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Abstract

Background: Disease activity measurement is a key component of rheumatoid arthritis (RA) management. Biomarkers that
capture the complex and heterogeneous biology of RA have the potential to complement clinical disease activity
assessment.

Objectives: To develop a multi-biomarker disease activity (MBDA) test for rheumatoid arthritis.

Methods: Candidate serum protein biomarkers were selected from extensive literature screens, bioinformatics databases,
mRNA expression and protein microarray data. Quantitative assays were identified and optimized for measuring candidate
biomarkers in RA patient sera. Biomarkers with qualifying assays were prioritized in a series of studies based on their
correlations to RA clinical disease activity (e.g. the Disease Activity Score 28-C-Reactive Protein [DAS28-CRP], a validated
metric commonly used in clinical trials) and their contributions to multivariate models. Prioritized biomarkers were used to
train an algorithm to measure disease activity, assessed by correlation to DAS and area under the receiver operating
characteristic curve for classification of low vs. moderate/high disease activity. The effect of comorbidities on the MBDA
score was evaluated using linear models with adjustment for multiple hypothesis testing.

Results: 130 candidate biomarkers were tested in feasibility studies and 25 were selected for algorithm training. Multi-
biomarker statistical models outperformed individual biomarkers at estimating disease activity. Biomarker-based scores
were significantly correlated with DAS28-CRP and could discriminate patients with low vs. moderate/high clinical disease
activity. Such scores were also able to track changes in DAS28-CRP and were significantly associated with both joint
inflammation measured by ultrasound and damage progression measured by radiography. The final MBDA algorithm uses
12 biomarkers to generate an MBDA score between 1 and 100. No significant effects on the MBDA score were found for
common comorbidities.

Conclusion: We followed a stepwise approach to develop a quantitative serum-based measure of RA disease activity, based
on 12-biomarkers, which was consistently associated with clinical disease activity levels.
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Introduction

RA is a common, chronic, idiopathic autoimmune disease with

over 1.3 million people diagnosed in the US and over 4 million

worldwide. RA is characterized by synovitis, inflammatory joint

fluid, degradation of articular cartilage, erosion of the marginal

bone, and systemic immune and inflammatory manifestations.

Despite recent advances in treatment including the introduction of

potent biologic agents, substantial disease activity persists in many

patients, with accompanying progressive bone and soft tissue

damage, extra-articular consequences, disability, and increased

mortality.

Several studies, such as TICORA, CAMERA, BeSt, and

FinRACO, have demonstrated improved outcomes with tight

control of disease activity, a strategy employing frequent disease

activity measurement and treatment adjustment to reach a specific

target disease activity level [1–3]. Treat to Target guidelines codify

these results into specific recommendations for optimal care

including frequent disease activity monitoring for all patients [4].

ACR guidelines also recommend regular disease activity testing

[5]. However there is no current gold standard for disease activity

assessment in RA. Multiple measures are used, each with varying

strengths and weaknesses, such that no single ‘best’ measure of

disease activity could be recommended in U.S. or international

RA guidelines.

Current disease activity indices are typically composite scores

that can include physician assessment of symptoms, patient

reported measures, and laboratory measurements. The Disease

Activity Score (DAS), the Simplified Disease Activity Index (SDAI)

and the Clinical Disease Activity Index (CDAI), for example, rely

on joint counts, patient self-assessment and (with the exception of

CDAI) laboratory tests, while the Routine Assessment of Patient

Index Data-3 is based solely on PROs [6–9]. Although physician

evaluation and patient self-reporting are critical components of

patient assessment and management, they are influenced by intra-

and inter-assessor variability and can be confounded by comor-

bidities or accumulated joint damage resulting from long-standing

disease [10–13].

Protein biomarkers can provide complementary, objective, and

reliable measurements reflecting underlying pathophysiological

processes. Erythrocyte sedimentation rate (ESR) and CRP

measurements are currently incorporated into clinical disease

activity measures, including the DAS and SDAI. However, these

biomarkers are non-specific indicators of inflammation that can be

elevated due to age, anemia and the presence of immunoglobulins,

and that can be unexpectedly low or even normal in patients with

active disease, possibly due to underlying genetics [14–16].

Therefore, ESR and CRP measurement may not be useful in all

RA patients, and other biomarkers may provide important

information about disease state. Previous research studies have

reported that other protein biomarkers implicated in the

pathophysiology of joint disease, such as vascular endothelial

growth factor-A (VEGF-A) and matrix metalloproteinase 3

(MMP3), are also correlated with disease activity [17–20]. We

hypothesized that measurement of multiple serum protein

biomarkers combined into a single score could quantitatively

and objectively characterize RA disease activity and enhance

current disease activity assessment. Periodic monitoring of this

score could complement existing approaches to patient care,

facilitating quantitative tracking of patient status and treatment

impact and supporting management of difficult cases such as

patients with comorbidities or conflicting physician vs. patient

assessment. We applied a multi-step development process using

multiple diverse cohorts to prioritize biomarkers of disease activity

and develop such a multi-biomarker disease activity (MBDA) score

for the assessment of RA disease activity. This score has

subsequently been tested and validated in additional patients

[21,22].

Methods

Ethics Statement
Clinical studies used as the source of biomarker samples were

approved by institutional review board (Partners Institutional

Review Board for BRASS, Oklahoma Medical Research Foun-

dation Institutional Review Board for the Oklahoma City cohort,

and Quorum Institutional Review Board for InFoRM) and all

patients gave written informed consent.

Overview
A multi-stage approach to biomarker discovery and algorithm

development was used (Table 1). In Stage 1, Screening, candidate

biomarkers were identified and corresponding assays were selected

and optimized. Stage 2, Feasibility, involved two parts: Stage 2A

included four studies to assess and prioritize biomarkers based on

their relationships to clinical disease activity; Stage 2B was a pilot

imaging study to verify that multi-biomarker disease activity scores

could capture critical aspects of disease activity. Stage 3, Test

Development, involved further assay optimization, biomarker

selection, and the training and selection of the final MBDA

algorithm. Once the algorithm was finalized, the impact of

comorbidities on the MBDA score was assessed.

