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Objectives: To develop and validate a radiomics nomogram to improve prediction of
recurrence and metastasis risk in T1 stage clear cell renal cell carcinoma (ccRCC).

Methods: This retrospective study recruited 168 consecutive patients (mean age, 53.9
years; range, 28–76 years; 43 women) with T1 ccRCC between January 2012 and June
2019, including 50 aggressive ccRCC based on synchronous metastasis or recurrence
after surgery. The patients were divided into two cohorts (training and validation) at a 7:3
ratio. Radiomics features were extracted from contrast enhanced CT images. A radiomics
signature was developed based on reproducible features by means of the least absolute
shrinkage and selection operator method. Demographics, laboratory variables (including
sex, age, Fuhrman grade, hemoglobin, platelet, neutrophils, albumin, and calcium) and CT
findings were combined to develop clinical factors model. Integrating radiomics signature
and independent clinical factors, a radiomics nomogram was developed. Nomogram
performance was determined by calibration, discrimination, and clinical usefulness.

Results: Ten features were used to build radiomics signature, which yielded an area
under the curve (AUC) of 0.86 in the training cohort and 0.85 in the validation cohort. By
incorporating the sex, maximum diameter, neutrophil count, albumin count, and radiomics
score, a radiomics nomogram was developed. Radiomics nomogram (AUC: training,
0.91; validation, 0.92) had higher performance than clinical factors model (AUC: training,
0.86; validation, 0.90) or radiomics signature as a means of identifying patients at high risk
for recurrence and metastasis. The radiomics nomogram had higher sensitivity than
clinical factors mode (McNemar’s chi-squared = 4.1667, p = 0.04) and a little lower
specificity than clinical factors model (McNemar’s chi-squared = 3.2, p = 0.07). The
nomogram showed good calibration. Decision curve analysis demonstrated the
superiority of the nomogram compared with the clinical factors model in terms of
clinical usefulness.
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Conclusion: The CT-based radiomics nomogram could help in predicting recurrence and
metastasis risk in T1 ccRCC, which might provide assistance for clinicians in tailoring
precise therapy.
Keywords: clear cell renal cell carcinoma, recurrence, neoplasm metastasis, computed tomography, prediction model
INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) is the most common
subtype of kidney cancer, whose incidence has been continuously
increasing over the last few decades (1, 2). This trend is largely
attributed to the widespread use of advantage radiologic
diagnostic techniques (CT and ultrasound), as well as the
popularization in regular checkups, allowing that most ccRCCs
could be detected at T1 stage. ccRCC patients are at high risk of
metastasis and recurrence (3). The incidence of RCC recurrence
following nephrectomy has been reported to be 7% with a
median time of 38 months for T1 tumors, 26% with a median
time of 32 months for T2 disease, and 39% with a median time to
recurrence at 17 months for T3 tumors (4). Tumor-node-
metastasis stage and pathological grade are generally adopted
to estimate the risk of tumor recurrence in patients with ccRCC
after surgical operation. Nevertheless, distinct outcomes are
demonstrated in patients with equivalent tumor-node-
metastasis stage and pathological grade (5–8).

According to the European Association of Urology guidelines
(1), localized T1 stage tumors are best managed by partial
nephrectomy. At the same time, active surveillance can be
offered to those patients of older age with co-morbidities,
harboring a single kidney and/or those who are unwilling to
undergo a major surgical operation. However, the tumor biology
of T1 stage ccRCC keeps poorly understood. It is reported that a
subset of patients with more aggressive ccRCC may benefit from
adjuvant targeted therapy according to a recent study (9).
Therefore, the development of an accurate system to ascertain
which patients are at truly higher risk of metastasis or recurrence
is needed to allow for better patient selection of those who are
most likely to benefit from adjuvant therapy. Several studies have
noted that nomograms comprising merely clinical factors were
applied to assess the prognosis of ccRCC after surgery (10, 11).
However, some of the parameters used in the nomogram such as
tumor necrosis and clinical presentation are subject to inter-
observer variability. Hence, further research and validation
are needed.

Radiomics is a promising technique using computerized
quantitative imaging analysis to extract an enormous quantity
of image-related features, such as intensity, geometry, and
texture, from medical images (12, 13). It has been increasingly
reported that radiomics can be used for differentiating benign
and malignant renal tumors, as well as discriminating high and
low Fuhrman nuclear ccRCC (14–18). However, to the best of
our knowledge, no study has evaluated radiomics for its ability to
predict the aggressive potential of ccRCC.

