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Autophagy is a self-degradation process that maintains homeostasis against stress in
cells. Autophagy dysfunction plays a central role in the development of tumors, such
as colorectal cancer (CRC). In this study, autophagy-related differentially expressed
genes, their downstream functions, and upstream regulatory factors including RNA-
binding proteins (RBP) involved in programmed cell death in the CRC were investigated.
Transcription factors (TFs) and miRNAs have been shown to mainly regulate autophagy
genes. Interestingly, we found that some of the RBP in the CRC, such as DDX17,
SETDB1, and POLR3A, play an important regulatory role in maintaining autophagy
at a basal level during growth by acting as TFs that regulate autophagy. Promoter
methylations showed negative regulations on differentially expressed autophagy gene
(DEAG), while copy number variations revealed a positive role in them. A proportional
hazards regression analysis indicated that using autophagy-related prognostic signature
can divide patients into high-risk and low-risk groups. Autophagy associated FDA-
approved drugs were studied by a prognostic network. This would contribute to the
identifications of new potential molecular therapeutic targets for CRC.

Keywords: autophagy, colorectal cancer, regulatory network, RNA-binding proteins, biomarkers

INTRODUCTION

Colorectal cancer (CRC) is a common digestive tract tumor (Chisanga et al., 2016). Among all
cancer types, it is the third leading cause of death in the world. The overall 5-year survival rate of
CRC patients is less than 40%, and the occurrence of CRC is consistently rising (Yang et al., 2015).
However, the prognosis and therapy for CRC have not been significantly improved. Therefore, a
proper selection of patients for aggressive treatment is necessary, new therapeutic strategies and
prediction of prognosis of CRC is urgently needed.

Autophagy has been found to be associated with a variety of clinically relevant diseases, such as
CRC. In the past ten years, autophagy has received extensive attention as a new treatment method.
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Several studies indicate that the autophagy function plays a
critical role in the development, maintenance, and progression of
CRC (Yang et al., 2015; Katheder et al., 2017). The dysregulation
of autophagy function disrupts the physiological processes and
has been implicated in the pathogenesis of multiple diseases
(Thorburn et al., 2014). Early efforts reported that there are
relationships between multidimensional factors and autophagy
function. BECN1 plays a key role in the autophagic process,
its expression is found to be regulated by transcription factors
(TFs), miRNAs, the abnormal methylation of the promoter
region, and copy number variation (CNV) of the associated
chromatin regions (Mei et al., 2016). In addition, RNA-binding
proteins (RBP) play a key role in many processes as TF, including
cellular differentiation, autophagy, apoptosis, and DNA repair
(Gerstberger et al., 2014; Williams et al., 2019). For instance,
some researches have shown that CELF2 RNA-binding protein
regulates autophagy-mediated CRC cell death (New et al., 2019).
Furthermore, Kudinov AE et al. found that MSI2 RNA-binding
protein as a regulator of progenitor cell is elevated in colorectal
adenocarcinomas and that its loss of function inhibits the growth
of CRC cells (New et al., 2019). In the past decade, autophagy as
a new therapeutics has attracted extensive attention. Increasing
evidence indicates that autophagy function is crucial to tumor
cell survival in CRC patients undergoing anticancer treatment
(Roy and Debnath, 2010). Despite this, the potential values of
some novel prognostic biomarkers related to autophagy function
have not been thoroughly investigated. This study will focus on
the potential prognostic roles of autophagy-related genes in CRC
and will offer new targets for the treatment of CRC. Further
understanding of the functional role of autophagy in CRC
pathogenesis will allow us to improve the disease management.

In this study, the function of autophagy genes in four stages
of CRC was investigated through the performance of functional
enrichment analysis of the downstream RNAs. The upstream
regulatory factors of autophagy genes were also identified in
each stage by integrating multi-omics data in TCGA. Some key
autophagy-related differentially expressed genes associated with
the prognosis of CRC were identified through univariate Cox
proportional hazards regression model. Then the mappings were
drawn between FDA-approved drugs and their related autophagy
gene. These findings not only shed light on the central functional
role of autophagy-related genes in CRC, but may also contribute
to the identification of molecular biomarkers in CRC and the
development of clinical therapeutic modality.