Patient Cohorts & Samples
Biomarkers were assayed from stored serum samples obtained

from patients from multiple clinical studies/cohorts. Serum was

collected in standard Serum Separator Tubes in accordance with

manufacturer’s instructions and frozen at 280 Celsius within 72

hours. Material was maintained between 2 and 8 degrees Celsius

until freezing except in the BRASS cohort, for which SST tubes

were shipped at ambient temperature prior to separation of serum

by centrifugation. In all studies except the Stage 2B Pilot Imaging

study, observational cohorts were used. The objective was to

evaluate the intended use population for the MBDA test: diverse

patients representative of the RA population in the United States

and Western Europe, treated according to current practice norms.

The reasons for using multiple observational cohorts were 1) to

ensure that only biomarkers that behaved consistently across

different patient populations would be selected for use in the final

MBDA algorithm, and 2) to access sufficiently large numbers of

patients for adequate statistical power. In the Stage 2B Pilot

Imaging study the objective was to examine the relationship

between disease activity biomarkers and disease measures based

on joint imaging, and the cohort was selected because of the

availability of high-quality ultrasound and X-ray image data. In all

studies the determination of clinical disease activity was carried out

using standard methods (refs) and the assessment was carried out

without knowledge of biomarker concentrations (which were

determined later).

All patients fulfilled at least 4 of 7 of the 1987 revised ACR

criteria for RA [23]. Exclusion criteria applicable to all source

cohorts were: oral (.10 mg/day) or parenteral (any) corticosteroid

use within the last 4 weeks; women who were pregnant, nursing, or

planning pregnancy within 6 months of study enrollment; signs or

symptoms of severe, progressive or uncontrolled renal, hepatic,

hematologic, gastrointestinal, endocrine, pulmonary, cardiac,

neurologic, or cerebral disease; concomitant diagnosis or history

of congestive heart failure; a known history of a demyelinating
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disease; any known malignancy currently or within the previous 5

years (with the exception of basal cell or squamous cell carcinoma

of the skin that had been fully excised with no evidence of

recurrence); seropositivity for HIV; active infection or active

substance abuse. See Table 2 for cohort characteristics.

Feasibility studies. Serum samples examined in Feasibility

Studies I–IV were derived from the Oklahoma City cohort, an

observational study of patients seen at community clinics located

in and around Oklahoma City, OK, and from the Brigham and

Woman’s Rheumatoid Arthritis Sequential Study (BRASS)

Registry [24,25], an observational cohort study of patients seen

at the Brigham and Women’s Hospital in Boston, MA. For Study

I, single visit samples were obtained from 128 patients with RA

from the Oklahoma City cohort. For Study II, single visit samples

were obtained from an additional 140 patients from the Oklahoma

City cohort and 180 patients from the BRASS registry. For Study

III, serum samples at baseline, 1 year, and 3 years were obtained

from each of 85 patients in the BRASS registry, in order to

evaluate the utility of longitudinal disease activity data. For Study

IV, single visit samples were analyzed from 119 patients among

the 140 Oklahoma City cohort patients from Study II for whom

sufficient residual sample volume was available, in order to

examine new candidate biomarkers.

Pilot ImagingStudy. Serum samples at multiple time-points

(0, 6, 18, 52, 110 weeks) were obtained from 24 patients followed

in a 2-year blinded study in the UK comparing methotrexate+in-

Table 1. Staged approach used in biomarker discovery and prioritization and algorithm development.

Stage Study Objectives Biomarkers Patients Samples

SCREENING 1 - Candidate marker identification;
Initial assay optimization

130* 20 20

FEASIBILITY 2A Study I Prioritization 113 128 128

FEASIBILITY 2A Study II Prioritization 75 320 320

FEASIBILITY 2A Study III Prioritization 65 85 255

FEASIBILITY 2A Study IV New marker evaluation
& Prioritization

16 119{ 119{

FEASIBILITY 2B Pilot Imaging Assessment of capabilities of
biomarker-based disease
activity scores

.25` 24 107

DEVELOPMENT 3 Training Analytical validation; Development
& testing of candidate algorithms

25 708 708

*130 biomarkers had adequate measurability to advance to studies of clinical disease activity.
{Patients and samples in Study IV represent a subset of those evaluated in Study II.
`In addition to the 25 biomarkers that were subsequently advanced to model development (Stage 3), this study also examined other serum biomarkers of potential
interest to prediction of structural damage progression, some of which overlapped with biomarkers considered for disease activity prediction.
doi:10.1371/journal.pone.0060635.t001

Table 2. Patient characteristics in Feasibility (Stage 2) studies.

Study I Study II Study III Study IV PoC Study

Number of patients/samples 128/128 320/320 85/255* 119/119** 24/107*

Female, % 82 80 91 77 75

CCP+, % 63 62 62 61 n/a

RF+, % 83 83 64 97 n/a

Smoker, % n/a 13 4 22 n/a

Methotrexate, % 53 61 48 64 100

Non-biologic DMARDs, % 69 76 64 81 100

Biologics, % 65 53 43 50 50

Corticosteroids, % 24 27 27 33 n/a

Age, mean6SD (min,max) 60613 59614 59613 60614 56613

DAS28-CRP, median (IQR) 5.8 (4.7–6.5) 4.0 (2.9–5.3) 3.8 (2.7–5.0) 5.2 (4.1–6.2) 3.3 (2.2–4.4)

TJC28, median (IQR) 12 (4.8–20) 2.0 (0–8.3) 7.0 (2.0–14) 8.0 (3.0–15) 3.0 (0.0–8.0)

SJC28, median (IQR) 16 (12–21) 6.5 (2–13) 2.0 (0.0–10) 14 (8.0–20) 4.0 (1.0–7.0)

CRP mg/L, median (IQR) 14 (4.0–32) 14 (5.1–45) 14 (4.0–47) 18 (6.9–47) 25 (7.6–70)

