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Abstract: Aquaporins, major intrinsic proteins (MIPs) present in the plasma and intracellular
membranes, facilitate the transport of small neutral molecules across cell membranes in higher
plants. Recently, progress has been made in understanding the mechanisms of aquaporin subcellular
localization, transport selectivity, and gating properties. Although the role of aquaporins in
maintaining the plant water status has been addressed, the interactions between plant aquaporins
and mineral nutrients remain largely unknown. This review highlights the roles of various aquaporin
orthologues in mineral nutrient uptake and transport, as well as the regulatory effects of mineral
nutrients on aquaporin expression and activity, and an integrated link between aquaporins and
mineral nutrient metabolism was identified.
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1. Introduction

Aquaporins, small integral proteins that belong to the ancient family of major intrinsic proteins
(MIPs), have been found in all kingdoms of life. In plants, aquaporins reside in the plasma membrane
and tonoplast and play important roles in plant water relations by facilitating the transport of water
across biological membranes and regulating osmotic potential and hydraulic conductivity [1,2].
The regulatory roles of aquaporins in cellular water transport have been reported in previous
studies [3–6]. In general, the molecular mechanisms of water transport across plasma membranes
regulated by aquaporins are mainly attributed to co-translational and post-translational modification,
aquaporin gating, and tetramer assembly and cellular trafficking of plasma membrane intrinsic
proteins [1,4].

Based on amino acid sequence similarities, aquaporins are classified into seven subfamilies.
The plasma membrane intrinsic proteins (PIPs) and the tonoplast intrinsic proteins (TIPs) are the
most abundant aquaporins in the plasma membrane and tonoplast, respectively [3,4]. The nodulin
26-like intrinsic proteins (NIPs), are located in the peribacteroid membrane of nitrogen-fixing symbiotic
root nodules of leguminous plants and are also present in the plasma membrane of other species [7].
The small basic intrinsic proteins (SIPs) are small proteins mainly localized in the ER membrane [8],
and the uncharacterized X intrinsic proteins (XIPs) are plasma membrane aquaporins that function
in the transport of uncharged substrates [9]. The hybrid intrinsic proteins (HIPs) and the glycerol
facilitator (GlpF)-like intrinsic proteins (GIPs) are present exclusively in moss [10]. The large number
of plant aquaporins has been explained by their importance in regulating plant metabolic processes
under various physiological states and environmental conditions [11]. For example, aquaporins
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are essential for plant defence responses against biotic and abiotic stresses, such as drought [12], salt
stress [13,14], cold [15,16], nutrient deprivation [17], heavy metals [18,19], and pathogen infection [20,21].
Aquaporins play complex integrated roles in the response to different environmental stressors and
are involved in plant growth and metabolic processes. PIPs and TIPs are involved in drought, salt,
and cold stress through hydraulic conductivity and transpiration regulation, while TIPs and NIPs are
involved in biotic stress, predominantly nutrient homeostasis between pathogens and host plants [22].

Mineral nutrients, which are usually present in the soil solution in organic and inorganic forms,
are essential for plant growth and production. Physiological analysis indicated that ion uptake
was regulated by transporters in the root plasma membranes, and there is a strong interaction
between mineral nutrients and water status in which mineral nutrient uptake is accompanied by
water absorption. In addition to facilitating water diffusion, a number of aquaporins have also been
shown to transport other small neutral molecules, such as urea [23,24], ammonia (NH3) [25,26], carbon
dioxide (CO2) [27–29], boric acid [17,30,31], silicic acid [32–34], lactic acid [35], hydrogen peroxide
(H2O2) [9,36–38], and other molecules with physiological significance [39]. Aquaporin trafficking and
their subcellular relocalization act as a critical point for regulating the internal redistribution of mineral
nutrients by transporting them from the endoplasmic reticulum (ER) to the plasma membrane via the
Golgi apparatus, as well as undergoing repeated cycles of endocytosis and recycling through the early
endosome to the multivesicular body/prevacuolar compartments before eventually being targeted
to the vacuole [4]. However, the molecular and cellular mechanisms underlying the interactions of
aquaporin and mineral nutrients should be further investigated. In this review, the role of aquaporins
in maintaining the plant water and mineral nutrient status is discussed, and the cellular aspects of
plant aquaporin functions and regulation of mineral nutrients are also extensively reviewed.