MATERIALS AND METHODS

Colorectal Cancer Patient Cohorts
Gene and miRNA expression data, methylation data, and the
clinical data of CRC patients were downloaded from TCGA1

(Cancer Genome Atlas Research Network, 2008). There are 328
colon carcinoma (COAD) samples and 105 rectal carcinomas
(READ) samples. Combined with clinical information, there are
41 normal patients, 45 stage I patients, 111 stage II patients, 83

1 http://cancergenome.nih.gov/

stage III patients, and 39 stage IV patients in COAD samples.
And there are 10 normal patients, 12 stage I patients, 28 stage
II patients, 33 stage III patients, and 15 stage IV patients in
READ samples. The corresponding CNV data were obtained
from the Cancer Cell Line Encyclopedia2 (Barretina et al., 2012).
Additionally, a cohort of 177 COAD patients and 196 READ
patients from the GEO database (GSE17536 and GSE87211)
(Smith et al., 2010; Hu et al., 2018) was used as an independent
external test set.

Autophagy Genes, Interaction Data,
RNA-Binding Proteins, and Transcription
Start Sites
Autophagy genes were collected from the cell death proteomics
database3 (Arntzen et al., 2013). A total of 1776 experimentally
confirmed genes were used for the subsequent analysis. Protein-
protein interactions were retrieved from the Human Protein
Reference Database (HPPD)4 (Keshava Prasad et al., 2009).
The TF that targeted the autophagy genes were acquired from
ChIPBase5 (Zhou et al., 2017). The 2949 RBP were downloaded
from the EuRBPDB6 (New et al., 2019). The miRNA-gene
targeted interaction was formed through the integration of
miRecords7 (Xiao et al., 2009), DIANA-TarBase8 (Vlachos et al.,
2015), and miRTarBase9 (Chou et al., 2018) databases.

The transcription start sites (TSS) of autophagy genes were
downloaded from GENCODE (Harrow et al., 2012). The mean of
the methylation level for CG sites in autophagy gene transcription
promoter regions was used as the methylation level of the
autophagy genes.

Construction of Regulatory Networks
and the Influence of Regulators on the
Differentially Expressed Autophagy Gene
The significant differentially expressed autophagy gene (DEAG)
and regulated gene pairs were obtained through the calculation of
their linear correlation based on the expression data (P < 0.05).
Linear regression was then used to calculate the significant
TFs and miRNAs that targeted the DEAG based on known
TF/miRNA-gene interaction (P < 0.05). The significant influence
of CNVs or gene promoter methylations was denoted by the
linear correlation between gene expression and their own CNVs
or gene promoter methylations level (P < 0.05).

Statistical Analysis
The relationship between DEAGs expression level and
patient survival was evaluated by the Cox regression analysis.
Multivariate Cox regression analysis was used to fit the selected

2www.broadinstitute.org/ccle
3http://celldeathproteomics.uio.no./
4http://www.hprd.org/
5http://rna.sysu.edu.cn/chipbase/
6http://eurbpdb.syshospital.org/
7http://miRecords.umn.edu/miRecords
8http://www.microrna.gr/tarbase
9http://miRTarBase.mbc.nctu.edu.tw/
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FIGURE 1 | Differentially expressed genes in the four stages. (A,B) Represent the Venn diagrams of differentially expressed autophagy genes and non-autophagy
genes respectively in four stages of COAD. (C,D) Represent the Venn diagrams of differentially expressed autophagy genes and non-autophagy genes respectively
in four stages of READ.

DEAGs (Lossos et al., 2004). The risk score of each patient was
calculated with the estimated regression coefficient as the weight
(Zhou et al., 2016). It was calculated as follows:

Risk_score =
n∑

i=1

βi × EXPgene(i)

where βi is the Cox regression coefficient of gene i in the
training set, and n is the number of survival related genes.
The sensitivity and specificity of survival gene risk prediction
were compared using the time-dependent receiver operating
characteristic (ROC) curves, and the optimal patient stratified
cutoff value was determined in the discovery cohort. Patients
were divided into high risk group and low risk group in
accordance with the above stratification cutoff. Kaplan–Meier
survival analysis and log-rank test were performed to compare
survival differences. Cox proportional risk regression was used
for multivariate analysis to test whether the autophagy gene

signature was independent of other clinic-pathological factors.
The Cox proportional risk regression model was used to estimate
the hazard ratio (HR) and the 95% confidence intervals (CI).

