 × 105 4T1 cells were
injected into the mammary fat pad of 6‐week‐old female
BALB/c mice. After 4 weeks, the mice were euthanized,
and the orthotopic tumors were excised, sectioned, and
prepared for subsequent immunohistochemistry experi-
ments. The sections were heated in an oven at 70°C for
1 h and then dewaxed in xylene. The samples were
hydrated using a series of alcohol solutions (100%, 90%,
and 70%), followed by antigen retrieval in citrate buffer
(pH 6.0) at 95°C for 20min. The sections were incubated
with antibodies at 37°C for 1 to 2 h (anti‐fatty acid syn-
thase [FASN] [1:1000, ab128870; Abcam]; anti‐Ki‐67
[1:1000, ab279653; Abcam]). The nuclei were counter-
stained with hematoxylin for approximately 10 s.

2.5 | RNA extraction and qRT‐PCR

Total RNA was extracted using TRIzol reagent (Invitro-
gen, Thermo Fisher Scientific; 15596018CN) and then
reverse‐transcribed into cDNA using HiScript II Q Select
RT SuperMix for qPCR (Vazyme; R233‐01). The qPCR
primers were obtained from PrimerBank (https://pga.
mgh.harvard.edu/primerbank/) (Supporting Information
S2: Table S1). AceQ qPCR SYBR Green Master Mix

(Vazyme; Q111‐03) was used for qRT‐PCR, and GAPDH
mRNA served as the internal control for normalization.
All experiments were performed following the manu-
facturer's recommended protocols.

2.6 | Single‐cell RNA‐seq data analysis

Single‐cell RNA‐seq data were mainly analyzed using the
Seurat package (v4.3.0). The raw unique multiplex index
counts were normalized, and the FindVariableFeatures
function was used to detect variable genes. Principal
component analysis (PCA) was conducted using the
variable genes. For clustering, the FindClusters function
was used, implementing a PCA‐based shared nearest
neighbor approach with a resolution of 0.5 on the first 12
principal components. We performed t‐distributed sto-
chastic neighbor embedding (t‐SNE) for dimensionality
reduction to obtain a two‐dimensional representation of
cell states. The FindAllMarkers function was used to
identify marker genes, and cell annotation was based on
these marker genes. EnrichGO function was used for
Gene Ontology (GO) pathway enrichment analysis.
Monocle (v2.26.0) package was used for cell pseudo‐time
analysis, and CellChat (v1.6.0) package was used for cell‐
cell communication analysis.

2.7 | Statistical analyses

Continuous and ordered categorical variables were com-
pared using the Student's t‐test, Mann–Whitney–Wilcoxon
test, and Kruskal–Wallis test. For the comparison of
unordered categorical variables, the Pearson chi‐square
test or Fisher's exact test was used. Survival curves were
generated using the Kaplan–Meier method, and the log‐
rank test was applied to compare recurrence‐free survival
(RFS) and overall survival (OS) outcomes. All p‐values
were two‐sided, and a p‐value of less than 0.05 was con-
sidered statistically significant. R software (versions 4.2.0,
www.R-project.org/) and GraphPad Prism software (ver-
sion 9.0.0, www.graphpad.com) were used for statistical
analysis and graph plotting.

3 | RESULTS

3.1 | The study design and cohorts

The study design is shown in Figure 1. We integrated
multiomics data of TNBC from FUSCC and single‐cell
sequencing data from Bassez and colleagues [19, 20] for
analysis. The cohort of 2217 TNBC patients treated at our
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FIGURE 2 (See caption on next page).
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center with clinical prognosis data was used for analyz-
ing the clinical prognostic features of low Ki‐67 TNBC.
RNA‐seq data from 350 TNBC cases were used for ana-
lyzing DEGs, metabolic pathways, and the immune
microenvironment. The WES data of 279 TNBC patients
were used for elucidating somatic mutation character-
istics. The scRNA‐seq data included 13 cases, comprising
8172 tumor cells and 3177 myeloid cells, which were
used for cell annotation, cell chat, and evolutionary
trajectory analysis.