PG, median (IQR) 5.0 (2.9–7.0) 2.5 (1.0–5.0) 3.0 (1.0–5.0) 5.0 (2.0–6.5) n/a

DMARD, disease-modifying anti-rheumatic drug; IQR, inter-quartile range.
*For studies with multiple samples per patient, sex, age, and serological status (when available) statistics are based on unique patients. Other statistics are based on all
samples.
**All studies used independent patients and samples, except Study IV, which used a subset of Study II samples.
doi:10.1371/journal.pone.0060635.t002
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fliximab combined therapy with methotrexate monotherapy in

aggressive early RA [26,27]. Patients were evaluated with

ultrasound (US) at 0, 18, 54 and 110 weeks and scored for

synovial thickening (ST) and for vascularity by power Doppler

area (PDA). Details of imaging and scoring have been previously

described [26]. Briefly, each MCP was scored for ST using

grayscale images on a 0–5 scale, and the overall ST score was the

total of the scores for the individual joints. The numbers of pixels

showing Doppler signal were summed across the 10 MCPs to give

the overall PDA score. Radiography was performed at 0, 54, and

110 weeks and used to determine van der Heijde-modified total

Sharp scores (TSS).

Algorithm training. Single samples were obtained from each

of a total of 703 patients from the BRASS cohort and from the

Index for Rheumatoid Arthritis Measurement (InFoRM) study

[28], a multicenter North American observational study conduct-

ed by Crescendo Bioscience, South San Francisco, SF. Five

hundred and twelve patients from InFoRM were selected (from

,1300 total) to be representative of the overall disease activity

distribution in the study and also of the broader North American

RA population from which the InFoRM cohort was drawn. An

additional 29 InFoRM patients were selected to enrich for high

and low disease activity. One hundred and sixty-seven patients

were selected from the BRASS registry to capture the full range of

disease activity, enriching for very low and high disease activity

(although 5 were subsequently excluded from analysis due to

incomplete clinical data). Representation of low and high disease

activity patients was enriched to increase the power to detect

associations between biomarkers and clinical disease activity, and

to ensure that the MBDA algorithm worked across the full disease

activity range. All patients used were independent from those

assessed in the prioritization studies and pilot imaging study listed

above. The 703 samples were used to further prioritize the

individual biomarkers based on their associations with clinical

measures of disease activity. A subset of these patients was used for

the final fitting of the statistical models used in the MBDA

algorithm. In order to fit models optimally, it was important to

have substantial variation in disease activity levels; therefore, the

subset of 249 samples was selected to have similar numbers of

patients in low, moderate and high disease activity. The

performance of the most promising models from training was

evaluated in an independent 70-sample subset of the 703 samples,

selected to have similar disease activity composition to the final

249-sample training set. The best models were further evaluated in

patients from the computer-assisted management in early rheu-

matoid arthritis (CAMERA) study [21].

Comorbidities study. Samples from the 512 representative

InFoRM patients used in algorithm training were analyzed to

evaluate the impact of common comorbidities on the MBDA

score. The presence or absence of comorbidities was recorded by

study investigators based on their individual clinical knowledge.

The case report forms did not specify diagnostic or classification

criteria for diseases other than RA.

Candidate Biomarker Selection
Literature analysis. Candidate biomarkers previously re-

ported to be related to RA disease activity or underlying processes

were identified through manual review of scientific articles and

bioinformatics databases of findings extracted from the literature.

Manual literature searches were conducted using PubMed (http://

www.ncbi.nlm.nih.gov/pubmed/). Bioinformatics approaches em-

ployed IRIDESCENT [29] and Ingenuity Pathways Analysis

(Ingenuity Systems, Redwood City, CA).

Assays & Optimization
Detection of anti-cyclic citrullinated peptide (CCP) and

rheumatoid factor (RF) antibody activity. For the Okla-

homa cohort samples, anti-CCP was measured using a commer-

cially available ELISA kit (Quanta Lite CCP 3.1 IgG/IgA Kit,

INOVA Diagnostics Inc., San Diego, CA) and RF was measured

with the EL-RF/3 kit (Theratest Laboratories, Lombard IL). In

the BRASS and InFoRM cohort samples both RF and anti-CCP

were measured using Cobas analyzers (Roche Diagnostics,

Indianapolis, IN) according to manufacturer’s instructions.

Candidate biomarker assays. All assays were run in 96-

well plates with 8 point standard curves (7 standards and a blank).

Both standards and patient samples were run in duplicate in

adjacent wells on the same plate in all studies. A single lot of each

assay reagent was used in each study wherever possible to

minimize plate to plate variation. Pools of commercially available

human sera (Bioreclamation Inc., Nassau, NY) from rheumatoid

arthritis patients, osteoarthritis patients, systemic lupus erythema-

tosus patients and unaffected controls were run as process controls

on each plate. Luminex-based assays were run on either a

Luminex 100 or Luminex 200 device and analyzed using either

Bioplex curve fitting (Biorad Inc. Hercules, CA) and 4-parameter

logistic (4PL) curve fitting with Power Law Variance weighting or

Xponent software (Luminex Inc. Austin TX) with 4PLcurve fitting

and 1/y2 weighting. Meso Scale Discovery (MSD) assays were

evaluated using a Sector Imager 6000 device (Meso Scale

Discovery, Gaithersburg, MD) using MSD Discovery Workbench

software with 4 parameter logistic curve fitting and 1/y2

weighting. ELISA-based assays were evaluated using a BioTek

ELx800 plate reader (BioTek Inc. Winooski, VT) and TERIS

software with 4 parameter logistic curve fitting and 1/y weighting.

Sample and standard/calibrator dilutions were adjusted such that

marker levels were best positioned in the linear portions of

standard curves. For Stages 1 and 2, serum from 20 RA patients

with a representative distribution of DAS scores was used to

optimize assay sensitivity and dynamic range, to best map RA

patient protein measurements onto the linear portion of the

standard curve, and to minimize serum volume requirements.