RESULTS

Construction of DEAG Regulatory
Network
Genome-wide analysis of mRNA expression was performed
to identify differentially expressed mRNAs, and the autophagy
genes were extracted. There were 1097, 1136, 1087, and 1069
DEAGs between the normal and each stage (I, II, III, and
IV) cancer samples in COAD. There were 495, 624, 683, and
463 DEAGs in READ (P < 0.05). It was found that a large
proportion of the DEAGs were shared among the four stages
(Figures 1A,C). Used Chi-square Test, we found the four stages
significantly shared the majority of the DEAGs. The P-values
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FIGURE 2 | Analysis of DEAG regulatory network in COAD. (A) The distribution of the degree of DEAG regulatory network in stage I. (B) The distribution of the
degree of DEAG regulatory network in stage II. (C) The distribution of the degree of DEAG regulatory network in stage III. (D) The distribution of the degree of DEAG
regulatory network in stage IV. (E) Significantly enriched KEGG pathways of common DEAGs. (F) Significantly enriched KEGG pathways of the DEAGs in every stage.

of each stage of COAD are 0.03601, 0.09514, 0.00041, and
0.00014, respectively. Genes which appeared in three, two and
single stages were infrequent. By contrast differentially expressed
non-autophagy genes that only appeared in a single stage were
most common (Figures 1B,D). We identified 12079, 12453,
12222, and 12048 differentially expressed genes between the
normal and each stage (I, II, III, and IV) cancer samples in
COAD. And there were 7970, 9241, 9364, and 7402 differentially
expressed genes in READ. The autophagy genes were extracted,
there were 1097, 1136, 1087, and 1069 DEAGs in COAD and
495, 624, 683, and 463 DEAGs in READ. So differentially
expressed non-autophagy genes were 10982, 11317, 11135, and
10979 in COAD and 7475, 8617, 8681, and 6939 in READ.
These results imply that autophagy genes play an important role
during the development and progression of CRC. Whereas a
few autophagy genes, which were expressed differently in specific
stages of cancer, reflect that these genes play a different role in
different stages.

To study the regulation ability of the DEAGs, the regulatory
network was constructed by the linear regression method
(Supplementary Figures S1, S2). Through network topology
analysis, it was discovered that the networks exhibit power law
degree distribution. This illustrates the scale-free and small-world
nature of these networks, which makes them similar to the
general biological network (Figures 2A–D and Supplementary
Figures S3A–D). In conclusion, many pieces of evidence indicate
that specific DEAGs and their regulatory subnetwork in each of

the cancer stages can better represent the function of autophagy
genes in its own stage.

Functional enrichment analysis for KEGG pathway was
performed on the common DEAGs and the specific DEAGs
through the use of DAVID 6.8 bioinformatics tool (Huang
et al., 2009). Common DEAGs in COAD were enriched in 22
KEGG pathways (P < 0.05), including ribosome, spliceosome,
proteasome, propanoate metabolism, and fatty acid metabolism
(Figure 2E). In READ, there were spliceosome, methane
metabolism, fatty acid metabolism, and propanoate metabolism
(Supplementary Figure S3E). This is consistent with the findings
of Y. Boglev et al. Genetic mutations associated with ribosomal
production provide a powerful stimulus to autophagy in affected
tissues, allowing them to escape cell death. Autophagy is a specific
response to damage in ribosome organisms (Boglev et al., 2013).
However, the influence of DEAGs in each distinct stage was found
to be a little different (Figure 2F and Supplementary Figure
S3F). Stage I and stage II were analogous, and stage III and stage
IV were analogous. This reflects that the genes in stage I and
stage II play a similar role, and the genes in stage III and stage
IV play a similar role.

Analysis of DEAG Regulatory Mechanism
With Multi-Omics Data
Along with the development and maturation of the new
generation sequencing technology, more and more multi-omics
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FIGURE 3 | The influence of different level factors. (A,B) Show the proportion of DEAGs regulated by CNVs, methylation, miRNAs, TFs, and composite factors in
COAD and READ respectively. (C,D) Show the influence of methylation and CNV to DEAGs in COAD and READ respectively. Yellow boxes represent the number of
autophagy genes influenced by methylation, while green boxes represent the number of autophagy genes influenced by CNVs. The lighter color represents negative
regulation, and the deeper color represents positive regulation.