The purpose of this study is to develop and validate a
radiomics nomogram that incorporates the radiomics signature
2

and the clinical factors to improve preoperative prediction of
recurrence and metastasis risk in T1 stage ccRCC.

MATERIALS AND METHODS

Institutional Board Approval
The institutional review board of our hospital approved this
single-center retrospective study. The requirement for obtaining
informed consent was waived.

Patients
Data for surgically and pathologically confirmed ccRCC cases in
our hospital were acquired from 1 January 2012 to 30 June 2019
by searching through our institutional database and medical
record system. During the 7-year recruiting period, 508
consecutive patients with T1 stage ccRCC underwent surgical
operation in our institution. A total of 145 patients were
excluded due to absence of preoperative contrast enhanced CT
images, and 25 patients were excluded due to history of von
Hippel-Lindau disease or bilateral RCC. Aggressive tumors were
defined as tumors exhibiting synchronous metastasis (n = 34), or
recurrence after surgery (n = 16). The patient recruitment
pathway is presented in Figure 1 and Supplementary
Information 1.1. The end points of our study were time until
detection of metastasis or recurrence and time to last follow-up if
the patient was alive. A total of 50 patients were defined as
aggressive ccRCC (including nine T1a tumors and 41 T1b
tumors), and 118 patients were non-aggressive ccRCC
(including 65 T1a tumors and 53 T1b tumors). The metastatic
locations were the lung (n = 12), bone (n = 21), liver (n = 2),
retroperitoneum (n = 2), adrenal gland (n = 1), both the bone
and lung (n = 6), both the lung and brain (n = 2), both the lung
and adrenal gland (n = 2), both the bone and liver (n = 1), and
simultaneously the bone, lung, and adrenal gland (n = 1). A total
of eight cases were confirmed by biopsy and histopathology, and
the other cases were diagnosed by radiologic features, that is,
there was an increase in volume or number of suspected
metastases during follow-up. The patients were divided into
two cohorts (training and validation) according to the
proportion of 7:3 using computer-generated random numbers.

CT Image Acquisition and Radiologic
Evaluation
The details of image acquisition parameters are shown in
Supplementary Information 1.2 and Supplementary Table 1.
Among the aggressive tumors, 33 (66.0%) patients underwent
CT scans using a 320-detector CT scanner (Aquilion ONE,
TOSHIBA) and 17 (34.0%) underwent a 64-detector CT
scanner (Discovery, GE Healthcare). Among the non-
November 2020 | Volume 10 | Article 579619
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aggressive tumors, 90 (76.3%) patients underwent CT scans
using Aquilion ONE, and 28 (23.7%) patients underwent
Discovery. Each CT study was analyzed by a radiology resident
(Reader 1, BK) and a radiologist (Reader 2, XW) with 5 and 20
years of experience in abdominal imaging, respectively. Aware of
the diagnosis of ccRCC but blinded to the radiological reports
and pathologic details, the two researchers construed the
following CT features by consensus: the maximum diameter of
tumor on the axial CT image; tumor location (exophytic or not,
exophytic meaning >50% outside renal parenchyma); tumor
polarity (superior or inferior or middle); and tumor side (left
or right). The maximum diameter of the tumor was measured by
the two radiologists, and the average value was applied to the
evaluation. For those qualitative parameters (including tumor
location, polarity and side), in the event of disagreement, the two
readers jointly reviewed the findings to reach a consensus for
further analysis.

Development of Clinical Factor Model
Univariate logistic regression analysis was applied to the clinical
factors, including clinical data (sex, age, and Fuhrman grade),
laboratory variables (hemoglobin, platelet, neutrophils, albumin,
and calcium), and CT features to find the factor that significantly
affected the event occurrence probability (p < 0.05). Then a
multiple logistic regression analysis with a step-wise backwards
elimination was subsequently applied to build the clinical factors
model. Odds ratios (ORs) as estimates of relative risk with 95%
confidence intervals (CIs) were calculated for each risk factor.

Segmentation of Tumor Images
and Radiomics Feature Extraction
ITK-SNAP software (Version 3.6.0, www.itksnap.org) was used
for segmentation of tumors. A defined polygonal region-of-
Frontiers in Oncology | www.frontiersin.org 3
interest was delineated on the center slice of the ccRCC on
corticomedullary phase (CMP) and nephrographic phase (NP)
images, avoiding covering the paratumoral renal parenchyma
and perinephric fat (Figure 2).