Tested assays are listed in Table S1, which also indicates how

assays were multiplexed and the suppliers of assay materials

including standards. Final sample dilutions, assay precision and

measurability limits are reported in Table S2. For Stage 3

(Development), assays were optimized and characterized as

described previously so as to be highly consistent across studies

and suitable for use in a clinical diagnostic test [30]. Details of

assay multiplexing, sample dilutions, limits and sources of

standards are given in Table S3.

Heterophilic antibody and RF interference. Assays sensi-

tive to heterophilic antibody activity were identified by evaluating

whether blocking reagent (Heteroblock, Omega Biologicals,

Bozeman, MT) reduced signal in 5 samples with high RF titers

but not in 5 samples with low RF. If an assay showed evidence of

interference, the optimal Heteroblock concentration for that assay

was determined by identifying the minimum concentration that

suppressed spurious signal in high RF samples, as previously

described [31]. Heteroblock was then added to all subsequent

plates for that assay.

Biomarker data quality control. Quality control of each

assay plate was conducted by monitoring the performance of the

process controls (the serum pools diluted alongside the samples on

each plate) and, for Stage 3, also of run controls (made from

standard material). In stages 1 and 2, consistency of control

recovery was compared to the other plates within a study and

across studies in order to identify any outlier plates that warranted
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repeat assay runs. When individual sample signal in a study was

too low to fall on the standard curve, the concentration was set to

the lowest value observed for any sample in that study. Conversely

if the signal was too high to fall on the standard curve, the

concentration was set to the highest value observed. In Stage 3,

control tables were established for control samples with accept-

ability ranges being defined as 63 standard deviations (SD) of the

expected value. If multiple run controls or process controls on a

plate had observed concentrations outside the acceptability range

for any given assay, the plate was flagged for review and repeated

if necessary. For plates that were flagged for review, standard

curves were examined (i.e. % recovery versus expected concen-

trations and consistency among duplicate wells) and edited if

necessary to remove outlier wells. If the signal coefficient of

variation (CVs) between a sample’s duplicate wells was greater

than 20%, the sample was flagged for review. If either a plate or

sample was determined to be unacceptable, a data review team

decided whether to either remove the data from the analysis or re-

run if additional sample volume was available.

Statistical Analysis & Modeling
Biomarker evaluation & prioritization. In each study,

biomarkers were assessed and prioritized based on univariate and

multivariate association with 8 clinical measures (DAS28-CRP4,

DAS28-ESR4, CDAI, SDAI, swollen joint count [SJC], tender

joint count [TJC], and patient global assessment (PGA)), both in

the entire study cohort and in subgroups defined by autoantibody

status, sex, and therapy. Data for each study was analyzed

separately. The need to adjust data for plate to plate variation was

assessed for each study. Univariate associations between marker

levels and clinical measures were assessed using Pearson and

Spearman correlations. Statistical significance was assessed after

correction for multiple testing (FDR,20%, [32]). Multivariate

modeling was performed using Ordinary Least Squares (OLS)

regression, Least Absolute Shrinkage and Selection Operator

(LASSO) [33], and elastic net [34] modeling approaches, each

with forward stepwise selection of biomarkers.

In each study, a univariate rank was calculated for each

biomarker based on the number of times the marker passed

statistical significance criteria in univariate analyses using different

disease activity metrics and subgroups. For multivariate analysis, a

priority was assigned for each biomarker for each multivariate

model based on order of entry into the model (the first biomarker

included in a model received a priority of 1, etc.). A score was

calculated for each biomarker as the sum of the inverse of the

biomarker’s priority values across all models. Ranks for multivar-

iate analysis were determined by sorting biomarkers in descending

order of this score. Biomarkers not included in any model were

assigned a common lowest rank. To combine ranking information

from univariate and multivariate analyses, a combined score was

calculated as the sum of the inverse univariate rank and the inverse

multivariate rank. Combined ranks were determined by sorting

the biomarkers in descending order of combined score. The

combined rank was used to inform biomarker advancement from

one Feasibility study to the next. At the end of Stage 2, the inverse

combined ranks from all of the Stage 2 studies were summed to

determine an overall score. Biomarkers were sorted in descending

order of the overall score to determine a ‘‘grand rank’’ that

summarized evidence from multiple studies. This grand rank was

used, along with other criteria as described in Results, to inform

advancement to algorithm training in Stage 3.

Pilot imaging analyses. The pilot imaging study included

evaluation of association between disease activity levels predicted

by multivariate biomarker models and US synovitis, Power

Doppler area, and subsequent change in TSS, as well as the

association between change in biomarker-based disease activity

score and change in DAS28-CRP. Leave one out cross-validation

[35] was used to generate biomarker-based disease activity scores,

whereby the score for each patient were made using a model

trained using DAS28-CRP data from all the other patients.

Association with other measures was assessed by Spearman

correlation. Cross-sectional correlation to ultrasound was deter-

mined at all time-points for which paired biomarker/US

measurements were available. Longitudinal correlation to damage

progression was evaluated for baseline biomarker-based disease

activity scores vs. change in TSS from baseline to year 1, and for

year 1 disease activity scores vs. change in TSS from year 1 to year

2. Correlation between change in biomarker-based disease activity

scores and change in DAS28-CRP was evaluated for changes from

baseline to year 1 and from year 1 to year 2.

Algorithm training. Multivariate methods considered in

algorithm development included OLS, LASSO, elastic net, and

also approaches combining the Curds & Whey (CW) multivariate

response method [36] with OLS or LASSO (CW-OLS and CW-

LASSO respectively). Algorithm performance was measured by

Pearson correlation to DAS28-CRP and the area under the

receiver operating characteristic curve (AUROC) for classifying

patients into low vs. moderate to high disease activity using a

DAS28-CRP cutoff of 2.67. To minimize variability of perfor-

mance estimates due to unequal numbers of patients in low and

moderate/high disease activity groups, the AUROC was also

assessed using an alternate threshold equal to the study median

DAS28-CRP. The performance of the regression methods was

compared in 70/30 cross-validation (repeatedly training in a

randomly selected 70% of the data and testing in the remaining

30%). The number of biomarkers in each regression model was

chosen using nested 10-fold cross validation: within a training set,

samples were divided into 10 equal groups, models were built

using data from 9 groups, and performance was tested in the one

group that was not used for model building. This process was

repeated, each time with a different group set aside for

independent testing, and then the performance was averaged

across all models. This procedure was used for models with all

possible numbers of variables, and the number of variables with

the best performance was chosen. In the CW approaches, nested

10-fold cross-validation was used for each sub-model correspond-

ing to each component of DAS to identify the optimal number of

variables for that sub-model. The performance of the MBDA

algorithms identified in training was evaluated by Pearson

correlation to DAS28-CRP in the 70-patient test data set, and

the top performing models were selected.