data could be obtained. This study primarily analyzed the impacts
of CNVs, gene promoter methylations, miRNAs, and TFs on
the expression of DEAG. To investigate the extent of influence,
the percentage of DEAG regulated by each factor and the
combination of multiple factors was calculated (Figures 3A,B,
the detailed percentage of different factors for each stage was
added to Supplementary Table S3). The majority of DEAGs
are regulated by TFs. This is possibly due to a large amount
of TFs present in the cells. The next major factor is miRNA,
which negatively influenced these genes. A small number of
DEAGs were affected by their own promoter CNVs and gene
promoter methylations. Furthermore, a certain proportion of
the DEAGs was subjected to a comprehensive regulation of
multiple factors. Around 20% are jointly regulated by two
factors. So, the DEAGs regulated by any two factors were

thoroughly investigated (Figure 4 and Supplementary Figure
S4). There are no doubts that TF and miRNA synergistically
influenced a large portion of the DEAGs, which may be
a result of their relatively large quantity. The influence of
CNVs and gene promoter methylations cannot be ignored.
Hypermethylation of gene promoter generally has a negative
influence on genetic expression, and the CNVs generally has a
positive influence (Figures 3C,D). This pattern is consistent with
the pre-transcriptional regulation of the gene.

Prognostic Value of the Biomarker for
Survival Prediction
To further validate the prognostic performance, a univariate Cox
proportional hazards regression model was used to evaluate the
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FIGURE 4 | The influence of any two factors to DEAGs in the four stages of COAD. The numbers represent the proportion of the DEAGs regulated by each pair of
upstream regulators in stage I (A), II (B), III (C), and IV (D). The darker color represents a larger effect.

association between the DEAGs expression levels and overall
survival (OS). The 281 COAD patients were divided randomly
into a train dataset (n = 140) and an internal test dataset
(141). It was found that nine genes were significantly associated
with OS in the train dataset (P < 0.01). Using the regression
coefficients estimated in the multivariate Cox regression analysis
as weights, the risk score for each patient in the train dataset
was calculated by a linear combination of the expression levels
of the nine-gene. These scores were classified into high-risk
group (n = 70) and low-risk group (n = 70) with the median
risk score as the cutoff point. The result showed that patients
in the high-risk group exhibited poor OS compared with those
in the low-risk group (log rank P < 0.05) (Figures 5A,D).

A time-dependent ROC curves analysis performed on the nine-
gene and the area under curve (AUC) was achieved at 0.924
(Figure 5G). These genes can effectively stratify patients into
different risk groups, which suggests that they may play essential
roles in COAD. Internal test datasets were used to evaluate
the prognostic value of the nine-gene signatures in predicting
survival (Figures 5B,E,H) and a GEO dataset (Figures 5C,F,I).
Patients of the internal test dataset and GEO dataset were divided
into high-risk group and low-risk group with accordance to
the same nine-gene signature score model derived from the
train dataset. As in the train dataset, OS of high-risk group
was significantly worse than that of the low-risk group (log
rank P < 0.01). These results demonstrated that the nine
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FIGURE 5 | The prognostic value of the nine genes signature in COAD. (A–C) Show the Kaplan–Meier survival curves for the train (A), test (B), and GEO datasets
(C). The red and green lines represent the high-risk and low-risk patients respectively. P-value means log rank P. (D–F) Show the detailed risk score distribution of
patients in the train (D), test (E), and GEO datasets (F). (G–I) Show the ROC curves and AUCs of the nine gene signature predicting patients’ five-year survival in the
train (G), test (H), and GEO datasets (I).

genes were potential prognostic biomarkers for the prediction of
tumor risk in COAD.

The univariate and multivariate analysis indicated that the
nine-gene module biomarker was significantly associated with
the OS of the COAD patients in the train and internal test
dataset (Table 1). Additionally, the multivariate analysis also
demonstrated that the designation of high-risk and low-risk
groups remained statistically significant in the independent
GEO dataset. In conclusion, these analyses demonstrated the
capacity of the nine-gene biomarkers for COAD, and its ability
to add value in the prognostic setting. This process was then

systematically executed on the study of READ (Supplementary
Figure S5), there are fifteen-gene biomarkers for READ.

Molecular Signatures of Prognostic
Biomarkers
To investigate the clinical implications of the molecular
signatures, we focused on the nine genes of COAD. There
are six therapeutic targets of FDA-approved drugs through
their associated TFs. SLC25A1 maintains mitochondrial integrity
and bioenergetics in tumor cells. It prevents mitochondrial
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TABLE 1 | Univariate and multivariate Cox regression analysis in the COAD.