AK software (AnalysisKit 3.2.0; GE Healthcare, China) was
used to extract a total of 396 radiomics features from the region-
of-interest for one phase. The radiomics features are detailed in
Supplementary Information 1.3.

Inter- and intra-class correlation coefficients (ICCs) were
calculated to estimate the inter-observer reliability and intra-
observer reproducibility of features extraction. 20 cases of CT
images containing six aggressive ccRCCs and 14 non-aggressive
ccRCCs were randomly chosen; region-of-interest segmentation
was drawn by one radiology resident (Reader 1, BK) and one
radiologist (Reader 2, XW) independently; both were aware of
the diagnosis of ccRCC but were blinded to the pathologic
details. Reader 1 then repeated the contouring procedure 8
weeks after the initial analysis to assess the agreement of
feature extraction. The remaining image segmentation was
performed by Reader 1.

Development of Radiomics Signature
and Radiomics Nomogram
The prevention of the overfitting of the signature can be realized
through the conduction of dimension reduction of the features
before signature construction. Only were the radiomics chosen to
be kept when meeting a criterion of inter- and intra-observer
ICCs greater than 0.75, then the minimum-Redundancy
Maximum-Relevancy method was performed to eliminate the
redundant and irrelated features and kept 30 features. The
remaining features were enrolled into the least absolute
shrinkage and selection operator (LASSO) regression model to
select the most valuable features in the training cohort. Then the
FIGURE 1 | Recruitment pathway for patients in this study. CcRCC, clear cell renal cell carcinoma.
November 2020 | Volume 10 | Article 579619
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radiomics signature (Radiomics score) was calculated by
summing the selected feature values weighted by their
corresponding features.

To provide a more individualized predictive model, a
nomogram combining the final radiomics signature and
significant clinical variables were built in the training cohort.
The calibration of the nomogram was evaluated with a
calibration curve. The Hosmer–Lemeshow test was conducted
to assess the goodness-of-fit of the nomogram. A radiomics
nomogram score for each patient was obtained in the training
and validation cohorts.

Assessment of the Performance
of Different Models
The predictive accuracy of the clinical factors model, radiomics
signature, and radiomics nomogram for differentiating
aggressive ccRCC from non-aggressive ccRCC was quantified
by the area under the receiver operating characteristics (ROC)
curve (AUC) in both the training and validation sets. Decision
curve analysis was used to calculate the net benefits for a range of
threshold probabilities in the whole cohort to assess the clinical
usefulness of the nomogram.

Statistical Analysis
Statistical tests were performed using R statistical software
(version 3.5.1, https://www.r-project.org). Univariate logistic
regression analysis was applied to find the factor that
significantly affected the event occurrence probability (p<0.05).
Group differences are figured out by means of univariate
analysis, which consists of chi-square test or Fisher exact test
for categorical variables and Mann–Whitney U test for
continuous variables, where appropriate. The LASSO-logistic
Frontiers in Oncology | www.frontiersin.org 4
regression model was used to select the features and construct
the radiomics signature. A linear combination of the selected
features and the product of the corresponding weighting
coefficients was utilized to calculate the radiomics score of each
patient. A multiple logistic regression analysis was applied to
develop the radiomics nomogram by using the statistically
significant clinical characteristics and the radiomics signature
as input variables. ROC analysis was conducted to evaluate the
performance of each model, and the differences in the AUC
values between different models were estimated using the
Delong’s test. Besides, McNemar test was used to compare the
sensitivity and specificity between the clinical factors model and
radiomics nomogram. The Hosmer–Lemeshow test and a
decision curve were used to evaluate and validate the
radiomics nomogram results. A two-tailed P < 0.05 was
indicative of statistical significance.
RESULTS

Clinical Factors of the Patients and
Construction of the Clinical Factor Model
The patients’ demographic baseline characteristics (mean age, 53.9
years; age range, 28–76 years; 43 women) are summarized in
Table 1. No differences were detected in clinical characteristics
between the training and validation cohorts (p = 0.124–0.948). The
rates of aggressive ccRCC were 29.7% (35 of 118) and 30% (15 of
50) in the training cohort and validation cohort, respectively,
whereas no statistically significant difference was found between
the two cohorts. The results of multiple logistic regression analysis
are listed in Table 2, which suggested that only maximum diameter
and albumin remained as independent predictors of aggressive
November 2020 | Volume 10 | Article 57961
FIGURE 2 | Manual segmentation of the tumor on the center axial slice of the clear cell renal cell carcinoma (ccRCC).
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ccRCC (p < 0.05). Tumors with larger maximum diameter (OR,
1.61; 95% CI, 1.14–2.28) or lower albumin (OR, 0.79; 95% CI, 0.69–
0.92) were likely to be aggressive ccRCC. The clinical factors model
was constructed using the backward step-wise multivariate logistic
regression with Akaike information criterion (AIC) as criterion.
This method only considered the AIC rather than the p value of
each clinical factor so that the method determined the optimized
feature subset. Finally, the sex, maximum diameter, neutrophils, and
albumin were incorporated into the institution of the clinical
factors model.

