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Abstract

Background: Diabetes mellitus is a group of metabolic diseases with increased blood
glucose concentration as the main symptom. This can be caused by a relative or a total
lack of insulin which is produced by the β-cells in the pancreatic islets of Langerhans.
Recent experimental results indicate the relevance of the β-cell cycle for the
development of diabetes mellitus.

Methods: This paper introduces a mathematical model that connects the dynamics of
glucose and insulin concentration with the β-cell cycle. The interplay of glucose,
insulin, and β-cell cycle is described with a system of ordinary differential equations.
The model and its development will be presented as well as its mathematical analysis.
The latter investigates the steady states of the model and their stability.

Results: Our model shows the connection of glucose and insulin concentrations to
the β-cell cycle. In this way the important role of glucose as regulator of the cell cycle
and the capability of the β-cell mass to adapt to metabolic demands can be presented.
Simulations of the model correspond to the qualitative behavior of the glucose-insulin
regulatory system showed in biological experiments.

Conclusions: This work focusses on modeling the physiological situation of the
glucose-insulin regulatory system with a detailed consideration of the β-cell cycle.
Furthermore, the presented model allows the simulation of pathological scenarios.
Modification of different parameters results in simulation of either type 1 or type 2
diabetes.

Keywords: Glucose-insulin regulation, Cell cycle, Feedback loop, ODE model

Introduction
The term diabetes mellitus describes a group of metabolic diseases where cells, mainly
muscle and fat cells, are not able to take up enough glucose from the blood. This can be
due to a relative or absolute lack of insulin (cf. [1,2]). Insulin is the hormone that increases
the permeability of the cell membrane for glucose molecules and regulates in this way the
uptake of glucose in the cells. Therefore, a lack of insulin leads to a failure of regulation
of glucose homeostasis and causes the main symptom of diabetes mellitus, a persisting
increased concentration of blood sugar - in technical terms hyperglycemia.

The more common type 2 diabetes - formerly known as adult onset diabetes - is
characterized by insulin resistance of the target cells. Type 1 diabetes in contrast is
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an autoimmune disease where the organism destroys the insulin producing β-cells [3].
In both scenarios glucose-insulin regulation is disturbed and the adaption of β-cells is
insufficient to compensate for this dysfunction.

There are three main players in the glucose-insulin regulatory system:

1. Glucose is the energy source for the cells and is mainly obtained by carbohydrates
in food. An elevation of blood glucose concentration is detected by the β-cells. It
causes them to release stored insulin molecules and to produce new insulin.

2. Insulin is the main regulator of glucose uptake in target cells. It increases the
permeability of the cell membrane for glucose molecules.

3. The β-cells are located in the islets of Langerhans in the pancreas. They store and
produce insulin.

The following sections describe a mathematical model for the glucose-insulin regulatory
system that connects dynamics in the β-cell with dynamics in the blood and the β-cell
cycle. The development of the model is based on the classic insulin secretion model of
Grodsky [4], who used a packet distribution hypothesis also described by Ličko [5] in
greater detail. In these publications insulin is assumed to be stored in packets for different
release thresholds of glucose and the main objective is to account for staircase stimula-
tions of glucose. In our work the classic model of Grodsky is extended to variable glucose
and adapted to the extension with insulin and glucose blood concentrations and the β-cell
cycle. The aim of our model is not to show biochemical or biophysical processes in detail
but to present the core processes and interactions in a mechanistic way. The model also
provides possibilities for extensions and consideration of additional and more detailed
knowledge and questions.

The paper is organized as follows. The motivation of the model, the general setup, and
the development are presented in Section “Aim and development of the model”. In Section
“Mathematical model” a detailed description of the mathematical model is shown. The
mathematical analysis is presented in Section “Analysis of the model” and simulations of
the model in Section “Simulation”. The results are summarized and discussed in Section
“Discussion”.

Aim and development of the model
Several publications [6-8] discuss the relevance of the β-cell mass for the development of
diabetes mellitus. Normally there is a slow turnover of β-cells (see [9]) but the β-cell mass
can adapt to metabolic demands [7,8]. The concept of dynamic β-cell mass was under dis-
cussion for some time but is now generally accepted. Nevertheless, there is a controversy
on the mechanisms and the precise growth factors responsible for this adaption [6,9,10]. It
was shown that elevated glucose levels enhance β-cell replication [11,12]. More precisely,
Porat et al. [13] identify the glucose metabolism via glucokinase as the main positive reg-
ulator of β-cell proliferation. As the model in our work does not explicitly account for the
glucose metabolism, the more general approach of glucose concentration as regulator of
β-cell proliferation is used.

Mathematical models to understand the processes of the glucose-insulin regulatory sys-
tem have a long history. Starting with the pioneering work of Bolie [14] in the 1960s one of
the first widely used models was the minimal model developed by Bergman and cowork-
ers (see [15,16]) in the beginning of the 1980s. Elaborate reviews of different models
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using ODE, PDE, DDE, and integro-differential equations (IDE) are given for example in
Makroglou et al. [17] or Boutayeb and Chetouani [18]. In the last decade, several mod-
els dealing with the interplay of glucose, insulin, and β-cell mass have been developed.
For example see the work of de Winter et al. [19], Topp et al. [20], De Gaetano et al. [21],
or the delay-model of Li et al. [22]. Other models consider particular aspects, as, e.g.,
electrical activity of β-cells in Cha et al. [23], islet size distribution in Jo et al. [24], or glu-
cose regulation in the whole-body system in Kang et al. [25]. Other models are designed
to control the maintenance of normoglycemia in patients, like the compartment model
in [26].

In our approach, based on the results in [6-11], instead of modeling β-cell mass the
whole β-cell cycle is taken into account and plays an important role in the regulatory
system. The main aspect of our model is the coupling of insulin storage and of insulin
and glucose blood concentrations with the β-cell cycle. It provides the possibility to study
precisely the mechanism of glucose influence on the β-cell cycle and therefore on β-cell
mass. The model shows the dynamics of glucose and insulin with influence of glucose
on the β-cell cycle. Therefore, the dynamics in the blood are directly connected with the
mechanisms in the islets of Langerhans.