3.2 | Clinical and prognosis features of
low Ki‐67 TNBC

The 2217 TNBC patient cohorts indicated that compared
with luminal and HER‐2 overexpression breast cancer,
TNBC had a higher proportion of patients with high Ki‐67
expression (TNBC vs. luminal, 79.5% vs. 38.9%, p<0.0001;
TNBC vs. HER‐2 overexpression, 79.5% vs. 73.6%, p<0.001)
(Figure 2a). Most TNBC tumors showed high Ki‐67 ex-
pression, and only 20.5% of TNBC tumors exhibited low Ki‐
67 expression. Low Ki‐67 TNBC was characterized by an
older age at diagnosis (age > 60 years: 64.3% in Ki‐67 Low
vs. 41.5% in Ki‐67 High, p<0.001), lower tumor grade
(grade 3: 37.4% in Ki‐67 Low vs. 71.6% in Ki‐67 High,
p<0.001), and a lower prevalence of the IDC histological
type (78.4% in Ki‐67 Low vs. 88.1% in Ki‐67 High, p<0.001).
There was no difference in tumor stage between the low Ki‐
67 and high Ki‐67 groups (p=0.493, Figure 2b). The treat-
ment strategies and survival outcomes between low Ki‐67
and high Ki‐67 TNBC groups are shown in Figure 2c. TNBC
with low Ki‐67 expression displayed better RFS (5‐year RFS:
88.7% in Ki‐67 Low TNBC vs. 82.8% in Ki‐67 High TNBC,
p<0.001) and OS (5‐year OS: 93.7% in Ki‐67 Low TNBC vs.
90.7% in Ki‐67 High TNBC, p<0.001) (Supporting Infor-
mation S1: Figures S1 and S2).

Previous studies classified TNBC into different sub-
types on the basis of gene expression or metabolic path-
way features [19, 24]. We next investigated the distribution
of molecular subtypes in TNBC with high and low Ki‐67
expression. The results revealed that low Ki‐67 TNBC was
mainly composed of the metabolic pathway‐based subtype

1 (MPS1) subtype (61.4%), which is characterized by
upregulated lipid metabolism. In contrast, high Ki‐67
TNBC was predominantly composed of the glycolytic
subtype MPS2 (44.7%) and the mixed subtype MPS3
(44.7%) (p< 0.001, Figure 2d). We determined the Fudan
transcriptome‐based TNBC subtypes for each sample and
investigated their distributions in the high and low Ki‐67
groups. The low Ki‐67 group primarily contained the
luminal androgen receptor (LAR) subtype (50.9% in Ki‐67
Low vs. 15.4% in Ki‐67 High, p< 0.001), while the high
Ki‐67 group had a larger proportion of the basal‐like
immune‐suppressed (BLIS) subtype (50.9% in Ki‐67 High
vs. 15.4% in Ki‐67 Low, p< 0.001) (Figure 2e).

3.3 | Mutation profile of low
Ki‐67 TNBC

Genomic alterations contribute to the high heterogeneity
of malignant tumors and exploring these mutations can
help identify valuable biomarkers for precise cancer
therapy. Figure 3a shows the landscape of the top 15
somatic mutations in TNBC, and the findings revealed
significant differences between low Ki‐67 TNBC and high
Ki‐67 TNBC. Low Ki‐67 TNBC had a higher frequency of
AKT1 gene mutations (low Ki‐67 vs. high Ki‐67: 11% vs.
2%, p= 0.015), while high Ki‐67 TNBC exhibited a higher
proportion of TP53 gene mutations (high Ki‐67 vs. low
Ki‐67: 79% vs. 47%, p< 0.001) (Figure 3a).