2. Nitrogen (N)

Nitrogen (N), one of the most important mineral nutrients in higher plants, is involved in plant
metabolism as a constituent of amino acids, proteins, nucleic acids, lipids, chlorophyll, co-enzymes,
phytohormones, and secondary metabolites [40,41]. The interaction between aquaporins and N
assimilation was first identified following the observation that the expression of several aquaporin
genes responded to different N sources, such as AtTIP2;1, which was up-regulated by N starvation or
NH4

+ supply [26], while both PtdPIP1;2 and PtdSIP1;2 were down-regulated under high N fertilization
levels [42]. Aquaporins have been suggested to be involved in water transport in response to nitrogen
availability [42–44]. In our previous study, a high N (mixture of NH4

+ and NO3
´) supply enhanced

aquaporin (AQP) expression and decreased root aerenchyma and lignin, resulting in a high water
absorption rate [44], which was consistent with results that show that high N supply increases root
hydraulic conductivity and AQP expression in rice plants [43]. The possible mechanisms of aquaporin
regulated hydraulic conductivity in response to N availability may be attributed to the changes
in aquaporin abundance and activity [43]. Aquaporins play an important role in N absorption,
mobilization, and detoxification, as well as other nitrogen metabolic processes in higher plants [23].
The PIP, NIP, and TIP subfamilies have been shown to transport N compounds, including ammonia
and urea [23,24].

2.1. Nitrate

Nitrate is the major inorganic N source absorbed by upland plants, and the process of nitrate
uptake and metabolism is tightly associated with water utilization, which is regulated by AQP.
Nitrate was suggested to be a critical signalling factor for radial water fluxes in the roots [45–47], and
the increased root hydraulic conductivity (Lpr) by nitrate was shown to correlate with up-regulation
of aquaporin expression [46–48]. In maize, the expression of ZmPIP1;5b was strongly up-regulated by
nitrate [49], and in tomato plants, several AQP genes were up-regulated by the nitrate supply [50],
which can mediate and control the increased water influx into the root cells.
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Recently, Li et al. [51] showed that Lpr and PIP expression were controlled by both exogenous
and internal nitrate concentrations in Arabidopsis, and Lpr and PIP expressions were higher under
5 mM NO3

´ than 0.5 mM NO3
´. In nrt2.1 (the high-affinity NO3

´ transporter) mutant plants, NO3
´

content decreased in both the roots and shoots, which resulted in decreases in Lpr and PIP expression,
indicating that the nitrate supply was positively correlated with enhanced root AQP activity and
Lpr. However, the interactions between nitrate and aquaporins vary over time. In the short term,
hours to days, nitrate induced aquaporin expression [50], while over multiple days, root morphology
and proliferation were significantly altered by the nitrate supply, resulting in increases in root nitrate
acquisition [52,53].

2.2. Ammonia/Ammonium

Root NH4
+ uptake occurs mainly via ammonium transporters (AMT) in the plasma membrane,

while NH3 has been proposed to enter the cells by free diffusion in higher plants. Transport of
NH3/NH4

+ and urea into the vacuole would allow for N storage and eliminate their toxicity to the
plant [54], and when N was needed, the stored nitrogen could be remobilized by a passive, low-affinity
transport pathway, which may involve the TIP proteins [23]. Indeed, several tonoplast intrinsic
proteins (TIPs) have been shown to facilitate the NH3 transport, such as ZmTIP1;1 and ZmTIP1;2 [55].
TIPs from wheat (TaTIP2;1) and Arabidopsis thaliana (AtTIP2;1 and AtTIP2;3) not only function as
water-conducting membrane pores but also facilitate the transport of NH3 across membranes and
therefore mediate the remarkable loading and acid-trapping of the protonated form (NH4

+) in the
vacuole [26,56]. However, the importance of the channel pores in ammonia transport by TIP2;2 from
wheat has been challenged by the finding that NH3 is not transported with water but through a separate
pathway [25]. The crystal structure of an NH3 permeable aquaporin AtTIP2;1 demonstrated that an
intriguing water-filled side pore, next to the substrate-binding histidine, is involved in deprotonating
ammonium ions, thereby increasing the permeation of NH3 [57].