Feature Extraction, Selection, and
Radiomics Signature Establishment
Consistent inter- and intra-observer agreement was found in 654
features (ICCs, 0.8279–0.9595) among the total of 792 radiomics
features extracted from CMP and NP CT images. Thirty
radiomics features exhibiting significant differences between
aggressive ccRCC and non-aggressive ccRCC by minimum-
Redundancy Maximum-Relevancy were enrolled into the
LASSO logistic regression model to select the most valuable
features (Figures 3A, B). Finally, the selected 10 radiomics
Frontiers in Oncology | www.frontiersin.org 5
features were displayed in Figure 3C. The radiomics score was
attained with the following formula:

“Radiomics score = 0:527

�NP_GLCMentropy_AllDirection_offset1_SD + 0:23

�NP_Correlation_angle90_offset7 − 0:174

�CMP_ShortRunEmphasis_angle0_offset4 − 0:197

�NP_Inertia_angle90_offset4  +  0:483 

� CMP_GLCMEnergy_angle45_offset7  +  0:527 

�CMP_SphericalDisproportion� 0:119 

�CMP_LongRunEmphasis_angle0_offset4  +  0:08 

�NP_LongRunEmphasis_angle90_offset1� 0:192

�NP_ShortRunEmphasis_angle45_offset4  +  0:04 

� CMP_Correlation_angle135_offset7  − 1:066 ”

The distributions of the radiomics score for each patient in
training and validation cohorts are displayed in Figure 4.
TABLE 1 | Characteristics of patients in the training and validation cohorts.

Clinical factors Training cohort (n = 118) Validation cohort (n = 50)

Aggressive ccRCC Non-aggressive ccRCC p Aggressive ccRCC Non-aggressive ccRCC p

Sex 0.092 0.843
Men 31 (88.6) 60 (72.3) 11 (73.3) 23 (65.7)
Women 4 (11.4) 23 (27.7) 4 (26.7) 12 (34.3)

Age (years)* 56.8 ± 9.6 (30–72) 53.0 ± 11.5 (28–76) 0.088 53.6 ± 11.1 (31–68) 53.4 ± 11.5 (30–76) 0.948
Nephrectomy type
Partial
Radical

10 (28.6)
25 (71.4)

37 (44.6)
46 (55.4)

0.105
5 (33.3)
10 (66.7)

19 (54.3)
16 (45.7)

0.174

Polarity 0.233 0.857
Superior 10 (28.6) 22 (26.5) 5 (33.3) 9 (25.7)
Middle 11 (31.4) 39 (47.0) 6 (40.0) 16 (45.7)
Inferior 14 (40.0) 22 (26.5) 4 (26.7) 10 (28.6)

Location 0.076 0.090
Exophytic 23 (65.7) 38 (45.8) 13 (86.7) 20 (57.1)
Not exophytic 12 (34.3) 45 (54.2) 2 (13.3) 15 (42.9)

Side 1.000 1.000
Left 16 (45.7) 37 (44.6) 7 (46.7) 18 (51.4)
Right 19 (54.3) 46 (55.4) 8 (53.3) 17 (48.6)

Maximum diameter (cm)* 5.2 ± 1.5 (1.5–7.0) 4.0 ± 1.4 (1.2–7.0) <0.001 5.3 ± 1.4 (2.9–7.0) 3.8 ± 1.3 (1.9–6.9) <0.001
Fuhrman grade 0.059 NA
1 0 (0.0) 11 (13.3) 1 (6.7) 5 (14.3)
2 31 (88.6) 64 (77.1) 11 (73.3) 26 (74.3)
3 3 (8.6) 8 (9.6) 3 (20.0) 4 (11.4)
4 1 (2.9) 0 (0.0) 0 (0.0) 0 (0.0)