To gain a more comprehensive understanding of the
mutation profile, we conducted an analysis of mutational
profiles based on pathways. Low Ki‐67 TNBC had more
somatic mutations in the PI3K‐AKT‐mTOR signaling
pathway (low Ki‐67 vs. high Ki‐67: 50% vs 31%, p= 0.025)
and RTK‐RAS signaling pathway (low Ki‐67 vs. high
Ki‐67: 29% vs 26%, p= 0.032), while high Ki‐67 TNBC
exhibited a higher proportion of mutations in the TP53
signaling pathway (high Ki‐67 vs. low Ki‐67: 80% vs. 47%,
p< 0.001) (Figure 3b). We investigated the significant co‐
occurring and mutually exclusive alterations within the
different pathways. We observed a significant mutually
exclusive pattern unique to the high Ki‐67 group
involving the TP53 and TGF‐β signaling pathways

FIGURE 2 Clinical, pathological, and therapeutic characteristics of the FUSCC TNBC cohort. (a) Bar plots showing the proportion of
low and high Ki‐67 expression in different subtypes of breast cancer. (b) Bar plots showing the distribution of age, grade, pathology type, and
stage in the low and high Ki‐67 groups. (c) Associations of Ki‐67 expression with menstrual status, treatment strategies, and prognosis in
TNBC. (d) Sankey diagram illustrating the metabolic subtypes in the low and high Ki‐67 groups. (e) Bar plots illustrating the Fudan
transcriptome‐based TNBC subtypes in the low and high Ki‐67 groups. FUSCC, Fudan University Shanghai Cancer Center; IDC, invasive
ductal carcinoma; ILC, invasive lobular carcinoma; Others, other cancers including mucinous carcinoma, metaplastic carcinoma, secretory
carcinoma, and adenoid cystic carcinoma; Tis, carcinoma in situ; TNBC, triple‐negative breast cancer. **p< 0.01; ** < 0.001; n.s., not
significant.
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FIGURE 3 Genomic landscape and featured oncogenic pathways in low Ki‐67 TNBC. (a) Genomic landscape of somatic mutations in
the low and high Ki‐67 groups. (b) Comparison of genomic alterations in nine oncogenic pathways between the low and high Ki‐67 groups
in the FUSCC cohort. (c) Significant mutual exclusivity (brownish yellow) and co‐occurrence (dark green) of gene mutations in pathways
between the low and high Ki‐67 groups. (d) Box plots showing the homologous recombination deficiency (HRD) and loss of heterozygosity
(LOH) scores. FUSCC, Fudan University Shanghai Cancer Center; TNBC, triple‐negative breast cancer. *p< 0.05; **p< 0.01; ***p< 0.001.
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FIGURE 4 (See caption on next page).
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(p= 0.041) (Figure 3c). Significant co‐occurring altera-
tions were exclusively found in the low Ki‐67 group in
the TP53 and NOTCH signaling pathways (p= 0.047)
and the PI3K‐AKT‐mTOR and RTK‐RAS signaling
pathways (p= 0.011) (Figure 3c). We further explored
genomic stability and observed that the low Ki‐67 TNBC
group exhibited lower HRD scores (p= 0.0043) and lower
loss of heterozygosity scores (p= 0.0442) compared with
the high Ki‐67 group (Figure 3d).

3.4 | Dysregulated metabolic pathways
and targetable metabolic genes in the low
Ki‐67 group

We performed differential expression analysis of the low
and high Ki‐67 groups. The volcano plot displayed 1425
upregulated genes and 2266 downregulated genes in the
low Ki‐67 group, with a threshold of |log2FC| > 2.5 and
adjusted p< 0.05 (Figure 4a). These results indicated
significant differences in gene expression between the
two groups and suggest potential candidate genes asso-
ciated with the Ki‐67 index in TNBC. We next used
hallmark gene sets from the Molecular Signatures Data-
base to analyze the pathway alterations [26]. We
observed a marked upregulation of various metabolic
pathways in the low Ki‐67 group, including fatty acid
metabolism, cholesterol homeostasis, and adipogenesis
(Figure 4b). In the high Ki‐67 group, there was an up-
regulation of cell cycle signaling pathways, including the
mitotic spindle and G2M checkpoint (Figure 4b).