Additionally, there was a potential correlation between ammonium uptake and water absorption,
which was regulated by AQP. In rice plants, ammonium could increase the expression of PIP
and TIP genes in the roots and resulted in a higher water uptake rate compared with that of
nitrate (Figure 1a). Under water stress, ammonium increased drought tolerance of rice plants by
inducing aquaporin expression and/or activity, which corresponded with increased root water uptake
ability [58]. However, in French bean plants with a ‘one shoot-two roots’ split root system, Guo et al. [59]
demonstrated that the mRNA expression of PIP1 was higher in the roots supplied with nitrate than
those supplied with ammonium (Figure 1b). Generally, rice prefers ammonium nutrition while beans
prefer nitrate nutrition, demonstrating that AQP expression is upregulated under favoured nitrogen
nutrition. These results suggested that ammonium and nitrate differentially regulated water uptake
and AQP in different plant species.
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Figure 1. Effect of different nitrogen sources (ammonium vs. nitrate) on aquaporin (AQP) expression 
in rice (a) and French bean plants (b). Rice plants were supplied with 2.5 mM ammonium [(NH4)2SO4] 
or nitrate [Ca(NO3)2] for two weeks. Root samples were collected for RNA isolation, and quantitative 
real-time PCR (q-RT-PCR) was performed to detect the relative expression of the plasma membrane 
intrinsic proteins (PIPs) and tonoplast intrinsic proteins (TIPs) [60]; (b) French bean plants were 
grown in a split-root system, in which half of the roots were supplied with 5 mM ammonium 
[(NH4)2SO4] or nitrate [Ca(NO3)2]. The PIP1 aquaporin expression in the roots was determined via 
Northern blot analysis until day 5 after the treatments [59]. 
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membranes via AQP [49,61–63], and members of the PIP, NIP, and TIP subfamilies have been shown 
to facilitate urea crossing membranes [23,24,64]. NIPs and PIPs, localized to the plasma membrane, 
function in urea movement between the apoplast and the symplast of plant cells [33,65,66]. In 
comparison, TIPs were targeted mainly to the tonoplast or other endo-membranes and are involved 
in equilibrating urea concentrations between different cellular compartments [23]. 

In Arabidopsis, several native NIPs, such as AtNIP6;1 and AtNIP5;1, were shown to transport 
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AtNIP5;1 was identified to transport boron acid [67]. However, AtNIP5;1 was identified to facilitate 
urea uptake only under B deficiency, in both high and low urea concentrations [67]. In maize plants, 
ZmNIP2;1, ZmNIP2;4, and ZmTIP4;4 were found to be involved in urea transport and played critical 
roles in urea uptake and movement, and stabilized urea concentrations in the tonoplast [23,63]. 
CsNIP2;1, a plasma membrane transporter from Cucumis sativus, facilitates urea uptake and internal 
transport during N remobilization and N delivery in plants [62]. In maize roots, the ZmPIP1;5, an 
aquaporin transport for water and urea, diverges from other PIP membranes by urea transport 
activity [49], and the expression of ZmPIP1;5 is induced by nitrate and modulated during the day-
night cycle. Vacuoles could be used for short-term urea storage to avoid toxicity in the cytoplasm; 
this process was regulated by TIPs, which contribute to urea remobilization from the vacuole and 
equilibration within the cell [24,68]. Under nitrogen deficient conditions, expression of ZmNIP2;1 and 
ZmNIP2;4 was not affected, whereas the expression of ZmTIP4;4 increased significantly in the roots 
and expanded leaves, suggesting that ZmTIP4;4-regulated urea transport was essential for unloading 
vacuolar urea across the tonoplast under N starvation conditions [63]. Moreover, AtTIP1;1, AtTIP1;2, 
AtTIP2;1, and AtTIP4;1, which are different from the high-affinity H+/urea symporter AtDUR3, 
provide a less concentration- and pH-dependent pathway for urea transport from the external 
growth medium into the cytosol or from the cytosol into the vacuole [23,61]. AtTIP1;3 and AtTIP5;1, 
the only highly expressed pollen-specific aquaporins, function in N remobilization via transport of 
mitochondrial urea to the cytoplasm [61,69]. 