The model analyzes the interplay of three different negative regulation feedback loops
which live on different time scales. With elevated blood glucose concentration insulin
release and provision is enhanced which leads to a decrease in glucose levels. Note that
the term provision here comprises the generation of insulin, both from stored precursors
which might dominate in the beginning and from synthesis of further insulin.

1. The fastest feedback loop consists in a release of stored insulin immediately after
glucose stimulus via elevated blood glucose concentrations [4]. This first insulin
peak reaches its maximum after about three to five minutes.

2. The second feedback loop is due to the glucose dependent enhancement of insulin
provision. This has a visible effect after about 10 minutes [4].

3. The slowest feedback loop consists of the enhancement of the β-cell cycle by
glucose. If the first two reactions of the system are not sufficient to end
hyperglycemia, the blood glucose concentration remains at an elevated level. This
mild hyperglycemia results in an enhancement of the β-cell cycle leading to more
β-cells which in turn can produce further insulin (see [9]).

There are different processes that increase β-cell mass via cell number [8,9]. Besides repli-
cation of existing cells, there is also neogenesis by transdifferentiation and stem cells. As
an assumption in our paper, based on publications [27-29], the adaption of β-cell mass is
managed by replication only.

Figure 1 shows a schematic concept of the model. For simulation of the regulatory
system the model is stimulated via elevated blood glucose level.

Besides the uptake of glucose through food, there is also a production of glucose by
the organism itself incorporated into the model with a constant production rate. The
glucose stimulus induces the organism to release stored insulin and to enhance insulin
provision. Insulin is stored in packets for different release thresholds [4]. The storage
is filled through glucose dependent insulin provision and cleared at a constant secre-
tion rate. Secreted insulin regulates the uptake of glucose in muscle and fat cells. Besides
the immediate release and enhanced provision per cell, the model also accounts for the
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Figure 1 Schematic concept of the model. Glucose is given to the system at a constant production rate
mainly by the liver. Elevated blood glucose levels lead to immediate release of stored insulin and an
enhanced insulin provision. Also, glucose influences the transition rate between phases G1 and S of the cell
cycle. Insulin regulates the uptake of glucose in target cells. The molecules are stored in packets with
different release thresholds. These packets can be redistributed within the storage.

slowest regulation feedback loop, i.e. glucose influencing the β-cell cycle. The replication
of β-cells eventually leads to the provision of more insulin.

The aim of our work is to describe the three different feedback loops in one model and
to provide a basis for understanding and explanation of the mechanisms in the glucose-
insulin regulatory system.

The different parts of the model will be described in detail in the following section.

Mathematical model
β-cell cycle

The mathematical model consists of three parts where the first one is the β-cell cycle.
The model accounts for three phases of the cell cycle [30]:

1. The G1-phase is a growth phase where the cell prepares for synthesis. A basic
assumption of the model is that the functioning β-cell mass lies in this phase [31].

2. The S-phase is the synthesis phase where DNA replicates.
3. The G2/M-phase is the premitosis and mitosis phase where the nuclear division

takes place.

Biological experiments concerning the cell cycle are often done by flow cytometry.
This method measures the DNA content in the different phases and can not distin-
guish between phases G2 and M that have the same DNA content. Therefore, both are
combined to one G2/M-phase.
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Figure 2 β-cell cycle. Cell cycle of the β-cells with three phases (G1, S, G2/M) and transition rates (p1, p2, p3).
The apoptosis rate is given with parameter p4. The term p1(1 + p5G(t)) describes a linear influence of
glucose on the transition rate p1 with influence factor p5.

As it is shown in Figure 2 glucose modifies the transition rate from G1- to S-phase.
Several authors claim this transition to be an important checkpoint for the regulation of
the β-cell cycle [32]. The linearity of the glucose influence, p1[ 1 + p5G], is a simplifying
assumption in our work.

In the model, the transition rates p1, p2, p3, the apoptosis rate p4, and the influence
factor of glucose p5 are considered. All parameters can be found in Table 1.

An important contributing factor to the β-cell dynamics is glucose toxicity described by
Unger et al. [33]. This term refers to the wide range of harmful effects of chronic hyper-
glycemia leading to chronic oxidative stress after the onset of diabetes, including damages
to the pancreatic islet β-cell (cf. [34,35]). As a consequence of hyperglycemia lipid toxicity
may additionally damage β-cells. This effect is called glucolipotoxicity and is described in
[36]. To account for the effects of glucose toxicity and glucolipotoxicity on insulin secre-
tion a glucose dependent apoptosis rate can be incorporated to the cell cycle. In the actual
version of the model the role of glucose toxicity is omitted for the sake of simplicity and
the apoptosis rate is constant. As an assumption in the β-cell cycle model, apoptosis and

Table 1 Model parameters

Value Definition

p1 6.0594 × 10−5 1
min transition rate G1 → S

p2 4.9861 × 10−3 1
min transition rate S → G2/M

p3 8.9444 × 10−4 1
min transition rate G2/M → G1

p4 3.3194 × 10−4 1
min apoptosis rate

p5 0.056 100 ml
mg influence factor of glucose

p6 0.3 mg
100 ml min rate of glucose production

p7 0.003 1
min glucose effectiveness

at zero insulin

p8 360 × 10−3 100 ml
mg min insulin sensitivity

p9 0.622 1
min secretion rate of insulin

p10 0.3 1
min decay rate of insulin

p11 0.0337 1
min rate of provision increase

p12 1.72 × 10−9 mg average insulin amount per β-cell

bv 3.33 ml blood volume of 35g mouse

f 0.5 proportionality factor

h 5 Hill coefficient

P0 186.506 mg
100 ml Michaelis constant

X̄max 1.65 × 10−3 mg maximal amount of insulin

per pancreas

k 3.3 Hill coefficient

C 149.78 mg
100 ml Michaelis constant

Parameters of model (9) used for the simulations shown in Figures 5 and 6 in Section ’Simulation’. The parameter values are based
on biological experiments of [4,20,31,32].
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the only under some pathological conditions relevant necrosis are subsumed in the rate
p4 called apoptosis rate [37].