To uncover the metabolic heterogeneity of low Ki‐67
TNBC, we used GSVA to estimate the enrichment scores
of metabolic pathways [23]. Consistent with the GSVA
results, the low Ki‐67 group exhibited upregulation of
lipid metabolism, while the high Ki‐67 group showed
upregulation of nucleotide metabolism (Figure 4c, Sup-
porting Information S1: Figure S3a). The RNA‐seq results

revealed that metabolic genes in the fatty acid bio-
synthesis and biosynthesis of unsaturated fatty acids
pathways were upregulated in the low Ki‐67 group
(Supporting Information S1: Figure S3b,c).

We further examined the upregulation of metabolic
pathways in the low Ki‐67 group through experiments.
We selected three human TNBC cell lines for analysis
and observed that the MDA‐MB‐231 cell line had high
Ki‐67 expression, while the MDA‐MB‐453 and BT‐549
cell lines had relatively low Ki‐67 expression. The cell
lines with low Ki‐67 expression exhibited increased
expression of metabolic genes involved in fatty acid
biosynthesis and unsaturated fatty acid biosynthesis
pathways (Figure 4d). The same trend was observed in
three murine TNBC cell lines (Figure 4f). Using TNBC
patient tissue sections from our center, we performed
IHC staining for Ki‐67 and FASN. The results indicated
that patients with low Ki‐67 expression had high FASN
expression (Figure 4e,h). We observed the same trend
in tissue sections from orthotopic breast tumor models
in mice (Figure 4g,i). These findings were consistent
with our bioinformatics analysis, suggesting that low
Ki‐67 TNBC exhibited upregulated lipid metabolism
pathways.

3.5 | The tumor microenvironment and
heterogeneity of myeloid cells

To explore the features of the tumor immune micro-
environment in the low Ki‐67 group, we used the
CIBERSORT method to calculate the abundance of
22 immune cell types [27]. The results revealed significant
differences in the abundance of three immune cell types
between the low Ki‐67 and high Ki‐67 groups, including
macrophage 2 (M2) (p= 0.0054), memory B cells
(p=0.0006), and activated dendritic cells (DCs) (p=0.021)
(Figure 5a, Supporting Information S1: Figure S4a).

FIGURE 4 Dysregulated metabolic pathways and targetable metabolic genes in the low Ki‐67 group. (a) Volcano plot displaying the
differentially expressed genes between the low and high Ki‐67 groups. Genes upregulated in the low Ki‐67 group are shown in red, while
downregulated genes are shown in green. (b) Bar plot illustrating pathway analysis enriched with differentially expressed genes. The t value
represents the difference in average enrichment scores between two groups in GSVA. A larger absolute t value indicates a significant
difference in pathway activity between the two groups. (c) Heatmap illustrating the GSVA of the expression levels of metabolic pathways in
low and high Ki‐67 groups. (d) Bar plot showing the differentially expressed genes in the fatty acid biosynthesis and unsaturated fatty acid
biosynthesis pathways between Ki‐67 low and high groups in three human TNBC cell lines. (e) Representative images of
immunohistochemical (IHC) staining for Ki‐67 and FASN in TNBC patient tissue sections. (f) Bar plot showing the differentially expressed
genes in the fatty acid biosynthesis and unsaturated fatty acid biosynthesis pathways between Ki‐67 low and high groups in three murine
TNBC cell lines. (g) Representative images of IHC staining for Ki‐67 and FASN in tissue sections from orthotopic breast tumor mouse
models. (h) Ki‐67 and FASN expression quantified by IHC in TNBC patient tissue sections. (i) Ki‐67 and FASN expression quantified by IHC
in tissue sections from orthotopic breast tumor mouse models. FASN, fatty acid synthase; GSVA, gene set variation analysis; TNBC, triple‐
negative breast cancer. *p< 0.05; **p< 0.01; ***p< 0.001.
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FIGURE 5 (See caption on next page).
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scRNA‐seq data were used to comprehensively assess
the expression profile of myeloid cells. After quality fil-
tering, a total of 3177 myeloid cells were analyzed. Using
t‐SNE, we identified four clusters: Macrophage1, Mac-
rophage2, Monocyte, and DCs (Figure 5b–d). Figure 5f,g
depict the clustering markers, facilitating the linkage
of clusters to specific cell types, including M1‐like
macrophages (CD163, CD68, MRC−), M2‐like macro-
phages (CD163, CD68, MRC+), monocyte (FCN1), and
DCs (BIRC3) (Figure 5f–g, Supporting Information S1:
Figure S4c–f).