Hemoglobin (g/L)* 139.5 ± 21.5 (81–175) 143.1 ± 16.9 (71–169) 0.328 141.0 ± 19.5 (109–167) 149.1 ± 15.6 (117–178) 0.117
Platelet (109/L)* 275.6 ± 80.2 (190–589) 236.0 ± 56.2 (115–423) 0.002 305.8 ± 140.9 (172–747) 234.4 ± 45.7 (154–399) 0.007
Neutrophils (109/L)* 5.1 ± 2.5 (2.11–13.19) 3.7 ± 1.2 (0.68–9.01) <0.001 5.1 ± 2.2 (1.73–10.07) 3.7 ± 1.0 (1.87–6.15) 0.002
Albumin (g/L)* 38.7 ± 5.3 (26.7–49.1) 42.9 ± 2.9 (34.8–49.5) <0.001 39.9 ± 4.0 (33.8–46.4) 43.3 ± 3.2 (36.1–48.4) 0.001
Calcium (mmol/L)* 2.3 ± 0.3 (1.9–3.28) 2.3 ± 0.1 (1.98–2.78) 0.433 2.3 ± 0.1 (2.13–2.66) 2.3 ± 0.1 (2.1–2.54) 0.937
Median Rad-score† −0.3 (−0.7, 0.5) −1.7 (−2.2, −0.9) <0.001 −0.5 (−0.8, 0.1) −1.7 (−2.3, −1.1) <0.001
Novembe
r 2020 | Volume 10 | Article
Unless otherwise indicated, data are number of patients and data in parentheses are percentages. The sum of percentages may not be 100% because of rounding. ccRCC, clear cell renal
cell carcinoma; NA, not available.
*Data are mean ± standard deviation; data in parentheses are range.
†Data in parentheses are interquartile range.
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Radiomics score [median (interquartile range)] differed
significantly between the aggressive and non-aggressive ccRCC
groups in the training cohort [−0.3 (−0.7, 0.5) vs. −1.7 (−2.2,
−0.9), respectively, p < 0.001]; this finding was verified in the
validation cohort [−0.5 (−0.8, 0.1) vs. −1.7 (−2.3, −1.1),
respectively, p < 0.001]. ROC curves of radiomics signature are
displayed in Figure 5. The radiomics signature yielded an AUC
of 0.86 (95% CI: 0.79, 0.92) in the training cohort and 0.85 (95%
CI: 0.73, 0.97) in the validation cohort, showing favorable
predictive efficacy. Furthermore, we applied leave group out
cross validation (LGOCV) to validate the model’s robustness.
Frontiers in Oncology | www.frontiersin.org 6
The mean AUC, accuracy, sensitivity, specificity of LGOCV were
0.74, 0.72, 0.79, 0.69, respectively.

The Radiomics Nomogram Establishment
and Assessment of the Performance of
Different Models
By incorporating the sex, maximum diameter, neutrophil count,
albumin count, and radiomics score, a radiomics nomogram was
developed in the training cohort (Figure 6A). The calibration
curve of the radiomics nomogram demonstrated good agreement
between the predicted and expected probabilities for aggressive
ccRCC in training cohort (Figure 6B). The p values of Hosmer–
Lemeshow test were 0.45 and 0.11 in training and validation
cohorts respectively.

The diagnostic performance of every model is demonstrated in
Table 3. The ROC curves of radiomics nomogram and clinical
factors model are exhibited in Figure 7. In the training cohort, the
radiomics nomogram showed the highest discrimination, with an
AUC of 0.91 (95% CI: 0.86, 0.97); the observed AUC value was
slightly higher than that of the clinical factors model [AUC, 0.86
(95% CI: 0.78, 0.94); p = 0.051]. In the validation cohort, the
radiomics nomogram [AUC, 0.92 (95% CI: 0.85, 0.99)] also
achieved more satisfactory predictive efficacy than the clinical
A B

C

FIGURE 3 | Radiomics feature selection by using the least absolute shrinkage and selection operator (LASSO) logistic regression. (A) Selection of the tuning
parameter (l) in the LASSO model. An optimal l value of 0.022 (vertical dash line) with log(l) = −3.836 was selected. (B) The feature coefficients varied according to
log(l). (C) The selected features with nonzero coefficients and their coefficients.
TABLE 2 | Risk factors for aggressive ccRCC.