Comorbidities analysis. Comorbidities were characterized

according to physicians’ responses on InFoRM case report forms.

The median MBDA score, CRP, CDAI, and DAS28-CRP were

compared in subgroups of RA subjects with and without various

comorbid conditions, using the ratio of the median values in the

two groups. A ratio of 1.0 indicated that the value of the score was

not affected by the comorbidity; ratios meaningfully higher or

lower than 1.0 suggest that the comorbidity may inappropriately

raise or lower the score, respectively. Multiple linear regression

was used to control for age and sex. The effect of multiple testing

was controlled using the false discovery rate method of Benjamini

and Hochberg [32].

Statistical analysis was carried out with the R programming

language (http://www.r-project.org) unless otherwise specified.
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Results

Stage 1: Screening
The objective of the Screening stage was to identify proteins

that could be measured in serum and that had potential to show

association to RA disease activity. We focused on serum testing

due to the standard use of serum in clinical rheumatology testing

as well as existing literature suggesting the association of multiple

serum proteins with RA disease activity [17,20,37–41]; see also

Table S1. A total of 130 candidate biomarkers were selected based

on comprehensive literature review, previous experiments, the

availability of immunoassay components, and evaluation of

measurability in serum (see Methods). These candidate biomarkers

were then evaluated by examining their association with clinical

disease activity measures in a series of Feasibility studies.

Stage 2: Feasibility
Patient characteristics for the 4 Feasibility studies are provided

in Table 2.

Feasibility stage 2A – biomarker prioritization. In Stage

2A, four successive studies were used to prioritize and reduce the

candidate biomarker list to a final set of biomarkers for algorithm

development. Table S4 provides the list of biomarkers evaluated in

each study, along with examples of univariate correlation results

and biomarker rankings.

Study I was an initial assessment of the utility of candidate

biomarkers for predicting disease activity, in order to prioritize

roughly 50 biomarkers for further testing. Testing was done with

113 biomarkers with satisfactory assay performance in the

Screening stage. Ninety-one different assays for 72 unique

biomarkers received a rank reflecting their contribution to

multivariate disease activity models. Fifty-two of these biomarkers

were selected for advancement based on their combined rank from

univariate and multivariate analysis.

Studies II, III, and IV were used for further refinement of the

biomarker set. Seventy-five biomarkers were assessed in Study II:

in addition to the 52 markers that were selected based on

combined rank in Study I, another 23 were included due to strong

univariate relationship to disease activity in Study I or because the

assays were included on the same multiplex assay as other

prioritized biomarkers. Of the 75 biomarkers tested in Study II, 65

were also analyzed in Study III (10 were eliminated due to low

performance). In Study IV, we then assessed 16 new biomarkers

that we had not previously tested, either because they were newly

identified as candidate biomarkers or because assays had recently

become available.

In Study II, we used results from multivariate analysis to review

the potential value of prototype multi-biomarker models for

disease activity. In cross-validation, multi-biomarker models had a

mean Pearson correlation with DAS28-CRP of r = 0.60, com-

pared to the highest correlation of any individual biomarker to

DAS28-CRP of r = 0.38, observed in this study for CRP. In an

AUROC analysis examining the ability of the models to classify

patients into either low disease activity or moderate/high disease

activity categories using the clinical cutoff of 2.67 [42], the average

AUROC was 0.89 (Figure 1). Using the median DAS28-CRP as

threshold the average AUROC was 0.77.

Combined univariate/multivariate biomarker ranks were de-

termined in each of the 4 prioritization studies and guided

decisions on marker advancement between studies. Because Study

4 was performed in a subset of patients previously analyzed in

Study II, data on the 16 new biomarkers was combined with

measurements of the previous 75 biomarkers to determine the

ranks in this study.

The results of the 4 biomarker prioritization studies were then

analyzed together to determine a final biomarker set for

advancement to algorithm training. The grand ranks calculated

from the integrated results of the 4 studies (see Methods) are

provided in Table S4. Biomarkers with grand rank #24 were

prioritized for advancement to training, with the following

exceptions: apolipoprotein-B was eliminated due to poor assay

performance, BAFF was eliminated because of evidence that the

B-cell depleting therapy rituximab led directly to large increases in

marker level [43], and CXCL10 and GM-CSF were eliminated

because their high ranking resulted entirely from good perfor-

mance in a single study. Furthermore, four lower-ranking

biomarkers were selected due to their representation of key

biological functions or pathways in RA, especially those implicated

by other prioritized biomarkers: VCAM1 was included as

complementary to ICAM1 (adhesion molecules), IL1b was

included for its relation to IL1Ra (IL-1 pathway), MMP1 was

included for its similarity to MMP3 (both MMPs) and CCL22

(MDC) was included to represent monocyte/macrophage biology.

Thus the sequence of prioritization studies yielded a set of 24

biomarkers.

Feasibility stage 2B – pilot imaging study. In parallel with

the later stages of biomarker prioritization, we assessed whether

prototype multivariate models of disease activity based on serum

biomarkers demonstrated various critical aspects of an effective

disease activity measure, specifically: an association with clinically-

assessed disease activity and changes therein; an association with

imaging-based assessment of joint inflammation; and an associa-

tion with subsequent radiographically assessed damage progres-

sion.