M1‐like macrophages (antitumor) and M2‐like mac-
rophages (pro‐tumor) are two major macrophage sub-
types [28]. Our results revealed an increased prevalence
of M2‐like macrophages in the low Ki‐67 group, indi-
cating the presence of an immunosuppressive micro-
environment (Figure 5e). Pathway analysis of macro-
phages revealed that in the high Ki‐67 group,
M1‐like macrophages exhibited upregulation of immune‐
related signaling pathways, including the complement
pathway and interferon alpha/gamma response. Con-
versely, in the low Ki‐67 group, M2‐like macrophages
showed upregulation of protumorigenic signaling path-
ways, such as the Wnt beta‐catenin signaling pathway
(Figure 5h). Gene analysis further revealed that M1‐like
macrophages in the high Ki‐67 group exhibited upregu-
lation of immune activation‐related genes such as C1QA,
ISG15, C1QC, and C1QB genes (Figure 5i).

In summary, our results suggested that the low Ki‐67
group was predominantly infiltrated by M2‐like macro-
phages, which promote tumor progression, while the
high Ki‐67 group was mainly infiltrated by M1‐like
macrophages, which exhibit an immune‐activating anti-
tumor effect.

3.6 | Tumor cell heterogeneity and
interactions between tumor cells and
myeloid cells

To investigate the heterogeneity of tumor cells in TNBC,
we identified four clusters of tumor cells in TNBC
through t‐SNE analysis; each cluster exhibited distinct
transcriptomic signatures (Figure 6a,b, Supporting

Information S1: Figure S5a). Cluster 1 was the major cell
population in the low Ki‐67 group, while clusters 2 and 3
were specifically enriched in the high Ki‐67 group (Fig-
ure 6c). GO analyses revealed that cluster 0 was mainly
enriched in extracellular matrix structural constituent;
cluster 1 showed enrichment in oxidative phosphoryl-
ation and aerobic respiration; cluster 2 was
primarily enriched in extracellular matrix structural
constituent; and cluster 3 exhibited enrichment in pyri-
dine nucleotide metabolic process and nicotinamide
nucleotide metabolic processes (Figure 6d–g). These
results suggested differential intrinsic biological char-
acteristics in tumor cells between low and high Ki‐67
groups, with upregulated lipid metabolism in low Ki‐67
cells and increased proliferation and nucleotide metab-
olism in high Ki‐67 cells.

We conducted pseudo‐time analysis to investigate the
cell lineage trajectory and found that the low Ki‐67 tumor
cells were in the early stages of cell differentiation
(Figure 6h–j). CellChat analysis indicated that tumor cells
and macrophages mostly interacted through the macro-
phage migration inhibitory factor (MIF; CD74+CD4)
receptor–ligand interaction (Figure 6k, Supporting Infor-
mation S1: Figure S5b,c). Moreover, cluster 1, as the
sender, exhibited the most significant impact on M2 mac-
rophages through the MIF signaling pathway (Figure 6l).