Variables Univariate analysis Multivariate analysis

HR 95% CI P-value HR 95% CI P-value

Train dataset

Nine genes 2.795 1.894–4.125 2.258e-07 2.394 1.617–3.546 1.32e-05

Stage

I,II 1(reference) 1(reference)

III,IV 2.307 0.880–6.052 0.0892 2.639 0.742–9.390 0.134

Age 1.009 0.974–1.045 0.624 1.023 0.985–1.062 0.235

Tumor weight 1.004 1.001–1.006 0.005 1.004 1.000–1.006 0.028

Test dataset

Nine genes 2.718 1.389–5.321 0.004 2.532 1.179–5.437 0.0172

Stage

I,II 1(reference) 1(reference)

III,IV 2.753 1.094–6.928 0.032 4.002 1.435–11.16 0.008

Age 1.015 0.981–1.050 0.396 1.021 0.984–1.06 0.264

Tumor weight 1.002 1.000–1.003 0.022 1.001 0.999–1.003 0.1001

GEO dataset

Nine genes 2.718 1.774–4.165 4.384e-06 2.578 1.65–4.03 3.19e-05

Stage

I,II 1(reference) 1(reference)

III,IV 4.2199 2.387–7.459 4.065 2.285–7.234 1.85e-06

Age 1.006 0.988–1.025 0.492 1.017 0.999–1.037 0.0612

damage and circumvents mitochondrial depletion via autophagy,
hence promoting proliferation (Catalina-Rodriguez et al., 2012).
Several evidences implicate that SLC25A1 plays a role in cancer
progression. High levels of SLC25A1 expression are associated
with poor prognosis in lung cancer and estrogen receptor
negative breast cancer (Georgiades et al., 1988; Jiang et al.,
2017). In ovarian cancer patients, SLC25A1 mRNA levels are
also associated with resistance to platinum-based chemotherapy,
and blocking CTP function enhances sensitivity of cultured
ovarian carcinoma cells to platinum (Georgiades et al., 1988;
Jiang et al., 2017).

There were 41 FDA-approved drugs related to the six
therapeutic targets, and they were connected by four TFs
(Figure 6A). Ethanolamine derivatives of eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA) have recently been
found to induce autophagy by activating PPARG in human breast
cancer cells (Rovito et al., 2015; Garay-Lugo et al., 2016). The
PPARG gene is related to malignancy, which plays a vital role
in the pathogenesis of multiple cancers in some clinical studies
and animal models (Wang et al., 2015). AR plays a negative role
in regulating the autophagy induced by celastrol, and it inhibits
autophagy by transactivating mir-101 in prostate cancer cells
(Guo et al., 2015). ESR1 is essential for sexual development as well
as reproductive function and is involved in inducing autophagy of
toxins (Chen and Xia, 2014; Tan et al., 2016).

These drugs can perform three types of treatment, including
targeted therapy, hormone therapy, and chemotherapy. The
Current studies have shown that the exposure to PT and
balsalazide effectively inhibited the proliferation of human colon
cancer HCT116 cells via inhibiting NF-κB activity and inducing
apoptotic cell death. These suggest that the simultaneous

administration of PT and balsalazide may provide a novel option
for the treatment of colon cancer (Kim et al., 2015). The published
evidence indicates that sulfasalazine prevents the development of
dysplasia and CRC in patients with IBD (Eaden, 2003).

The distribution of four regulators was investigated on
the six therapeutic targets in distinct stages (Figure 6A). It
was found that each factor had stronger effects at different
stages of cancer. In principle, their effects are present in stage
II, III and IV, but there was almost no effect in stage I.
A comprehensive network was constructed by integrating the
upstream regulators and downstream regulated genes of the
nine genes of COAD (Figure 6B and Supplementary Table
S1). In final, we found that RBP play very important regulatory
factors regulated autophagy-mediated CRC cell death in DEAG
regulatory network (Supplementary Table S2). For example,
DDX17 RNA-binding protein that regulated autophagy genes
SLC25A1 and TRMT112 in the COAD is also important for
the autophagy regulatory network. Similarly, POLR3A RNA-
binding protein that acted as TFs performed the task of regulating
autophagy genes in the READ (Supplementary Table S2).
Prognosis biomarkers show the different regulation modes. It
was found that more than half of the genes were regulated
by TF, which existed in several stages. Then this process was
systematically executed on the study of READ (Supplementary
Figure S6 and Supplementary Table S1).