The β-cell cycle is modeled as a three compartment model as it is common in cell cycle
modeling (cf. [38]):

Ġ1(t) = 2 p3G2/M(t) − [
p1

[
1 + p5G(t)

] + p4
]

G1(t),

Ṡ(t) = p1
[
1 + p5G(t)

]
G1(t) − p2S(t), (1)

˙G2/M(t) = p2S(t) − p3G2/M(t).

The constant 2 in the first equation accounts for cell division in the transition from G2/M-
to G1-phase. In the physiological case for adults the β-cell cycle is very slow (see [9])
but has the capability of dynamic adaption to metabolic demands [7]. In model (1) glu-
cose influences the transition rate p1 from G1- to S-phase and is able to regulate the
β-cell cycle. This is the case if glucose triggers the system and neither the immediate
release of stored insulin nor the enhanced insulin provision is able to lower blood glucose
concentration. Then a high level of glucose forces the cell cycle to accelerate.

Glucose and insulin concentration in the blood

The dynamics of blood glucose concentration are based on the model of Topp et al. [20].
There, the change in blood glucose concentration is modeled as the difference between
production and uptake of glucose,

Ġ(t) = production − uptake = p6 − [
p7 + p8I(t)

]
G(t). (2)

The net rate of glucose production is represented by a constant production rate p6. This
rate is the difference of an intrinsic glucose production, mainly by the liver, and glucose
concentration independent uptake of glucose. The latter consists mainly of glucose uptake
by the brain and other nervous tissues which is assumed to be constant in our model.
The uptake of glucose in other tissues consists of two processes dependent on the glucose
blood concentration. One is an insulin independent uptake represented by the parame-
ter of glucose effectiveness p7. The other process is an insulin dependent glucose uptake
mainly by muscle and fat cells which is influenced by insulin sensitivity p8 and depends
on blood insulin concentration I. The parameters are listed in Table 1.

Similarly, the dynamics of blood insulin concentration are modeled as secretion minus
degradation,

İ(t) = 1
bv

p9X1(t) − p10I(t), (3)

where secretion consists of the secreted amount of insulin molecules from the β-cells,
p9X1, that has to be considered with respect to the blood volume bv of the organism.
Variable X1 will be discussed in detail in the following section. Degradation of insulin is
modeled with a constant decay rate p10.

Insulin storage

In 1972, Grodsky published a packet distribution hypothesis for insulin granules in an
insulin storage [4]. In this work the storage is modeled with no dynamic connection to
the remaining glucose-insulin regulatory system. For stimulation of the system, different
glucose functions were considered, for example single- or two-step constant stimulation,
staircase stimulation, or ramp functions of glucose concentration.
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In our approach the model of Grodsky is incorporated into a model of the glucose-
insulin regulatory system including the adaption of β-cell mass to metabolic demands.
Although the publication of this insulin secretion model is several years ago, the packet
distribution hypothesis still finds application, for example in the work of Overgaard
et al. [39]. There, it is included into a mathematical model for insulin secretion applied
to IVGTT and OGTT data. Also Pedersen et al. presented an updated version of the
hypothesis for oral minimal models of insulin secretion in [40] and Tsaneva-Atanasova
described insulin secretion in a general context of mechanisms of cell secretion [41].

As the knowledge about β-cell biology has increased since 1972 some reinterpreta-
tion of the assumptions in [4] are appropriate. In the original work there is no clear
definition of what the packets are. They could be interpreted as insulin containing
granules within a cell with different sensitivities for glucose induced release. Although
granules clearly are present and variability of sensors for signals is a common feature
in biology, there is no direct experimental proof, yet, to our knowledge. An alternative
interpretation would be variability of sensitivity on cell level. In fact, Jonkers and Hen-
quin [42] show a sigmoidal distribution of active β-cells. A combination of both aspects
(and possibly more unknown factors) may be the most probable explanation for the
experimentally found dose-response curves [43]. Therefore, in the following the pack-
ets are interpreted as pancreatic β-cells that can be active or inactive. Several recent
models for insulin secretion considering Ca2+-evoked exocytosis, the cAMP amplify-
ing pathway, and actual results on granule dynamics are available (see e.g. [44-46]) but
for the qualitative conclusions in our work Grodsky’s basic model of insulin secretion
is sufficient.

Our first modification of the insulin secretion model [4] is the adaption to time depen-
dent glucose concentrations. In doing so, it obtains a wider field of application and gets
connectable to the dynamic regulatory system. In a second step the insulin storage is
incorporated with blood glucose and insulin concentrations as well as with the β-cell cycle
to form a complete model. It is assumed that insulin is stored in homogeneous packets in
the storage which is shown in Figure 3. There are different release thresholds θ (in units of
glucose concentration) for the packets and the major part of them is stored at lower values
of glucose concentration, between 100 and 200 mg

100 ml . These lower values are often reached
in an organism so that there is the need for sufficient insulin to react to these impulses.

The initial packet distribution ξ(θ , 0) for threshold θ at time t = 0 is crucial for the
storage model. In every time step the different processes within the storage try to achieve
this initial distribution at least qualitatively.

The storage is filled through a glucose dependent insulin provision factor P, and insulin
is released with constant secretion rate p9. Besides that, there is a redistribution process
where packets that were not needed so far are redistributed to qualitatively reestablish
the initial packet distribution ξ(θ , 0).

Using the packet distribution the storage can be divided into two compartments. The
releasable amount of insulin X1 contains the packets with threshold value θ below the
actual blood glucose concentration G, i.e.,

X1(t) =
G(t)∫
0

ξ(θ , t) dθ .
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Figure 3 Insulin storage and packet distribution. The storage is filled through glucose dependent insulin
provision P(t) and cleared at a constant rate p9. Insulin is stored in packets at different release thresholds θ . A
special characteristic of the storage is the redistribution process of packets shown by the vertical arrows. The
figure is adapted from [4].