4 | DISCUSSION

The findings of this study confirmed that low Ki‐67
TNBC exhibited distinct clinical, pathological, and bio-
logical characteristics compared with high Ki‐67 TNBC,
indicating that the two may potentially represent entirely
different entities. Low Ki‐67 TNBC was characterized by
an older patient age at diagnosis, a reduced proportion of
IDC, increased alterations in the PI3K‐AKT‐mTOR
pathway, upregulated lipid metabolism pathways,
and enhanced infiltration of M2 macrophages. High
Ki‐67 TNBC exhibited a higher prevalence of TP53
gene mutations, elevated nucleotide metabolism, and
increased infiltration of M1 macrophages. Most TNBC
cases exhibit high Ki‐67 expression, and the most com-
mon therapeutic approach is systemic chemotherapy

FIGURE 5 Characteristics of myeloid cells in low Ki‐67 TNBC. (a) Bar plot displaying the infiltration abundance of 22 immune cell
types in the low and high Ki‐67 groups. (b–d) t‐SNE display and graph‐based clustering of myeloid cells in all TNBC, low Ki‐67 TNBC, and
high Ki‐67 TNBC cases, respectively. (e) Bar graph illustrating the distribution of the indicated t‐SNE subsets within the four myeloid cell
clusters. (f) Dot plot showing the expression levels of clustering markers for myeloid cells. (g) Violin plots showing the expression levels of
MRC1, the clustering marker for M2 macrophages. (h) and (i) Heatmap showing differences in the pathways and genes of interest in M1 and
M2 macrophages. TNBC, triple‐negative breast cancer; t‐SNE, t‐distributed stochastic neighbor embedding.
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FIGURE 6 (See caption on next page).
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[18]. However, there is a subset of TNBC cases with a low
Ki‐67 proliferation index, which have not been thor-
oughly investigated. Our study demonstrated that low
Ki‐67 TNBC typically exhibited lower histological grades
and nonclassical histological subtypes, including muci-
nous carcinoma, metaplastic carcinoma, secretory carci-
noma, and adenoid cystic carcinoma. The histological
heterogeneity of low Ki‐67 TNBC suggests that special
attention is needed in the clinical treatment of this par-
ticular subtype of TNBC. Previous studies indicated that
low Ki‐67 TNBC tumors in stage I might not derive sig-
nificant benefits from chemotherapy [18]. Therefore,
clinical practitioners should exercise caution and com-
prehensive consideration when deciding on the use of
chemotherapy and the choice of chemotherapy regimen
for low Ki‐67 TNBC.

Previous research from our center has classified
TNBCs into four transcriptome‐based subtypes: (1) LAR,
(2) immunomodulatory (IM), (3) BLIS, and (4)
mesenchymal‐like (MES) [19]. Our study found that low
Ki‐67 index was predominantly associated with the LAR
subtype. This observation was consistent with previous
research [29]. The LAR subtype is characterized by ele-
vated expression levels of genes related to the androgen
receptor (AR) pathway, and patients with this subtype of
TNBC show sensitivity to AR antagonist therapy. AR‐
positive TNBCs commonly exhibit PIK3CA mutations,
and emerging data indicates that combining an AR
antagonist with a PI3K inhibitor might yield greater
clinical advantages compared with anti‐AR therapy alone
in AR‐positive TNBC cases [30, 31]. This insight could
potentially lead to further investigations into targeting
AR antagonists for the treatment of low Ki‐67 TNBC.

Metabolic reprogramming is one of the distinctive
characteristics of TNBC, offering opportunities for prog-
nosis and treatment [32–34]. Our findings indicated that
low Ki‐67 TNBC was predominantly composed of the
MPS1 subtype [24]. The MPS1 subtype is characterized by
the upregulation of genes associated with lipid synthesis
and metabolism, along with frequent mutations in the
PI3K and RTK‐RAS pathways [35]. Our analyses of the
metabolic and mutation pathways corresponded with
these results. Activation of the PI3K pathway in tumor

cells increases the expression of nutrient transporters and
enhances lipid synthesis [36]. Furthermore, over-
expression of mutant PIK3CA induced a lipid phenotype
in nontransformed epithelial cells [37, 38]. These findings
underscore the necessity for an in‐depth exploration of
how the PI3K pathway orchestrates lipid synthesis in
TNBC. This may also provide a rationale for the applica-
tion of lipid synthesis inhibitors in low Ki‐67 TNBC.