DISCUSSION

Autophagy is associated with both tumorigenic and tumor
progression in CRC (Lin et al., 2014). However, the clinical
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FIGURE 6 | Molecular Signatures and upstream and downstream network of nine biomarkers in COAD. (A) The mapping between FDA-approved drugs and their
related genes (left) and the influence of four factors to the nine genes (right). The blue, green and orange lines represent targeted therapy, chemotherapy and
hormone therapy respectively. Square, top triangle, diamond and bottom triangle represent the regulation of TF, miRNA, methylation and CNV on related genes in
four stages. (B) Upstream and downstream network. The thickness of the line represented the quantity of interactions in these stages. The yellow and purple
triangles (inside the four panel squares) represent that the nine genes are affected by their own methylation and CNV. Each panel in the four-panel squares
represents each of the four cancer stages (top left is stage I, top right is stage II, bottom left is stage III, and bottom right is stage IV).
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significance and autophagy function in CRC remains unclear.
In this study, we have revealed the expression signatures of
autophagy genes regulated by multiple factors, which include TF,
miRNA, promoter methylation, and CNV. Some studies have
demonstrated that RNA binding proteins as TFs play a key role
in the development and function of CRC (New et al., 2019).
RNA binding proteins regulate the expression of thousands of
transcripts and are crucial for the regulation of CRC cellular
processes, such as RNA splicing, modifications, transport, and
translation (Kudinov et al., 2017; Chatterji and Rustgi, 2018).
For instance, Zhou B et al. found that APOBEC3G, EEF1A2,
EIF5AL1, and CELF3 as RNA binding proteins may provide
a good prospect for the clinical diagnosis and treatment of
patients with CRC metastasis (Zhou and Guo, 2018). As other
examples, PTBP1 RNA binding protein that associated with
tumor metastasis in CRC tissues directly interacts with autophagy
gene ATG10 and regulates ATG10 expression level (Zhou and
Guo, 2018). Therefore, research on the regulation of autophagy
to improve clinical outcomes is becoming increasingly important.
In conclusion, some novel prognostic biomarkers associated with
autophagy in CRC should be further investigated in the future.

Autophagy genes are the key components of the autophagy-
mediated regulatory network. They are implicated in the
occurrence and development of CRC (Hao et al., 2017). We
have systematically validated the autophagy genes of differential
expression, through data comparison of diverse stages for CRC.
Our findings were consistent with previous reports that the
signature of autophagy genes changes with different expression
variation in the progression of CRC. We further analyzed
the potential functional implication of autophagy genes that
were specifically expressed in various periods and found that
the enriched biological processes and pathways of these genes
play essential roles in diverse stages of CRC. Even more, our
results showed that multiple factors that regulate DEAGs are
significantly different. The TF and miRNAs that regulate the
autophagy genes had a very low overlap in various stages of
CRC. Therefore, the modulation of autophagy genes as potential
prognostic biomarkers in CRC should be further researched.

To identify potential prognostic biomarkers in CRC, we
evaluated the associations between expression levels of DEAGs
and the survival of the patient by employing the Cox regression
analysis (Lossos et al., 2004). Multiple evidences show that
SLC25A1 overexpression is associated with poor prognosis
of lung cancer and estrogen receptor-negative breast cancer
(Georgiades et al., 1988). These genes have a strong prognostic
ability and are independent of clinical factors. As significant
prognostic factors in four stages of CRC, the signature of
autophagy genes will have important effects on cancer-related
biological processes. However, this observation should be

interpreted with caution, because there are many uncertainties
in the upstream regulatory factors of autophagy. Alterations in
various molecular levels could cause expression dysregulation of
autophagy genes (Hao et al., 2017). Therefore, further efforts are
required to elucidate the corresponding contributions of various
factors in the expression signatures of the autophagy gene of
CRC (Wang et al., 2016). Also, it is essential that we continue
to explore the biological functions of autophagy in the context of
different interactions.

In summary, we identified the potential prognostic
biomarkers in CRC and described their signatures in several
stages of CRC. Along with the development of cancer
clinical management approaches, this study will make a
significant step toward transforming them from preclinical to
clinical assessments.
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