Figure 1. Effect of different nitrogen sources (ammonium vs. nitrate) on aquaporin (AQP) expression
in rice (a) and French bean plants (b). Rice plants were supplied with 2.5 mM ammonium [(NH4)2SO4]
or nitrate [Ca(NO3)2] for two weeks. Root samples were collected for RNA isolation, and quantitative
real-time PCR (q-RT-PCR) was performed to detect the relative expression of the plasma membrane
intrinsic proteins (PIPs) and tonoplast intrinsic proteins (TIPs) [60]; (b) French bean plants were grown
in a split-root system, in which half of the roots were supplied with 5 mM ammonium [(NH4)2SO4]
or nitrate [Ca(NO3)2]. The PIP1 aquaporin expression in the roots was determined via Northern blot
analysis until day 5 after the treatments [59].

2.3. Urea

Urea is a major N fertilizer used in agricultural production and is also a naturally occurring
and readily available N source in soil. Urea is an uncharged small solute and passes through
plant membranes via AQP [49,61–63], and members of the PIP, NIP, and TIP subfamilies have been
shown to facilitate urea crossing membranes [23,24,64]. NIPs and PIPs, localized to the plasma
membrane, function in urea movement between the apoplast and the symplast of plant cells [33,65,66].
In comparison, TIPs were targeted mainly to the tonoplast or other endo-membranes and are involved
in equilibrating urea concentrations between different cellular compartments [23].

In Arabidopsis, several native NIPs, such as AtNIP6;1 and AtNIP5;1, were shown to transport urea,
and AtNIP6;1 was also predicted to conduct substantial amounts of ammonia [64], and AtNIP5;1 was
identified to transport boron acid [67]. However, AtNIP5;1 was identified to facilitate urea uptake
only under B deficiency, in both high and low urea concentrations [67]. In maize plants, ZmNIP2;1,
ZmNIP2;4, and ZmTIP4;4 were found to be involved in urea transport and played critical roles in urea
uptake and movement, and stabilized urea concentrations in the tonoplast [23,63]. CsNIP2;1, a plasma
membrane transporter from Cucumis sativus, facilitates urea uptake and internal transport during N
remobilization and N delivery in plants [62]. In maize roots, the ZmPIP1;5, an aquaporin transport for
water and urea, diverges from other PIP membranes by urea transport activity [49], and the expression
of ZmPIP1;5 is induced by nitrate and modulated during the day-night cycle. Vacuoles could be used
for short-term urea storage to avoid toxicity in the cytoplasm; this process was regulated by TIPs,
which contribute to urea remobilization from the vacuole and equilibration within the cell [24,68].
Under nitrogen deficient conditions, expression of ZmNIP2;1 and ZmNIP2;4 was not affected, whereas
the expression of ZmTIP4;4 increased significantly in the roots and expanded leaves, suggesting that
ZmTIP4;4-regulated urea transport was essential for unloading vacuolar urea across the tonoplast
under N starvation conditions [63]. Moreover, AtTIP1;1, AtTIP1;2, AtTIP2;1, and AtTIP4;1, which
are different from the high-affinity H+/urea symporter AtDUR3, provide a less concentration- and
pH-dependent pathway for urea transport from the external growth medium into the cytosol or from
the cytosol into the vacuole [23,61]. AtTIP1;3 and AtTIP5;1, the only highly expressed pollen-specific
aquaporins, function in N remobilization via transport of mitochondrial urea to the cytoplasm [61,69].
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Aquaporins are tightly linked with N metabolism in higher plants, and the PIP, NIP, and TIP
subfamilies have been shown to transport NH3 and urea, and maintain the balance between the
cytoplasm and vacuole. Understanding the principles of N compounds passing through the plasma
membrane by aquaporins allow us to modulate the N uptake and utilization, and improve the nitrogen
use efficiency in plants. Nitrate and ammonium were different in regulation of plant water uptake
and AQP expression depending on the plant species. Nitrate is suggested to be a critical signalling
factor to induce PIPs expression and increase root hydraulic conductivity in nitrate preferred plants,
while ammonia increases PIPs and TIPs expression and water uptake in ammonia preferred plants.
The regulation of AQP by different nitrogen forms provides an effective pathway to increased plant
water stress and water use efficiency in plants.