Variable Clinical model Radiomics nomogram

Odds ratio
(95% CI)

P value Odds ratio
(95% CI)

P value

Sex 0.27 (0.05–1.36) 0.112 0.34 (0.05–2.25) 0.265
Maximum diameter 1.61 (1.14–2.28) 0.007 0.96 (0.62–1.49) 0.849
Neutrophils 1.41 (0.99–2.02) 0.058 1.44 (0.94–2.22) 0.093
Albumin 0.79 (0.69–0.92) 0.002 0.81 (0.69–0.95) 0.008
Rad-score NA NA 3.76 (1.77–7.99) <0.001
Data are results of the multiple logistic regression analysis. ccRCC, clear cell renal cell
carcinoma; NA, not available; CI, confidence interval.
November 2020 | Volume 10 | Article 579619
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factors model [AUC, 0.90 (95% CI: 0.80, 0.99)], although the
difference was not statistically significant (p = 0.401). We then
usedMcNemar test for comparison of the sensitivity and specificity
between the clinical factors model and radiomics nomogram and
found that the radiomics nomogram had higher sensitivity than the
clinical factors model (100.0 vs. 60.0%, McNemar’s chi-squared =
4.1667, p = 0.04). However, the radiomics nomogram had a little
lower specificity than the clinical factors model, whereas the
Frontiers in Oncology | www.frontiersin.org 7
difference was not statistically significant (77.1 vs. 91.4%,
McNemar’s chi-squared = 3.2, p = 0.07). The nomogram score
was acquired using the following formula:

“Nomogram score = 8:6938 − 1:0699 �  Sex − 0:0430  

�Maximum diameter + 0:3671� Neutrophils − 0:2096

� Albumin  + 1:3243 �  Radiomics score ”
A B

FIGURE 4 | The distributions of the Rad-score for each patient in the (A) training and (B) validation cohorts. Blue and yellow represent non-aggressive clear cell
renal cell carcinoma (ccRCC) and aggressive ccRCC, respectively.
A B

FIGURE 5 | Receiver operating characteristic (ROC) curves of the radiomics signature in the (A) training and (B) validation cohorts, respectively. AUC, area under
the receiver operating characteristic curve.
November 2020 | Volume 10 | Article 579619
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The decision curve analyses for the clinical factor model and
radiomics nomogram are presented in Figure 8. It showed that
the radiomics nomogram had a higher overall net benefit in
differentiating aggressive ccRCC from non-aggressive ccRCC
than the clinical factor model across the full range of
reasonable threshold probabilities.
DISCUSSION

In this retrospective analysis, we developed a radiomics
nomogram that incorporates four clinical factors and
radiomics signature for noninvasive, individualized prediction
Frontiers in Oncology | www.frontiersin.org 8
of recurrence and metastasis risk in patients with clinical T1
stage ccRCC, which can enable physicians to select reasonable
treatment tactics and individualized monitoring protocols to
improve clinical outcomes. To the best of our knowledge, this
is the first prediction model developed to predict recurrence and
metastasis risk in T1 stage ccRCC using CT-based radiomics.
The proposed radiomics nomogram demonstrated favorable
discrimination in both the training cohort (AUC, 0.91) and the
validation cohort (AUC, 0.92), indicating that it has better
predictive performance than the clinical factor model (AUC:
training, 0.86; validation, 0.90) or the radiomics signature (AUC:
training, 0.86; validation, 0.85). The radiomics nomogram had
higher sensitivity than the clinical factors model (100.0 vs. 60.0%,
A

B C

FIGURE 6 | Radiomics nomogram developed with receiver operating characteristic (ROC) curves and calibration curves. (A) The radiomics nomogram, combining
sex, tumor maximum diameter, neutrophils, albumin, and Rad-score, developed in the training set. The nomogram calibration curves in the training (B) and validation
(C) sets. Calibration curves indicate the goodness-of-fit of the model. The closer the pink line approaches the gray line, the better agreement between the predictive
probabilities and the observed probabilities.
TABLE 3 | Results of radiomics nomogram, radiomics signature, and the clinical model predictive ability for distinguishing between aggressive ccRCC and non-
aggressive ccRCC.

Variables AUC(95% CI) Sensitivity* Specificity* Accuracy*

Clinical model Training cohort 0.86(0.78–0.94) 74.3(26/35) 86.7(72/83) 83.1(98/118)
Validation cohort 0.90(0.80–0.99) 60.0(9/15) 91.4(32/35) 82.0(41/50)

Radiomics signature Training cohort 0.86(0.79–0.92) 88.6(31/35) 77.1(64/83) 80.5(95/118)
Validation cohort 0.85(0.73–0.97) 73.3(11/15) 82.9(29/35) 80.0(40/50)

Radiomics nomogram Training cohort 0.91(0.86–0.97) 88.6(31/35) 81.9(68/83) 83.9(99/118)
Validation cohort 0.92(0.85–0.99) 100.0(15/15) 77.1(27/35) 84.0(42/50)
Novem
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CI, confidence interval.
*Numbers in parentheses were used to calculate percentages.
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McNemar’s chi-squared = 4.1667, p = 0.04) and a little lower
specificity than the clinical factors model (77.1 vs. 91.4%,
McNemar’s chi-squared = 3.2, p = 0.07).