The 24 prioritized disease activity biomarkers were assessed

alongside other biomarkers being evaluated for prediction of

structural damage progression in samples from a 2-year study of

clinical, ultrasound, and radiographic outcomes in early aggressive

RA [26,27]. Using data for all the tested biomarkers, multivariate

models were trained to estimate disease activity as measured by the

Figure 1. Receiver operating characteristic curve for biomark-
er-based multivariate models of disease activity in Study II.
Curve shows the average true positive rate across 100 folds of cross
validation. In each fold a model was trained on a randomly selected
70% of the data and performance was tested on the remaining 30%.
doi:10.1371/journal.pone.0060635.g001
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DAS28-CRP, and resulting biomarker-based scores were evaluat-

ed for relationships to ultrasound and radiographic measurements

of joint status and damage progression. In leave one out cross-

validation, the biomarker-based disease activity scores were

significantly correlated with DAS28-CRP (Spearman’s

rho = 0.82, P,0.001, Figure 2a). The biomarker-based disease

activity scores were also significantly correlated with both synovial

thickening (rho = 0.46, P,0.001) and joint vascularity (rho = 0.47,

P,0.001) measured by power Doppler ultrasound. Furthermore,

the biomarker-based disease activity scores were significantly

associated with subsequent changes in total Sharp score. For

example, biomarker-based scores calculated at baseline and year 1

had a Spearman correlation with 12 month change in total Sharp

score (baseline to year 1, year 1 to year 2, respectively) of 0.52

(P,0.001, Figure 2b) compared to a correlation of 0.43 (P = 0.006)

between the DAS28-CRP and changes in total Sharp Score.

Biomarker-based disease activity scores and subsequent 12-month

change in Sharp score were also correlated when calculated

separately for the two years of the study (baseline scores vs. first

year change correlation = 0.44, P = 0.05; year 1 scores vs. second

Figure 2. Multivariate biomarker-based disease activity predictions in relationship to other measurements in Pilot Imagingstudy.
Prototype biomarker-based disease activity scores vs. DAS28-CRP (for all time-points with both DAS28-CRP and biomarker measurements) (a);
baseline and year 1 values of biomarker-predicted disease activity vs. change in TSS from baseline to year 1 and from year 1 to year 2 (b); and change
in biomarker-predicted disease activity vs. change in DAS28-CRP from baseline to year 1 and from year 1 to year 2 (c). Biomarker-based models were
trained against DAS28-CRP and produce scores on a similar scale.
doi:10.1371/journal.pone.0060635.g002
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year change correlation = 0.61, P = 0.005). Because this study

included serial measurements of disease activity by DAS28-CRP

in each patient, we were able to evaluate whether the biomarker-

based disease activity scores could also track changes in clinical

disease activity. Indeed, changes in the biomarker-based scores

were significantly correlated to changes in DAS28-CRP, with a

Spearman correlation of 0.62 (P,0.001, Figure 2c).

Finally, in the process of evaluating the relationship of the

different biomarkers with disease activity, it became apparent that

pyridinoline, one of the biomarkers being investigated for

structural damage prediction in a separate study, was strongly

correlated to DAS28-CRP (rho = 0.47, P,0.001). Thus, pyridino-

line was added to the marker set for Stage 3 studies, yielding a set

of 25 prioritized biomarkers.

Development: Stage 3
Assay optimization. To ensure that the prioritized biomark-

er assays were sufficiently precise and specific for use in a clinical

diagnostic test, we optimized the individual biomarker assays to

function in a multiplex environment with precision across time,

instruments, operators, and reagent lots [44]. Of the 25

biomarkers entering development efforts in Stage 3, seven were

eliminated at various points in Stage 3 due to practical

considerations: interleukin 8 (IL-8) was highly sensitive to variation

in sample collection conditions (e.g. shipping at ambient temper-

ature prior to serum separation); interleukin 1 beta (IL-1b) levels

were below the limit of detection in many patient samples;

interleukin 6 receptor (IL-6R) was eliminated because its levels are

dramatically affected by treatment with tocilizumab (anti-IL-6R

antibody); and pyridinoline, calprotectin, and apolipoproteins AI

and CIII were eliminated because their assays did not meet the

performance criteria required for clinical testing.

Algorithm training. In the first part of algorithm training,

the entire data set of 703 patients was used to characterize the

relationships between the biomarkers and disease activity, while a

249-patient subset was used for final training. Demographics of the

cohorts used in algorithm training are presented in Table 3.

Various statistical approaches were evaluated for algorithm

training (see Methods). A combination of ‘‘Curds and Whey’’ [36]

and LASSO [33] approaches (CW-LASSO) yielded the best

performance in cross-validation in training and algorithm testing

(data not shown). LASSO modeling with forward stepwise variable

selection and 10-fold cross-validation was used to select biomark-

ers and optimize a linear model for each DAS28-CRP component

(except CRP). Then the Curds and Whey method was applied to

improve upon the LASSO-derived predictions by exploiting

correlations between the components, through application of a

shrinkage matrix [36]. This approach improved performance of

LASSO-derived joint count predictions, whereas analysis from

cross-validation showed that inclusion of predicted PGA or CRP

in the shrinkage matrix would have impaired performance.

The final algorithm was a 12-biomarker model for the multi-

biomarker disease activity (MBDA) score. In this algorithm, 11

biomarkers (tumor necrosis factor receptor I (TNF-RI), interleukin

6 (IL-6), vascular cell adhesion molecule 1 (VCAM-1), epidermal

growth factor (EGF), VEGF-A, cartilage glycoprotein 39 (YKL40),

matrix metalloproteinase 1 (MMP1), MMP3, serum amyloid A

(SAA), leptin, and resistin) are used for prediction of the TJC28,

SJC28 and PGA, with different biomarkers and weightings used to

predict each component (Figure 3). Marker concentrations were

transformed to the power 1/10 to produce approximate normality

and improve the robustness of the multivariate models. The

component predictions are then combined with CRP in an

equation analogous to that used to calculate the DAS28-CRP, and

results are rounded and scaled to produce integer-valued MBDA

scores in the range 1–100 (Equations 1–7). The contribution of

CRP to the MBDA score is similar to its contribution to the

DAS28-CRP. In the 512 InFoRM patients used in Development,

CRP contributed an average of 16% of the overall score (SD 6%),

and 25% of the non-constant portion of the score (SD 13%; the

portion remaining when the contribution of the 0.96 constant

from the DAS28-CRP formula is removed). Thresholds for

MBDA-based disease activity classification are shown in Table 4;

category cutoffs were determined from the corresponding DAS28-

CRP values [45] using the relation specified in the MBDA

algorithm: MBDA = round (DAS28-CRP*10.53+1).