These packets can be released from the β-cell for glucose concentration G. The second
compartment in the storage pool is the non-releasable amount of insulin X2 of the packets
with threshold value θ above the actual blood glucose concentration G, i.e.,

X2(t) =
∞∫

G(t)

ξ(θ , t) dθ .

These packets can not be released for glucose concentration G but are involved in the
redistribution process.

As, in our work, the insulin storage is connected to the β-cell cycle, changes in the
insulin producing β-cell mass influence also the initial distribution ξ(θ , 0) as it is depen-
dent on the maximum amount of insulin per pancreas, X̄max. The insulin producing β-cell
mass can change in every time step t and thus X̄max is time dependent, too. Therefore,
this distribution is called target distribution and is denoted by ξ∗(θ , t). Consequences of
this modification are shown later in this section.

The insulin storage is modeled as a three compartment model with X1, X2, and an
equation for the dynamics of the provision factor P. A detailed version shows the different
processes within the storage according to the target distribution:

Ẋ1(t) = X1(t)∫ G(t)
0 ξ∗(θ , t)dθ

ξ∗(G(t), t)Ġ(t) − p9X1(t)

+ f̃
G(t)∫
0

ξ∗(θ , t)dθ [X1(t) + X2(t)] − f̃
∞∫

0

ξ∗(θ , t)dθX1(t) + f
G(t)∫
0

ξ∗(θ , t)dθP(t),

Ẋ2(t) = − X2(t)∫ ∞
G(t) ξ∗(θ , t)dθ

ξ∗(G(t), t)Ġ(t) (4)

+ f̃
∞∫

G(t)

ξ∗(θ , t)dθ [X1(t) + X2(t)] − f̃
∞∫

0

ξ∗(θ , t)dθX2(t) + f
∞∫

G(t)

ξ∗(θ , t)dθP(t),

Ṗ(t) =p11 [P∞(t) − P(t)] .

For details concerning the derivation of equations (4) see the Appendix “Derivation of glu-
cose dependent insulin storage dynamics” section. The first terms in the equations for Ẋ1
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and Ẋ2 correspond to the time dependence of the integral limits (chain rule) which is an
expansion of the original insulin secretion model. They describe the influence of changing
glucose concentration on the separation of the insulin storage into compartments X1 and
X2 (see Figure 4). This influence depends on the actual glucose concentration value and
the change in glucose concentration with time t.

System (4) shows the production and redistribution process in detail according to the
target distribution ξ∗(θ , t). Their contribution to the dynamics of the single compart-
ments are modeled with proportionality factors f and f̃ , respectively.

To simplify the representation the integral functions are expressed in terms of general
transition functions. The simplified version of the model is given in the following:

Ẋ1(t) =
[

ξ∗(G(t), t)Ġ(t)
f̃ −1u2(t)

− u1(t) − p9

]
X1(t) + u2(t)X2(t) + u3(t)G1(t)P(t),

Ẋ2(t) = u1(t)X1(t) −
[

ξ∗(G(t), t)Ġ(t)
f̃ −1u1(t)

+ u2(t)
]

X2(t) + u4(t)G1(t)P(t), (5)

Ṗ(t) = p11[ P∞(t) − P(t)] .

The parameters of the model are given in Table 1. The glucose dependent transition func-
tions u1, . . . , u4 describe provision and redistribution processes according to the target
distribution. They are given in greater detail in Appendix “Transition functions” section.

The function P∞ models the glucose dependent steady state of insulin provision. To
express the delay in the effect of insulin provision, P∞ is modeled as a Hill function

P∞(t) = G(t)h

Ph
0 + G(t)h

,

with h being the Hill coefficient and P0 the Michaelis constant.

Figure 4 Initial distribution in the storage and compartments X1 and X2. Secreted insulin X(G, 0)

(dashed line) is the whole amount of insulin releasable by the pancreas at glucose concentration G. It is the
integral over the initial packet distribution ξ(θ , 0) (solid line). X1 is the releasable and X2 the non-releasable
amount of insulin. In the plot they can be identified as areas under the solid curve ξ(θ , 0) ranging from
θ =[ 0, G] and from θ =[ G, ∞), respectively. The figure is adapted from [4].
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An example for a possible initial distribution in case of constant glucose is given in
[4]. For constant glucose concentration G experimental results [47,48] show the following
course of insulin release X(G,0) in the early phase (dashed line in Figure 4). This evolution
is described with a sigmoid function

X(G, 0) = X̄max
Gk

Ck + Gk ,

where X̄max is the maximum amount of insulin per pancreas, k the Hill coefficient, and
C the Michaelis constant. With X(G,0) being the amount of released insulin at constant
glucose concentration G, the initial distribution ξ(θ , 0) is expressed as the derivative of
X(G, 0). To be precise,

X(G, 0) = X̄max
Gk

Ck + Gk =
G∫

0

ξ(θ , 0)dθ (6)

⇒ ξ(θ , 0) = d
dθ

X(θ , 0) = X̄max
kCkθk−1

(Ck + θk)2 . (7)

These expressions change in the case of time dependent glucose and in connection with
the β-cell cycle that results in variable β-cell mass. First, the maximum amount of insulin
per pancreas X̄max is not constant anymore but depends on the β-cell mass G1 at time t,

Xmax(t) = p12G1(t). (8)

The parameter p12 is interpreted as the amount of insulin per β-cell. One of several pos-
sibilities to determine this parameter is the quotient of the maximum amount of insulin
per pancreas and the initial amount of β-cells, i.e.,

p12 = X̄max
G1(0)

,

where G1(0) serves as a normalization. Then equation (8) determines for every amount
of β-cells G1 at time t > 0 the corresponding maximum amount of insulin. Therefore,
expressions (7) and (6) now read as