Most patients with T1 stage ccRCC will have excellent
outcomes following resection or active surveillance, with a
97% 5-year survival imaging. Nevertheless, evaluating the
recurrence and metastasis risk of ccRCC only by tumor stage
is insufficient because some T1 ccRCC can be lethal once the
tumor exhibits synchronous metastasis or recurrence (19, 20).
Actually, the incidence of T1 RCC recurrence after nephrectomy
Frontiers in Oncology | www.frontiersin.org 9
has been reported to be 7% with a median time of 38 months (4).
Wei et al. (21) developed a classifier based on single-nucleotide
polymorphisms to predict recurrence risk in RCC and showed
that “recurrence risk of the subgroup of the classifier-defined
high risk in stage I or II was higher than the classifier-defined
low risk in stage III”. Currently, management of T1 ccRCC
depends on the surgeon’s discretion based on clinical and
pathological parameters related to aggressive potential of the
tumor (11, 22, 23). Prognostic factors and predictive models for
RCC patients’ outcomes have been reported previously by
multiple investigators (24–26). Park et al. (27) reviewed
preoperative laboratory data in 747 RCC patients and revealed
that clinical information supporting aggressive ccRCC included
an older age, larger size, lower hemoglobin, albumin, and
calcium, as well as higher platelet and neutrophil. However,
few radiologic parameters have been reported as prognostic
factors of ccRCC in contrast to pathological markers. We
enrolled these variables in this study, and found maximum
diameter, neutrophil, and albumin were significantly different
between the two groups, which was consistent with previous
studies. However, affected by the radiomics score, the maximum
diameter in our nomogram was less important. Besides, we
extracted the radiomics features also containing the geometry
features which features also reflected the maximum diameter
but after filtering the features, we found the maximum tumor
diameter correlated features were abandoned, which meant the
remaining features had more value in our paper. Compared with
the clinical factors model that only relied on clinical data and CT
features, the final radiomics nomogram model achieved higher
prediction performance for aggressive ccRCC. The decision
curve analysis revealed that using the radiomics nomogram to
differentiate aggressive ccRCC from non-aggressive ccRCC
presents more notable benefits than solely relying on clinical
factor model.

A prognostic multigene signature (28) has been developed to
predict recurrence risk in ccRCC, identifying that aggressive
A B

FIGURE 7 | Comparison of receiver operating characteristic (ROC) curves between the radiomics nomogram and clinical model for the prediction of aggressive clear
cell renal cell carcinoma (ccRCC) in the (A) training and (B) validation cohorts. AUC, area under the receiver operating characteristic curve.
FIGURE 8 | Decision curve analysis for the radiomics nomogram. The y-axis
shows the net benefit; x-axis shows the threshold probability. The red line
and blue line represent the net benefit of the radiomics nomogram and the
clinical factor model, respectively. The green line indicates the hypothesis that
all patients had aggressive clear cell renal cell carcinoma (ccRCC). The black
line represents the hypothesis that no patients had aggressive ccRCC. The
decision curves indicate that the application of radiomics nomogram to
predict aggressive ccRCC adds more benefit than treating all or none of the
patients, and clinical factor model, across the full range of reasonable
threshold probabilities.
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ccRCC are characterized by reduced angiogenic dependence. The
present paradigm of ccRCC imaging interpretation relies on a
visual process, which comprises evaluation of the shape, margin,
as well as degree and heterogeneity of enhancement. Junki et al.
(29) enrolled 88 patients with T1 stage ccRCC, including seven
patients that had recurrence after nephrectomy, and revealed
that tumor enhancement in the NP of CT was a predictive factor
for recurrence. However, these subjective approaches do not
adequately reflect discrepancies in the angiogenesis (30). To the
best of our knowledge, the medical images are the product of
procedures appearing at the level of the gene and molecule. As
such, imaging parameters acquired from advanced image
procedure and analysis, such as radiomics, can address the
underlying molecular and genotypic basis of the tissue (31–33).
Recently, radiomics have been reported for distinguishing benign
and malignant renal tumors, predicting ccRCC Fuhrman grade
and therapeutic response (32–38); radiomics related to the
recurrence and metastasis risk in ccRCC have rarely been
reported. A radiomics signature in our study was constructed
using ten selected features including gray-level co-occurrence
matrix (GLCM), run length matrix (RLM), and form factor
matrix. Among the selected radiomics features, Spherical
Disproportion, GLCMEntropy, and GLCMEnergy were the
most significant and robust features associated with aggressive
ccRCC. The Spherical Disproportion feature quantified the
degree of irregularity in the tumor boundary. An irregular
tumor boundary could be a sign of poor survival (39). Entropy
is a parameter describing the complexity of an image, which
means the larger entropy value is indictive of a more complex
tumor (40). Compared with the subjective CT findings, our
radiomics nomogram based on the quantitative analysis of
image features shows greater predictive power.