DAS28-CRP and MBDA formulas:

DAS28{CRP~0:56
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TJC28
p

z0:28
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SJC28
p

z0:14PGz0:36 ln (CRPz1)z0:96

MBDA~round½max ( min ((0:56
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PTJC28
p

z0:28
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PSJC28
p

z0:14PPGAz0:36 ln (CRPz1)z0:96)

|10:53z1,100),1)�

LASSO-derived component models:

PTJC28(0){38:564z3:997½SAA�(1=10)
z17:331½IL6�(1=10)

z4:665½YKL40�(1=10)
{15:236½EGF �(1=10)

z2:651½TNFRI �(1=10)

z2:641½Leptin�(1=10)
z4:026½VEGFA�(1=10)

{1:470½VCAM1�(1=10)

PSJC28(0)~{25:444z4:051½SAA�1=10
z16:154½IL6�1=10

{11:847½EGF �1=10
z3:091½YKL40�1=10

z0:353½TNFRI �1=10

PPGA~{13:489z5:474½IL6�1=10
z0:486½SAA�1=10

z2:246½MMP1�1=10
z1:684½Leptin�1=10

z4:14½TNFRI �1=10
z2:292½VEGFA�1=10

{1:898½EGF �1=10

z0:028½MMP3�1=10
{2:892½VCAM1�1=10

{:506½Resistin�1=10

CW-derived improved models.

PTJC28~max(0:174|PTJC28(0)z0:787|PSJC28(0),0)

PSJC28~max(0:173|PTJC28(0)z0:784|PSJC28(0),0)

PTJC28, predicted 28 tender joint count; PSJC28, predicted 28

swollen joint count; PPGA, predicted patient global assessment.

Impact of comorbidities on MBDA score. Because

comorbidities could influence clinical and biomarker-based disease

activity assessment, we evaluated the impact of various comor-

bidities on the MBDA score as well as on clinical disease activity
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measures (DAS28-CRP, CDAI and CRP) in the subset of 512

representative InFoRM patients that was used in algorithm

development. The following comorbidities were present in 10%

or more of the subjects and were assessed in this study:

hypertension, osteoporotic fracture, degenerative joint disease,

diabetes, and asthma. There were no statistically significant

associations between any of these comorbidities and any of the

measures of disease activity when adjusting for age and sex, and

accounting for multiple comparisons (Table 5).

Discussion

Advances in biomarker analysis in recent years have enabled the

development of multi-biomarker based diagnostics tests that are

impacting patient care and outcomes in various therapeutic areas.

Tests based on tissue and peripheral blood gene expression, and

serum protein levels, for example, have been introduced for

application in breast cancer, heart transplant, and type 2 diabetes,

respectively [46–48]. In order to develop clinically useful tests for

other clinical applications it is important to use adequately

Table 3. Baseline characteristics of patients used for Training
and Comorbidities studies.

Training
(final fitting)

Comorbidities
(InFoRM 512)

Number of samples (n = 249) (n = 512)

% Female 75 76

% RF+ 61a 77b

% anti-CCP+ 58c 65d

Median age (IQR) 58 (49–67) 59 (50–68)

Median DAS28-CRP (IQR) 3.8 (1.6–6.4) 3.3 (2.3–4.7)

Median TJC (IQR) 5 (0–18) 2 (0–8)

Median SJC (IQR) 4 (0–17) 2 (0–6)

Median CRP, mg/L (IQR) 3.8 (1.3- 20.5) 4.3 (1.9–12)

Mean PG (IQR) 3.9 (1–7) 3.5 (1–5.5)

Mean MBDA (IQR) 42 (33–50) 40 (30–59)

RF and anti-CCP status was not available for all patients, evaluable patients
noted:
an = 198;
bn = 505;
cn = 232;
dn = 511.
IQR, inter-quartile range.
doi:10.1371/journal.pone.0060635.t003

Figure 3. MBDA score algorithm. The MBDA score algorithm uses an equation analogous to that for the DAS28-CRP, with biomarkers used to
predict the Swollen Joint Count (SJC28), Tender Joint Count (TJC28), and Patient Global Assessment (PG) components of the equation. The Venn
diagram lists the MBDA score biomarkers used to predict each MBDA score component. YKL-40, human cartilage glycoprotein-39; IL-6, interleukin-6;
SAA, serum amyloid A; EGF, epidermal growth factor; TNF-RI, tumor necrosis factor receptor 1; VEGF-A, vascular endothelial growth factor-A; MMP,
matrix metalloproteinase.
doi:10.1371/journal.pone.0060635.g003

Table 4. Disease activity category definitions for DAS28-CRP
and MBDA.

Disease activity
category

DAS28-CRP
definition MBDA definition

Remission ,2.3 #25

Low #2.7 #29

Moderate .2.7 & #4.1 .29 & #44

High .4.1 .44

doi:10.1371/journal.pone.0060635.t004
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powered studies from diverse clinical cohorts, technically opti-

mized and validated protein assays, rigorous statistical analysis and

multiple sequential studies. We have applied this approach to

develop a multi-biomarker disease activity (MBDA) test to aid in

the assessment of RA patients.

Testing in multiple diverse clinical cohorts was a critical aspect

of the development process. Biomarker performance may vary

between cohorts because of a range of factors including ethnicity,

recruitment biases, practice patterns and technical differences.