X∗(G(t), t) = Xmax(t)
G(t)k

Ck + G(t)k =
G(t)∫
0

ξ∗(θ , t)dθ

⇒ ξ∗(θ , t) = d
dθ

X∗(θ , t) = Xmax(t)
kCkθk−1

(Ck + θk)2 ,

where ξ∗(θ , t) is now called target distribution.
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Complete model

In the previous subsections the partial models have been developed and explained in
detail. Based on this outline the complete model can now be formulated:

Ġ1(t) = 2p3G2/M(t) − [
p1

[
1 + p5G(t)

] + p4
]

G1(t),

Ṡ(t) = p1
[
1 + p5G(t)

]
G1(t) − p2S(t),

˙G2/M(t) = p2S(t) − p3G2/M(t),

Ġ(t) = p6 − [
p7 + p8I(t)

]
G(t), (9)

İ(t) = 1
bv

p9X1(t) − p10I(t),

Ẋ1(t) =
[

ξ∗(G(t), t)Ġ(t)
f̃ −1u2(t)

− u1(t) − p9

]
X1(t) + u2(t)X2(t) + u3(t)G1(t)P(t),

Ẋ2(t) = u1(t)X1(t) −
[

ξ∗(G(t), t)Ġ(t)
f̃ −1u2(t)

+ u2(t)
]

X2(t) + u4(t)G1(t)P(t),

Ṗ(t) = p11 [P∞(t) − P(t)] .

The first three equations describe the dynamics of the β-cell cycle with its three phases.
The fourth and the fifth equation show the dynamics of blood glucose and insulin con-
centration, and the last three equations present the insulin secretion model. The partial
models are connected through several entities.

1. Insulin I influences the glucose dynamics via insulin dependent uptake in target
cells. Secretion of insulin consists of the releasable amount of insulin molecules
p9X1 in relation to the blood volume bv.

2. Glucose G plays an important role in regulating the processes within the insulin
secretion model. It regulates the provision of insulin and defines the compartments
of the insulin storage via the target distribution. It also contributes to the
redistribution process. Furthermore, glucose regulates the β-cell cycle via the
glucose dependent transition rate from G1- to S-phase.

3. The β-cell mass G1 determines the capacity of insulin provision.

In Section “Simulation” the behavior of solutions of the complete model can be seen.
There, the model is simulated in the physiological case as well as in an experimental
situation.

Analysis of the model
In this section a basic mathematical analysis is presented to achieve a better understand-
ing of the model behavior. First, positivity of the solution is shown. Then the analysis
focusses on steady states and their stability to explain the asymptotic development of the
solution.

Positivity of solutions

Our model of the glucose-insulin regulatory system describes the dynamics of biological
quantities, e.g., cell numbers, concentrations, and mass. Naturally, these quantities are
positive and therefore positivity of the solution is a desired characteristic of the system.
A necessary and sufficient condition for the existence of positive solutions is given in the
following corollary.
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Corollary 1. ([49]): For every t0 > 0 and initial value x0 = (x0
1, . . . , x0

m) ∈ R
m+ = {x ∈

R
m : xi > 0, i = 1, ..., m}, each component xi, i = 1, . . . , m, of the solutions to

ẋi(t) = fi(t, x1, . . . , xm), xi(t0) = x0
i

is positive if and only if

fi(t, x1, . . . xi−1, 0, xi+1, . . . , xm) > 0, (10)

i = 1, . . . , m, for all t > 0 and x ∈ R
m+ .

Using the condition from Corollary 1, positivity of the solution of system (9) can be ana-
lyzed. The parameters of the model and the initial values are non-negative (see Tables 1
and 2, respectively). Therefore, it can be shown that condition (10) holds for all positive
values of the variables. Summarizing, positivity of the solution of the presented model for
the glucose-insulin regulatory system is guaranteed.

Steady states

As it can be seen in Section ‘Simulation’, the graph of the solution suggests a steady state
behavior of the system. The investigation of the steady states is based on the β-cell cycle
model (1).

We determined the only two steady states for the β-cell cycle. There is a trivial steady
state where no cells are present,

G∗
1 = S∗ = G2/M∗ = 0, (11)

and there is another steady state where the number of apoptotic cells equals the number of
new cells. This occurs if the apoptosis rate equals the transition rate from G1- to S-phase:

p4 = p1(1 + p5Ĝ) ⇔ Ĝ = p4 − p1
p1p5

. (12)

Equation (12) results in a fixed value for glucose, Ĝ, that can be modified via the influence
factor p5. Ĝ is a crucial threshold for the development of the cell cycle as it determines
the values of glucose concentration leading to β-cell mass increase or decrease.

The apoptosis rate p4 is greater than the transition rate from G1- to S-phase if the actual
value of glucose concentration Gt is lower than Ĝ:

p4 > p1(1 + p5Gt) ⇔ Ĝ > Gt . (13)

In this case there are more β-cells dying than dividing per time step and in consequence
the total amount of β-cells in G1-phase is decreasing.

Table 2 Initial values

Variable Initial Value Definition

G1(0) 958000 number of cells in G1-phase

S(0) 14000 number of cells in S-phase

G2/M(0) 28000 number of cells in G2/M-phase

G(0) 200 mg
100 ml blood glucose concentration

I(0) 0.01 mg
100 ml blood insulin concentration

X1(0) 0.0012 mg releasable amount of insulin

X2(0) 0.0005 mg non-releasable amount of insulin

P(0) 0 provision of insulin

Initial values and definition of variables in model (9) used for the simulations shown in Figures 5 and 6.
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In contrast, the apoptosis rate p4 is lower than the transition rate from G1- to S-phase
if the actual value of glucose concentration Gt is greater than Ĝ:

p4 < p1(1 + p5Gt) ⇔ Ĝ < Gt . (14)

Fewer β-cells are dying than dividing per time step and in consequence the β-cell mass in
G1-phase is increasing.