3. Phosphorus (P)

Phosphorus (P) is necessary for the synthesis of nucleic acids, which contains the genetic code of
the plant for production of proteins and other compounds essential for plant structure, seed yield, and
genetic transfer. A number of studies have indicated that the enhancement in plant growth with P
fertilization is associated with an increased capacity of the plants to transport water [70,71]. The activity
or density of aquaporins in the plasma membrane of root cells is diminished during nutrient stress,
such as N- and P deprivation [48].

P is involved in root water uptake by altering aquaporin expression and/or activity [48,72].
P deficiency reduced aquaporin activity or abundance in the root plasma membrane [48] and was
associated with a decrease in water uptake [72], which was attributed to phosphorylation of the plant
aquaporins [73]. In Arabidopsis roots, the changes in the phosphorylation status of PIP aquaporins were
positively correlated to changes in root hydraulic conductivity under NaCl, NO, and N and P starvation
treatments [74]. Additionally, plants often exhibit disruption of water transport that is associated
with enhanced ethylene production, which modulates root hydraulic conductivity by affecting the
aquaporin activity under P deficient conditions [75,76]. As plant aquaporins are regulated by cytosolic
pH and free Ca2+ activity [77], ethylene can elicit a rapid increase in cytosolic Ca2+ concentration by
activating the Ca2+-permeable channels [78], as a result of inhibiting aquaporin activity. In sorghum
plants, the root hydraulic conductivity of water-stressed plants with a sufficient P supply recovered
faster than that of plants without a P supply, suggesting that sufficient P could increase AQP expression
and/or activity after water recovery [79]. Arbuscular mycorrhizal (AM) fungi, which formed symbiotic
associations with host plants, can uptake and deliver inorganic P to the host through hyphal networks.
Under water stress, AM symbiosis can increase the tolerance of plants by regulating the AQP gene
expression, osmotic adjustments, and plant growth [80,81].

The role of P on aquaporins is mainly focused on its phosphorylation functions by regulating
aquaporin activity and abundance, and corresponds with regulated root hydraulic conductivity and
water uptake. Further studies are needed to elucidate the specific functions of AQP genes regulated by
AM symbiosis, in order to reveal the exact mechanism of AM symbiosis to deliver P and alter plant
adaptation to environmental stressors.

4. Potassium (K)

Potassium ion (K+), the most abundant cation in higher plants, functions in osmo-regulation,
cation-anion balance, stomatal movement, photosynthesis, energy transfer, carbohydrate phloem
transport, enzyme activation, and protein synthesis, as well as stress resistance [41]. As K+ is the major
osmolyte, its uptake will be accompanied by water flux through the aquaporins, and there was a
positive correlation between K absorption and water uptake [82]. It was suggested that aquaporins
could function as turgor sensors to modulate the conductance of K+ channels [83]. Transcripts encoding
aquaporins were strongly affected by K+ starvation, even without water stress [84]. In Arabidopsis,
iterative group analysis (iGA) identified 12 aquaporin genes in the shoots and 15 genes in the roots
that were significantly up-regulated after K+ resupply [85]. The trafficking and activity of plasma
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membrane aquaporin PIPs is regulated by the SNARE SYP121, a plasma membrane resident syntaxin
involved in vesicle trafficking, signaling, and regulation of K+ channels [86,87]. SYP121 plays a role
in the regulation and maintenance of membrane osmotic water permeability through a coordinated
regulation of the plasma membrane density of both PIP and K+ channels in membrane delivery and
recycling [86].