The analysis of single‐cell sequencing data indicated
that in low Ki‐67 TNBC, the infiltrating macrophages
were predominantly of the M2 type. M2 macrophages
exhibit anti‐inflammatory functions, suggesting that low
Ki‐67 TNBC possesses an immunosuppressive micro-
environment [39]. Additionally, single‐cell sequencing
data analysis revealed heterogeneity in tumor cells
between the Ki‐67 low and Ki‐67 high groups. The
dominant cluster 1 in the Ki‐67 low group showed en-
richment in oxidative phosphorylation and aerobic res-
piration, and this was consistent with the bulk‐RNA
sequencing metabolic pathway analysis results. This
cluster primarily interacted with macrophages through
the MIF (CD74 + CD4) receptor–ligand interaction, un-
derscoring the significant role of M2 macrophages in Ki‐
67 low TNBC. Kaneda et al. [40] demonstrated the crit-
ical role of PI3Kγ in promoting immunosuppressive
functions in M2 macrophages within the tumor
microenvironment. PI3Kγ inhibitors counteract M2
macrophages, thereby rendering tumor cells that were
inherently resistant to immune checkpoint inhibitors like
PD‐1 and CTLA‐4 sensitive to immune therapy [41]. In
our study, the PI3K pathway mutation frequency in the
low Ki‐67 TNBC group was 50%, accompanied by an
increase in M2 macrophage infiltration. This suggests a
potential for the combined application of PI3Kγ inhibi-
tors and immune checkpoint inhibitors in the treatment
of low Ki‐67 TNBC.

A strength of this study is that the study cohort was
the largest single‐center multiomics cohort of low Ki‐67
TNBC patients, enabling the systematic elucidation of the
characteristics of low Ki‐67 TNBC at the genomic, tran-
scriptomic, and single‐cell levels. Our research also es-
tablishes a theoretical foundation for the combined
therapy involving PI3K pathway inhibitors and

FIGURE 6 Characterization of tumor cells and interactions between tumor cells and myeloid cells. (a) and (b) t‐SNE display and graph‐
based clustering of cancer cells group by subclusters or Ki‐67 expression. (c) Bar graph illustrating the distribution of the indicated t‐SNE
subsets within the four cancer cell clusters. (d–g) GO analysis in different cancer cell subclusters. (h–j) Trajectory of cancer cell
differentiation predicted by monocle 2. (k) Bubble plots show significant ligand‐receptor pairs between cancer cells and myeloid cells.
(l) MIF signaling pathway network between cancer cells and myeloid cells. C0, Cluster 0 of cancer cells; C1, Cluster1 of cancer cells; C2,
Cluster2 of cancer cells; C3, Cluster3 of cancer cells; DC, dendritic cell; FUSCC, Fudan University Shanghai Cancer Center; GO, Gene
Ontology; M1, Macrophage1; M2, Macrophage2; MIF, macrophage migration inhibitory factor; Mono, monocyte; TNBC, triple‐negative
breast cancer; t‐SNE, t‐distributed stochastic neighbor embedding.
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immunotherapy for low Ki‐67 TNBC. This study also has
some limitations. This was a single‐center retrospective
study, and further validation in cohorts from other cen-
ters is required. Prospective clinical trials are needed to
explore potential therapeutic strategies for low Ki‐
67 TNBC.

5 | CONCLUSIONS

The study confirmed that in comparison with high Ki‐67
TNBC, low Ki‐67 TNBC exhibited distinct clinical,
pathological, and biological characteristics, indicating
that the two may potentially represent entirely different
entities. We identified specific genomic and metabolic
characteristics unique to low Ki‐67 TNBC, which have
implications for the development of precision therapies
and patient stratification strategies.
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