In summary, the further analysis of the steady state behavior results in only two fixed
points for positive values of the variables. The two steady states (11) and (12) of the cell
cycle model determine the two steady states of the whole model. The first one is the trivial
steady state

F∗
1 =

(
0, 0, 0,

p6
p7

, 0, 0, 0, P∞
(

p6
p7

))
(15)

with all cell numbers in the three phases equal to zero. As it can be seen in F∗
1 , glucose

concentration is never equal to zero due to constant production of glucose by the liver.
Thus, the steady state of the provision factor, P∞, is also not equal to zero but a fixed value
depending on G∗ = p6

p7
.

The second steady state is driven by the threshold value Ĝ determining a non-trivial
steady state

F∗
2 = (

G∗
1, S∗, G2/M∗, G∗, I∗, X∗

1 , X∗
2 , P∗) . (16)

The values for the different variables can be given explicitly:

G∗
1 = p9X∗

1
p12fP∗ , S∗ = p4p9X∗

1
p2p12fP∗ , G2/M∗ = p2

p3
S∗ = p4p9X∗

1
p3p12fP∗ ,

G∗ = Ĝ = p4 − p1
p1p5

, I∗ = p6 − p7G∗

p8G∗ ,

X∗
1 = bvp10I∗

p9
, X∗

2 = X∗
1

f

[
p9

[
1 + G∗−hPh

0

]
− f

]
, P∗ = G∗h

Ph
0 + G∗h .

The steady state F∗
2 is reached after a glucose stimulus to the regulatory system. The

variables tend to these values if no further impulse or modification to the system is
following.

Stability

The stability of the two steady states F∗
1 and F∗

2 can be investigated by computing the
Jacobian matrix of these fixed points. This analysis is based on the system parameters in
Table 1.

In summary, it can be shown that there are two types of steady states for the system.

1. The trivial steady state with cell numbers equal to zero,

F∗
1 =

(
0, 0, 0,

p6
p7

, 0, 0, 0, P∞
(

p6
p7

))
,

is an unstable fixed point.
2. The non-trivial steady state,

F∗
2 = (

G∗
1, S∗, G2/M∗, G∗, I∗, X∗

1 , X∗
2 , P∗) ,

is a stable fixed point reached by the system after some time without any influence
from the outside.
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The behavior of the model according to the mathematical analysis will be illustrated in
the following section using simulations of the complete model.

Simulation
In this section two simulations of the complete model (9) are presented. The first simula-
tion describes the behavior of the glucose-insulin regulatory system in the physiological
case. The second simulation particularly shows the adaption of β-cell mass under long
term glucose infusion [12].

The physiological case - given in Figure 5 - has been simulated over 120 minutes with
a high initial glucose value resulting for example from recent food intake. Parameters
and initial values of the variables are given in Tables 1 and 2, respectively. The following
description discusses the subplots.

• Figure 5a: With the given parameters the threshold value for the cell cycle is
Ĝ = 80 mg

100 ml . Glucose concentration G is above this level for 120 minutes.
Therefore, the cell cycle reacts in the following way: Glucose values above the
threshold increase the transition rate from G1- to S-phase. As the β-cell cycle is a
slow process, in the first 120 minutes an only slight increase in S- and G2/M-phase is
detectable while the cell number in G1-phase is decreasing. Increase in β-cell mass,
i.e., G1, takes more than 120 minutes. As glucose concentration is almost at the
steady state Ĝ = 80 mg

100 ml towards the end of the simulation, the system will regulate
itself without significant adaption of β-cell mass. This is expected in the physiological
case without abnormal exposure to glucose.

• Figure 5b: The releasable amount of insulin X1 shows a biphasic behavior. There is a
first peak release of stored insulin molecules and a second phase in consequence of
provision of further insulin.
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Figure 5 Solution of the complete model over 120 minutes. The simulation presents the physiological
case of the glucose-insulin regulatory system over 120 minutes after a high initial glucose value. The initial
values for this simulation (with corresponding units) are given in Table 2 and the parameters in Table 1. The
solution of the complete model (9) was achieved numerically using Matlab ODE45.
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• Figure 5c: With decreasing glucose concentration there are more packets with
threshold value above the actual glucose level. For this reason and due to enhanced
insulin provision P the amount of non-releasable insulin X2 increases.

• Figure 5d: Glucose concentration G is decreasing from the high initial value as there
is an increased concentration of insulin I in the blood.

• Figure 5e: Blood insulin concentration I follows with some delay the releasable
amount of insulin. It also shows the characteristic biphasic behavior of insulin release.

• Figure 5f: Provision factor P shows an increase in presence of high glucose values
and decreases as blood glucose decreases.

The second simulation is done according to the experiments of Bonner-Weir et al. [12].
There, rats are given a high glucose infusion for 96 hours. After this time a significant
increase in β-cell mass is observable. The design of the experiment is assigned to the
mathematical model (9) in the following way: the glucose production rate was increased
from p6 = 0.3 mg

100 ml min up to p̃6 = 8.6806 mg
100 ml min to account for a high concentrated

glucose infusion. The resulting plots of the solution of model (9) are shown in Figure 6.
Most important, a significant increase of β-cells G1 can be seen in Figure 6a. This results
from the persisting and severe hyperglycemia (Figure 6d) due to the high glucose produc-
tion p̃6. With longer time of simulation the system will reach the stable steady state F∗

2 .
The transfer of the experimental design in [12] to our model shows qualitatively that the
glucose-insulin regulatory system is able to achieve euglycemia through adaption of β-cell
mass as it is stated in several publications (e.g. [6-8,13]). Note that the model currently
assigns increase of β-cell biomass exclusively to cell number (hyperplasia). It disregards
an increase in cell size (hypertrophy) which occurs in [12]. This simplification which can

ba c

ed f

Figure 6 Solution of the complete model over 96 hours. The simulation presents an experimental
situation with high glucose infusion over 96h. The parameter p6 of glucose production was increased up to
p̃6 = 8.6806 mg

100 ml min . The β-cell mass increases due to the persisting hyperglycemia. With the adaption of
β- cell mass, seen in Figure 6a) the glucose-insulin regulatory system is able to reach euglycemia, i.e. the
stable steady state F∗

2 . Other parameters and initial values for this simulation are given in Tables 1 and 2,
respectively. The solution of the complete model (9) was achieved numerically using Matlab ODE45.
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be overcome in further development of the model leads to an overestimation of changes
in cell division rate as reflected in Figure 6a. Probably especially the first responses to
elevated glucose concentrations are concerned.