Our study has filled a gap in the literature on recurrence and
metastasis risk of T1 ccRCC in the setting of radiomics. Unlike
previous work, our radiomics nomogram could provide
beneficial information for preoperative prediction of T1 stage
aggressive ccRCC to estimate the necessity of adjuvant therapy.
Our study may have important clinical significance because the
risk of recurrence and metastasis is one of the most meaningful
prognostic ingredients, which is associated with cancer-related
overall survival after surgical operation (22). Three large clinical
trials (9, 41, 42) evaluated the use of adjuvant tyrosine kinase
inhibitors in ccRCC, concluding that patient selection is one of
important factors to maximize the benefit of adjuvant therapy,
which means it is critical to choose a population at high risk of
cancer recurrence. The patients with non-aggressive ccRCC
could be cured by surgery alone, and adjuvant therapy is of no
necessity and is not additionally beneficial; while those patients
with aggressive RCC, who were at high risk for tumor recurrence,
would have a longer duration of disease-free survival if they were
receiving adjuvant treatment. Therefore, accurate evaluation of
the recurrence risk cannot only assist in patient consultation and
manage treatment but also help guide follow-up and diminish
overtreatment in low-risk patients. Our radiomics nomogram
would allow for stratifying patients diagnosed with T1 stage
ccRCC for their follow-up schedule. For patients with aggressive
Frontiers in Oncology | www.frontiersin.org 10
ccRCC, more frequent monitoring in postoperative follow-up is
of significant necessity.

There are several limitations to our study. First, owing to the
limitation of the retrospective study and small number of cases,
the follow-up time we used was at least 3 years. Although
recurrence of ccRCC after surgery occurs within 3 years in
most patients, there still some patients developed recurrence
>3 years after surgery. It would be more interesting to enroll
patients without recurrence evidence for more than 5 or 10 years
and further prospective research would focus on these cases.
Second, as a single-center study, the patient population was
relatively homogeneous and small. During the 7-year recruiting
period, 168 T1 stage ccRCC were eligible for our study, including
74 T1a tumors and 94 T1b tumors. There is not enough data to
differentiate T1a and T1b tumors to perform a stratified analysis,
which is paramount. A large-scale independent prospective
multicenter study is needed to evaluate the generalizability of
the results, as well as take into account the differentiation
between the T1a tumors and T1b tumors. Third, only the
largest two-dimensional region-of-interest was applied for our
study. Although it is reported that three-dimensional radiomics
analysis appeared more indicative of tumor heterogeneity, we
think that it would not be clinically practical owing to extra
segmentation duration. Fourth, all of the images in this
retrospective study underwent a fixed procedure instead of
individualized optimal scan protocol, which may influence the
image quality. The next step is to conduct prospective and
standardized research. Optimal scanning time by using bolus
tracking and individualized amount of contrast medium will be
considered in our future study. Last, we defined aggressive
ccRCC as tumor exhibiting synchronous metastasis or
recurrence after surgery. However, there may be significant
radiomical differences between patients with synchronous
metastasis and recurrence. Furthermore, our prospective
research on the radiomics nomogram for predicting recurrence
risk after surgical operation is ongoing.

In conclusion, our study presented a CT-based radiomics
nomogram that showed satisfactory performance in predicting
recurrence and metastasis risk among patients diagnosed with
T1 stage ccRCC, which can enable physicians to make more
informed treatment decisions about adjuvant therapy. Radiomics
nomogram, as a non-invasive and quantitative method, may
serve as an efficient tool to complement the conventional
procedures for clinical decision-making process.
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