The aquaporins may participate in ion homeostasis at the whole plant level by regulating the
ratio of apoplastic/symplastic water flow and thus directing solute flux through different plant tissues.
In onion roots, water transport was sensitive to inhibitors of aquaporins and K+ channels, and the
decrease in hydraulic conductivity after K+ channel inhibitor treatment indicates that K+ fluxes are
involved in aquaporin activity in the plasma membrane [88]. In Arabidopsis roots, the expression of
genes encoding water channels of the aquaporins PIP1b, PIP2b, and TIP, as well as the K+ transporter
HAK5 were reduced after K+ channel inhibitor (CsCl) treatment [89], suggesting that K+ channel
blockers could reduce the hydraulic conductivity of the plasma membrane by down-regulating or
blocking water channels.

It has been reported that aquaporins and K+ channels can function as plant osmo-regulators to
maintain cytosolic osmolarity and increase the tolerance of the plant to drought or other stressors [90,91].
In rice, the expression of PIP and K+ channels responded similarly to K deficiency and water stress,
in which expression of PIPs and K+ channel-encoding genes was induced by K+ starvation and
down-regulated by water deficit during a short time, suggesting that aquaporins and K+ channels are
functionally co-regulated during cell turgor regulation [90]. Loading K+ into the plant xylem could
regulate the xylem hydraulic conductivity, which can help maintain cell turgor, stomatal aperture,
and gas exchange rates, as a result of increasing drought tolerance [92,93]. During drought stress,
plants modulate their water and ion uptake capacities by regulating aquaporins and K+ channels at
the transcriptional level to respond to the water deficiency [90,94,95].

Aquaporins participate in whole plant ion homeostasis and act as turgor sensors to modulate
the K+ channels. Aquaporins and K+ channels can function as plant osmo-regulators to maintain
cytosolic osmolarity and increase tolerance to drought stress, which corresponds with rapid recovery
of the shoot water status, cell turgidity, and thus plant growth. The coordination of aquaporins and K+

transport in plants during different stressors and physiological states, may be regulated by different
signalling pathways.

5. Calcium (Ca)

Calcium (Ca) is an essential macronutrient that functions in the cell wall and membranes, acting
as a counter-cation for inorganic and organic anions in the vacuole, as well as a secondary messenger
in cell signal transduction [41,96,97]. Generally, Ca2+ enters the root apoplast via the mass flow from
the soil solution [41], suggesting that transpiration-regulated water flow may be involved in Ca2+

delivery and storage, which could be regulated by aquaporins [97]. Conversely, Ca2+ could affect AQP
activity and/or expression, and aquaporin expression was suppressed by Ca2+ starvation [84]. It has
been reported that the inhibition of maize root water transport by HgCl2 was detected only in the
presence of Ca2+ in the nutrient solution, suggesting that Ca2+ is involved in regulating aquaporin
activity [98].

Several studies demonstrated that the aquaporin functions could be regulated by Ca2+ [99,100]
and triggered by environmental stressors [101]. Under water stress, the expression or activity of
aquaporins was affected [94,98], and this process could be facilitated by excess Ca2+ [102]. Salt stress
decreased water transport through the plasma membrane and the root cortical cells by reducing
Hg-sensitive aquaporin activity, and the ameliorative effect of Ca2+ on salt stress was related to
aquaporin function [72,103,104]. In pepper plants, cytosolic Ca2+ decreased after long-term exposure
to salt stress with a corresponding overall inhibition of aquaporins [105]. Reversible phosphorylation,
a potential mechanism for plant aquaporin regulation during development and in the response of
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plants to environmental stimuli [73,106,107], could be regulated by Ca2+, indicating a link between
aquaporin regulation and Ca2+ signalling [105].