Discussion
This work presents a mathematical model that describes three different negative regula-
tion feedback loops of the glucose-insulin regulatory system:

1. Immediate release of stored insulin molecules.
2. Enhancement of provision of new insulin.
3. Adaption of the β-cell cycle to metabolic demands.

This is possible by incorporating an insulin secretion model describing storage and
release of insulin molecules on the one hand and insulin provision on the other hand [4].
Furthermore, insulin provision is glucose dependent which allows its adaption to spe-
cific demands of the organism at every time step. The third feedback loop is modeled via
incorporation of the β-cell cycle with glucose regulating the replication rate of the cells
[11,13].

Several models of the glucose-insulin regulatory system, as e.g., [19-21], describe glu-
cose, insulin and β-cell mass dynamics, whereas our model shows the connection of
glucose, and insulin concentrations with the β-cell cycle as the main aspect. In this way
the important role of glucose as regulator of the cell cycle [13] and the capability of the β-
cell mass to adapt to metabolic demands can be analyzed in detail. Hereby, the adaption
of β-cell mass is assigned exclusively to hyperplasia and disregards hypertrophy.

The model conserves typical characteristics of the glucose-insulin regulatory system.
The plots of the complete model in Figure 5 show biphasic insulin release represented
through the biphasic shape of the releasable amount of insulin X1. This is a typical
behavior of insulin release reported in several biological publications (e.g. [47,50]).

Modeling insulin secretion based on [4] incorporates three feedback loops consisting of
stored insulin, provision of further insulin, and variable β-cell mass. Our model expands
classic insulin secretion models (e.g. [4,44-46]) by a connection to the β-cell cycle.

The qualitative behavior of the model is illustrated with simulations. In the physiolog-
ical case, shown in Figure 5, the β-cell mass is sufficient to produce and release enough
insulin to decrease glucose concentration and maintain euglycemia. With a second sim-
ulation the adaption of the β-cell mass to increasing metabolic demands is presented.
This situation occurs in long term studies with persisting hyperglycemia as it can be seen
in Figure 6. In a simulation similar to the experiment in [12] increase of β-cell mass via
hyperplasia in 96 hours of hyperglycemia is shown.

The analysis of the model gives the existence of two steady states. One describes a triv-
ial fixed point with β-cell numbers in all three phases equal to zero. The second steady
state is a stable fixed point resulting from successfully achieving euglycemia. The trivial
steady state is unstable while the stable non-trivial steady state will be attained in both sit-
uations shown in Figures 5 and 6 with longer simulation times. The stability of the steady
states is dependent on the underlying parameter values. As the parameters in our model
are chosen in a way to describe a physiological situation the trivial steady state is unsta-
ble and will not be reached. However, there are scenarios where the β-cells in the model
eventually die out. This could be due to an abnormally high apoptosis rate p4 or artificially
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holding of the glucose concentration below the threshold value Ĝ by external insulin infu-
sion, for example. While a reduction of the replication rate due to hypoglycemia is shown
in [11] a complete disappearance of the β-cell mass is an implausible result. The death of
the organism would happen prior to the extinction of the β-cells.

Our system allows for simulation of the glucose-insulin regulatory system assuming
in vivo situations. Our model builds a theoretical basis for description and explana-
tion of dynamics derived from biological experiments. It supports the understanding of
metabolic processes. Biological assumptions can be verified and quantification of data
and parameters can be achieved. Additionally, the model promotes understanding of the
interplay of the three different regulation feedback loops. The model is able to describe
metabolic dynamics of the glucose-insulin regulatory system also for the pathological case
of type 1 or type 2 diabetes.

To illustrate one possible modification of the system a type 2 diabetes-like simulation is
done. Type 2 diabetes is characterized by insulin resistance of target cells, mainly muscle
and fat cells. In consequence, these cells are not able to take up enough glucose from the
blood. In this case the insulin sensitivity of the body cells is down-regulated. To simulate
this situation the model parameter for insulin sensitivity p8 is decreased arbitrary from
the value p8 = 360×10−3 to p̃8 = 360×10−5 while the other parameters given in Table 1
stay the same. This modification corresponds to a lower reaction of the target cells to
insulin and therefore a decreased uptake of glucose from the blood.

Figure 7 shows that the blood glucose concentration G in the pathological case of insulin
resistance (dashed line) decreases slower than in the physiological case (solid line). The
body cells take up less glucose from the blood and therefore the hyperglycemia lasts
longer in the pathological case.

There are also possibilities to simulate the regulatory system in a type 1 diabetes sce-
nario. It can be done for example by increasing the apoptosis rate p4 in the cell cycle
model. This results in dying β-cells which is characteristic for this autoimmune disease.
For a more detailed discussion about β-cell mass in a type 1 diabetes scenario see Klinke
[51]. There, β-cell mass at onset of type 1 diabetes is concerned depending on body weight
and the patient’s age.

Figure 7 Insulin resistance of target cells. Blood glucose concentration at different values of insulin
sensitivity p8. Physiological value p8 = 360 × 10−3 (solid line) and pathological value p̃8 = 360 × 10−5

(dashed line).
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In summary, our model is a basic approach to understand the processes within the
glucose-insulin regulatory system connected to the β-cell cycle. It offers a wide range
of possible modifications to incorporate further processes and can be adapted to many
biological questions.

Appendix
Derivation of glucose dependent insulin storage dynamics

With time dependent glucose the major difference to the original model of Grodsky
consists in time dependence of upper and lower integral bounds for X1 and X2:

Ẋ1(t) = d
dt

(∫ G(t)

0
ξ(θ , t)dθ

)
,

Ẋ2(t) = d
dt

(∫ ∞

G(t)
ξ(θ , t)dθ

)
.