Patients were selected from multiple North American and

European sites and studies to capture diversity in disease activity,

disease duration, treatment approaches, sex, serological status and

other patient characteristics. This diversity is needed to ensure that

the resulting algorithm will be applicable to diverse RA patients

despite the extensive clinical heterogeneity seen in RA.

Technical assay optimization and validation were essential to

ensure that assay results are consistent and reproducible over time.

In RA patients it was also necessary to ensure that there was no

direct interference due to interaction from RA drugs, heterophilic

antibodies such as RF, or other substances. Only assays with

acceptable performance were carried forward into clinical studies

and ultimately, algorithm development.

Markers were evaluated based on relationship to disease activity

and contribution to models thereof in the serial biomarker

prioritization studies. Furthermore, both univariate and multivar-

Table 5. Ratios of median disease activity measures*
between RA patients with and without common
comorbidities.

Comorbidity n (%) CRP CDAI
DAS28-
CRP

MBDA
Score

Hypertension 223 (44) 0.98 1.32{ 1.14{ 1.05

Osteoarthritis` 172 (34) 0.88 1.17 1.13 1.05

Osteoporotic bone
fractures

131 (26) 0.91 1.05 1.02 1.05

Degenerative joint
disease`

113 (22) 1.20 1.18 1.11{ 1.07

Diabetes 73 (14) 1.01 1.09 1.04 1.07{

Asthma 50 (10) 1.28 1.11 1.05 1.05

*Values close to 1.0 indicate that the measurement or test is not affected by the
comorbidity.
{Nominal P,0.05 adjusted for age and sex; when adjusted for multiple
comparisons, none was statistically significant.
`Osteoarthritis and degenerative joint disease were listed as separate
conditions on the case report forms.
doi:10.1371/journal.pone.0060635.t005

Figure 4. Network map of MBDA biomarker roles in cellular communication in RA.
doi:10.1371/journal.pone.0060635.g004
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iate statistical analyses of biomarker-based disease activity

prediction were used for biomarker prioritization, so as not to

miss biomarkers that add value in multivariate models despite

weaker individual relationships. Multiple statistical modeling

methodologies were also applied in order to identify those that

performed best on this problem. The ranking of biomarkers was

based on both univariate and multivariate analyses and on a range

of disease activity metrics, in order to reduce unintentional

elimination of potentially useful biomarkers. Assessment in

multiple, sequential studies was used to reduce the overall false

discovery rate and to test the robustness of findings across studies.

Although relationships between biomarkers and various disease

activity measures were assessed during the development process,

the DAS28-CRP was chosen as the reference for final algorithm

training because of its established validation against the DAS28-

ESR [6], a disease activity measure shown to predict RA outcomes

in clinical trials [49], and because measurement of CRP is more

readily standardized than ESR in banked samples from multiple

studies and sites. We found that multi-biomarker based models

outperformed individual biomarkers at prediction of DAS28-CRP.

Pilot imaging analyses indicated that disease activity scores from

multivariate models trained to predict DAS28-CRP were also

associated with synovitis and vascularity, assessed by power

Doppler ultrasound, and with radiographically-determined joint

damage progression. These results demonstrate that a multi-

biomarker algorithm trained specifically against the DAS28-CRP

can nonetheless provide information more broadly on disease

activity and, critically, on disease outcomes. Clinically assessed

disease activity measures exhibit significant inter-assessor and

inter-subject variability [10,13], whereas the median coefficient of

variation of the MBDA score in repeat runs of the same sample is

,2% [44]. Clinical measures, while clearly valuable, are

nonetheless imperfect standards for comparison, and independent

measures such as ultrasound and radiographic imaging are

important indicators of the activity of the fundamental disease

processes.

Because comorbidities can conceivably influence clinical assess-

ment and biomarker levels, we assessed the impact of several

common comorbidities on the MBDA score and observed no

confounding effects. Larger studies are needed to confirm and

further define these observations. It is especially important to

examine other comorbidities with inflammatory components that

could not be analyzed in our data, such as infections and

malignancies. Infections in particular are associated with rapid

elevation of cytokines and acute phase reactants, so MBDA score

results should be interpreted with caution in patients with active

infections. In addition, the effects of vaccination merit examination

since it can cause acute inflammation.

Although they were selected primarily via a statistics-driven

process, the prioritized biomarkers reflect key biological pathways,

cells, and features of RA. Figure 4 summarizes known roles of the

12 biomarkers included in the final algorithm in cellular

interactions and processes important to the disease. The diagram

illustrates a critical premise driving this multi-biomarker develop-

ment effort: that a biologically diverse set of quantitative

biomarkers might be able to provide more information about

underlying disease biology than any single biomarker.

Despite the scope and rigor of the work described, some

important limitations should be noted. For practical consider-

ations, we restricted our evaluation to serum biomarkers that were

measurable in RA patient serum using commercially available

assays. As a result, cytokines and mediators that may be highly

expressed within the rheumatoid joint, but that are difficult to

detect in serum either due to low levels or inadequate assays, were

not considered. In addition, the clinical studies that formed the

basis for this work excluded some patients for a combination of

ethical and practical reasons (e.g. around steroid use, pregnancy

and serious medical condition). As a consequence, this develop-

ment program cannot be considered to establish the applicability

of the biomarker findings and MBDA test to these patient types,

and further studies are required. Finally, the MBDA test is by

design an exclusively biomarker-based assessment. While this

allows for certain advantages, including efficiency and objectivity,

it does not include physical examination and should not be seen as

a replacement for clinician or patient assessment, but rather as an

additional, complementary tool to provide objective, quantitative

data to inform clinical decision-making.

The MBDA algorithm developed as described here has

subsequently been evaluated and validated in independent cohorts

[21,22]. Additional studies are underway to further evaluate the

relationship between the MBDA score and other measures of

disease activity, and the ability of the score to indicate risk of

critical patient outcomes such as joint damage progression.

Ultimately, prospective studies incorporating the MBDA score

will be required to fully elucidate its clinical utility and its

appropriate use alongside other approaches to patient assessment

in routine practice.
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