In guard cells, extracellular Ca2+ is involved in stomatal movement by acting as an elicitor
(second messenger) or aquaporin blocker, which may initiate the signal cascade and lead to the
post-transcriptional regulation of aquaporins or directly block aquaporins [108]. The aquaporin gate
was regulated by cytosolic Ca2+ transport, especially the opening and closing of verapamil-sensitive
Ca2+ channels [104]. In vitro phosphorylation of the aquaporin PM28A was directly dependent on
submicromolar Ca2+ concentrations [99]. Ca2+ is involved in plasma membrane aquaporin regulation
via a chain of processes within the cell, but its effects are not due to alteration of the stability of the
plasma membrane [104].

Cytosolic Ca2+ transport and Ca2+ channels might directly regulate water flow by acting on
aquaporins, which would affect nutrient movement through the plant. In the response of plants
to environmental stimuli, the functions of aquaporin could be regulated by Ca2+ via reversible
phosphorylation. However, the regulation mechanism of Ca2+ on aquaporins and its physiological
role in whole plant conditions remains to be established.

6. Boron (B)

Boron (B) is an essential micronutrient for plant growth and development, especially for the
structure and function of the plant cell wall [41]. B deficiency and toxicity in plants results in a
significant reduction in quality and yield of many crops worldwide [109,110]. Aquaporins have been
shown to function in B transport in higher plants [111,112], and are required for normal plant growth
under B deficiency and toxic conditions [17,113,114].

AtNIP5;1, a boric acid channel that belongs to the major intrinsic proteins (MIPs), is predominantly
expressed in epidermal, cortical, and endodermal cells [17,30]. Under B deficiency, AtNIP5;1 expression
was strongly up-regulated, which is critical for efficient B transport into the roots [17]. In nip5;1 mutants
of Arabidopsis thaliana, both root and shoot growth were inhibited under B deficiency [17], indicating
that NIP5;1 was essential for the overall B uptake that was required for plant growth and development
under B limitation. AtNIP6;1, which is homologous to AtNIP5;1, was shown to facilitate the rapid
penetration of boric acid across the membrane and normal distribution of boric acid in plant tissues,
but it is completely impermeable to water [113]. Similarly, the water channel OsNIP3;1 was also found
to be a B-inducible channel in rice involved in B uptake and distribution [115].

In barley, the tolerance to excessive soil B is controlled by downregulated expression of HvNIP2;1
to reduce B uptake and leaf blade B accumulation. Expression of Bot1, a BOR1 ortholog that provides B
tolerance to barley, was induced to eliminate B from the roots and sensitive tissues [114]. HvNIP2;1 is
essential for B toxicity tolerance in barley in combination with Bot1. AtTIP5;1 plays a critical role in
the B transport pathway possibly via vacuolar compartmentation, and the overexpression of AtTIP5;1
may facilitate the elimination of B toxicity in plants [116]. OsPIP1;3, OsPIP2;4, OsPIP2;6, and OsPIP2;7,
members of the major intrinsic proteins (MIPs) family, were involved in both influx and efflux of
B transport, and their expressions were strongly upregulated under B toxicity [117,118]. Briefly,
aquaporins are essential for reducing the accumulation of toxic boric acid levels in plant tissues [9].

Aquaporins were involved in B uptake and distribution, and PIP, NIP, TIP, and XIP subfamilies
have been shown to transport boric acid. Under B deficiency, NIPs are essential for efficient B uptake
and distribution that is required for plant growth and development. Whereas under B toxicity, NIPs,
TIPs, and PIPs are involved in reducing the accumulation of toxic boric acid levels in plant tissues.
Manipulation of these aquaporins could be highly useful in improving plant tolerance to B deficiency
or toxicity.