To determine these integrals, the differential equation for ξ(θ , t), given in [4], - has to be
solved first. Then this solution can be applied to the expressions for X1 and X2. In a final
step we differentiate these terms with respect to time t to achieve differential equations
Ẋ1 and Ẋ2.

Solution of the differential equation ξ̇ (θ , t)

As only the packets with threshold θ below glucose concentration G are relevant for
insulin secretion, two cases have to be distinguished. There is a differential equation for
θ ≤ G(t),

ξ̇ (θ , t) = −p9 ξ(θ , t) + f ξ0(θ)P(t) − f̃ X̄maxξ(θ , t) + f̃ ξ0(θ)X∞(t), (17)

and for θ > G(t),

ξ̇ (θ , t) = f ξ0(θ)P(t) − f̃ X̄maxξ(θ , t) + f̃ ξ0(θ)X∞(t), (18)

with

ξ0(θ) = ξ(θ , 0), X∞(t) =
∫ ∞

0
ξ(θ ′, t)dθ ′ = X1(t)+X2(t) and X̄max =

∫ ∞

0
ξ0(θ

′)dθ ′.

The only difference between the two equations is the term for insulin secretion,
−p9 ξ(θ , t), that occurs in the first but not in the second equation. Therefore, we restrict
the following exploration to the case θ ≤ G(t).

The system that has to be solved is a linear non-homogeneous ordinary differential
equation for which there are standard solution methods like variation of constants. Using
this method, the set of solutions for differential equation (17) is given as

ξ(θ , t) =
{

e−(p9+f̃ X̄max)t
[∫ t

0
e(p9+f̃ X̄max)τ

[
fP(τ ) + f̃ X∞(τ )

]
ξ0(θ)dτ + C

] ∣∣∣∣ C ∈ R

}
and for the differential equation (18) as

ξ(θ , t) =
{

e−f̃ X̄maxt
[∫ t

0
ef̃ X̄maxτ

[
fP(τ ) + f̃ X∞(τ )

]
ξ0(θ)dτ + C

] ∣∣∣∣ C ∈ R

}
.

The constant C incorporates the initial conditions by C = ξ0(θ).
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Derivation of the differential equations Ẋ1(t) and Ẋ2(t)

To derive a differential equation for the total amount of releasable insulin at glucose
concentration G the expression

X1(t) =
∫ G(t)

0
ξ(θ , t)dθ

has to be differentiated with respect to time t. Attaching the solution of ξ̇ (θ , t) to X1
results in the following expression:

X1(t) = e−(p9+f̃ X̄max)t
∫ G(t)

0
ξ0(θ)dθ

[∫ t

0
e(p9+f̃ X̄max)τ

[
fP(τ ) + f̃ X∞(τ )

]
dτ + 1

]
.

The differentiation of this equation with respect to time t then results in
d
dt

X1(t) =Ẋ1(t) = X1(t)∫ G(t)
0 ξ∗(θ , t)dθ

ξ∗(G(t), t)Ġ(t) − p9X1(t)

+ f̃
∫ G(t)

0
ξ∗(θ , t)dθ [ X1(t) + X2(t)] −f̃

∫ ∞

0
ξ∗(θ , t)dθX1(t)

+ f
∫ G(t)

0
ξ∗(θ , t)dθP(t),

with target distribution ξ∗(θ , t).
Analogously, we derive the differential equation for the total amount of non-releasable

insulin at glucose concentration G

X2(t) =
∫ ∞

G(t)
ξ(θ , t)dθ .

The differential equation is given as
d
dt

X2(t) = Ẋ2(t) = −X2(t)∫ ∞
G(t) ξ∗(θ , t)dθ

ξ∗(G(t), t)Ġ(t)

+ f̃
∫ ∞

G(t)
ξ∗(θ , t)dθ [ X1(t) + X2(t)] −f̃

∫ ∞

0
ξ∗(θ , t)dθX2(t)

+ f
∫ ∞

G(t)
ξ∗(θ , t)dθP(t),

with target distribution ξ∗(θ , t).

Transition functions
The transition functions u1, . . . , u4 of the compartment model for insulin secretion are
complex expressions with integrals over the target distribution in the insulin storage. With
the concrete packet distribution given in [4] the integrals can be determined explicitly in
terms of Hill functions:

G(t)∫
0

ξ∗(θ , t)dθ = Xmax(t) G(t)k

Ck + G(t)k = X̄max
G1(t)
G1(0)

G(t)k

Ck + G(t)k ,

and
∞∫

G(t)

ξ∗(θ , t)dθ = Xmax(t) Ck

Ck + G(t)k = X̄max
G1(t)
G1(0)

Ck

Ck + G(t)k .

The parameters f and f̃ are proportionality factors. The constant character of these fac-
tors has to be changed in our case due to variable glucose and the connection to the β-cell
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cycle that influences the maximum amount of insulin per pancreas. Therefore, f̃ is chosen
glucose dependent and with a condition to ensure that

X1(t) + X2(t) ≤ Xmax(t). (19)

The function f̃ has the form

f̃ (t) = − p9 f Ck G(t)h−k

X̄max
G1(t)
G1(0)

[
fG(t)h(1 + Ck G(t)−k) − p9(Ph

0 + G(t)h)
] .

This expression was found by analyzing condition (19) in steady state situation.
With these preliminaries the transition functions ui can be given explicitly:

u1(t) = −p9 f G(t)h−k C2k[
fG(t)h(1 + Ck G(t)−k) − p9(Ph

0 + G(t)h)
] [

Ck + G(t)k] ,

u2(t) = −p9 f G(t)h Ck[
fG(t)h(1 + Ck G(t)−k) − p9(Ph

0 + G(t)h)
] [

Ck + G(t)k] ,

u3(t) = f X̄max
1

G1(0)

G(t)k

Ck + G(t)k ,

u4(t) = f X̄max
1

G1(0)

Ck

Ck + G(t)k .

These expressions were used for the simulations in Figures 5 and 6.
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