7. Silicon (Si)

Silicon (Si), the second most abundant element in the earth’s crust, is important for plant growth
and development. Si is beneficial to the mechanical and physiological properties of plants and helps
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plants to overcome biotic and abiotic stress [34,119–121]. Under salt stress, Si can improve plant
tolerance through enhancing root water uptake which contributes to the regulation of aquaporin
activity and gene expression [122,123]. The Si uptake by plants in soil solution is through silicic
acid [Si(OH)4], an uncharged molecule [34]. Silicic acid enters the plant roots mainly by water flow
via the apoplastic and symplastic pathways, and the symplastic pathway involves the presence of
water channels, mainly NIPs [124]. In rice, two Si transporters, Lsi1 and Lsi2, have been shown to be
involved in Si uptake. Lsi1 is localized on the distal side of the plasma membrane of the exodermal
and endodermal cells and functions as an influx transporter [33,125], whereas Lsi2 is located on the
proximal side of the same root cells and functions as an efflux transporter [125,126]. The combination
of Lsi1 and Lsi2 enables rice to efficiently transport silicic acid from the soil solution into the xylem
of the roots. Lsi1 (also named OsNIP2;1) belongs to the NIP subfamily of aquaporins, and previous
studies have shown that NIP proteins are permeable to a wide range of substrates, such as silicic
acid [33], arsenite [125], boric acid [17], urea and formamide [64], glycerol [127], lactic acid [35], as well
as selenite [128]. Lsi6 (OsNIP2;2), which is localized in the xylem parenchyma cells of leaf blades and
sheaths, was also identified as responsible for Si xylem unloading [129]. In barley, a Lsi1 ortholog of
HvLsi1 (HvNIP2;1), localized in the plasma membrane of epidermal cells and all cortical cells in roots,
was identified as a Si influx transporter and shown to be involved in the radial transport of Si through
the epidermal and cortical layers of the basal roots [32].

Si absorption is facilitated by NIPs, and two Si transporters have been identified that are
involved in Si uptake, Lsi1 and Lsi2, which function as an influx and efflux transporter, respectively.
Cooperation of Lsi1 and Lsi2 is required for the efficient transport of Si. The identification of Si
transporters provides an insight into the Si uptake system in plants and a new approach for producing
crops with high resistance to various biotic and abiotic stresses by genetic modification. To further
elucidate the Si accumulation mechanism and understand the critical role of Si at the whole plant level,
molecular and physiological characterization of Si transporters in different plant species is required in
the future.

8. Conclusions and Future Perspectives

A wide range of selectivity profiles and regulatory properties allow aquaporins to be involved in
multiple functions in plant growth and development, such as water transport, and nitrogen, carbon,
and micronutrient acquisition. Aquaporins, mainly PIPs, TIPs, and NIPs, have been shown to facilitate
the transport of plant mineral nutrients across plasma membranes and cell organelles (Figure 2), such
as ammonia, urea, boric acid, and silicic acid. Aquaporins are responsible for ensuring different mineral
nutrient availability for the plant and play essential roles in mineral nutrient absorption, mobilization,
detoxification, and homeostasis. There is a tight link between plant aquaporins and mineral nutrients.
Aquaporin expression is regulated by mineral nutrient availability and plant species. Aquaporin
function can be regulated by mineral nutrients in the response of plants to environmental stimuli, such
as drought and salt stress, nutrient deficiency, and toxicity. Understanding the interactions between
aquaporins and mineral nutrients allow us to modulate the water and mineral nutrient uptake and
utilization, and improve the water and nutrient use efficiency in plants, as well as increase tolerance to
biotic and abiotic stress. In the future, attention should be focused on:

(1) The functions of aquaporins in the transport of other novel putative substrates, such as Mg, S,
and other micronutrients, which await further investigation.

(2) New aquaporin subclasses and unknown functions of aquaporins recently discovered in certain
plant species should be deciphered.

(3) Investigation of the interactions between water and mineral nutrient transport, as well as
interactions between different mineral nutrients regulated by aquaporins will be required.

(4) The role of aquaporins during biotic and abiotic stress, and the relevance of altered aquaporin
expression for biotechnological improvement of plant tolerance must be explored.
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(5) Aquaporin functions need to be further investigated concerning whole plant physiology, which
requires a better understanding of how the various aquaporin transport activities are coupled
with plant mineral nutrient transport proteins.
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