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Abstract

Recent technical advances have broadened our understanding of processes that govern mammalian cell migration in
health and disease but many of the molecular and morphological alterations that precede and accompany movement
of cells – in particular in three-dimensional (3D) environments - are still incompletely understood. In this manuscript,
using high-resolution and time-lapse microscopy imaging approaches, we describe morphodynamic processes during
rounded/amoeboid cell invasion and molecules associated with the cellular invasion structures. We used
macrophages infected with the intracellular protozoan parasite Theileria annulata, which causes Tropical Theileriosis
in susceptible ruminants such as domestic cattle. T. annulata transforms its host cell that, as a result, acquires many
characteristics of human cancer cells including a markedly increased potential to migrate, disseminate and expand in
the body of the host animal. Hence, virulence of the disease is associated with the capability of infected cells to
disseminate inside the host. Using T. annulata-transformed macrophages as a model system, we described a novel
mode of rounded/amoeboid macrophage migration. We show that filopodia-like membrane extensions at the leading
edge lead the way and further evolve in blebbing membrane protrusions to promote progressive expansion of the
matrix. Associated with focal invasion structures we detected ezrin, radixin, moesin-family proteins and their
regulatory kinase MAP4K4. Furthermore, we linked Rho-kinase activity to contractile force generation, which is
essential for infected cell motility. Thus, the motility mode of these parasite-transformed macrophages contrasts with
those described so far in human macrophages such as the tunneling or mesenchymal modes, which require
engulfment, compaction and ingestion of matrix or proteolytic matrix degradation, respectively. Together, our data
reveal protrusion dynamics at the leading edge of invading cells in 3D at unprecedented temporal and spatial
resolution and suggest a novel mode of rounded/amoeboid invasive cell motility that exploits actin-driven filopodia
formation in combination with pressure-driven membrane blebs.
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Introduction

The capability to migrate is inherent to most eukaryotic cells
and relevant under physiological or pathophysiological
conditions such as inflammatory disorders and cancer. Cell
motility is tightly regulated and motile cells can display plasticity
of migration and adapt to environmental changes by
modulating their mode of migration. Plasticity of cell migration
is particularly relevant in three-dimensional (3D) environments
where cells encounter not only a range of chemical cues but
also mechanical constrictions and physical barriers. Based on
morphological characteristics, cell motility in 3D is categorized
in single cell motility and collective/cohort cell migration,

whereby these two categories can be further subdivided into
rounded/amoeboid or mesenchymal and multicellular
streaming or sheet-like, respectively [1]. Plasticity of cell
migration, although needed for normal physiological processes
such as embryonic development, wound healing or immune
response, is challenging treatment options for metastatic
cancer. For example protease inhibitors for metastasis
inhibition may fail because cancer cells can switch from
mesenchymal (protease-dependent) to rounded/amoeboid
(protease-independent) invasive motility modes, which
resemble those of leukocytes migrating in interstitial tissues
[2,3]. Importantly, motility at the cellular level is regulated by
the interplay between the cell and the local chemical and
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biophysical environment. This interplay triggers still
incompletely understood modifications in the cytoskeleton that
control quality and extent of dynamic morphological alterations
needed for cell propulsion [4,5]. Thus, a better understanding
of the dynamic morphological alterations that drive invasive cell
motility will improve our understanding of how cells control
dissemination behavior in health and of how cancer cells can
disseminate and metastasize.

To study invasive, rounded/amoeboid cell migration in vitro,
we have chosen macrophages infected with the intracellular
apicomplexan parasite Theileria annulata. This tick-transmitted
parasite of ruminants can transform its host macrophages
through chronic de-regulation of host cell signaling pathways.
Still incompletely understood host cell transformation
processes promote uncontrolled proliferation, long-term
survival and parasite dissemination in the host animal [6].
Infected cells can be used as a reversible model of oncogenic
transformation [7-12] because the parasite can be eliminated
by parasitocidic treatment with the drug Buparvaquone 720c;
hence transformation-dependent alterations can be determined
and pathways that promote these alterations identified.
Macrophages are a highly diverse set professional migratory
cells that are present in almost all tissues to clear
microorganisms, to initiate and mediate immune responses and
to contribute to tissue repair [13]. Motility of macrophages is
promoted by cytokines and chemokines, whereby the mode of
macrophage migration in 3D is heavily influenced by the
architecture of the extracellular matrix (ECM) [14]. T. annulata
exploits macrophage versatility and triggers macrophage motile
behavior to facilitate its dissemination in the host animal
[12,15-17]. Parasite virulence and the underlying motile and
invasive capability of infected cells are dependent on host and
parasite factors. Specifically, infected host cells of susceptible
animals produce increased levels of TGFβ in a parasite-
dependent manner, which in turn triggers an rounded/
amoeboid invasive motility program in the host cell through the
activation of Rho kinase ROCK [10]. An analogous program
downstream of TGFβ was described in human breast cancer
cells that triggers dissemination of single cancer cells [18].
Consistently, protease-independent invasion of breast cancer
cells in vivo is ROCK- and myosin-dependent [19], indicating
the potential clinical relevance of approaches that target
amoeboid/rounded cell invasiveness.

T. annulata-infected B cells [12] and macrophages [10] can
penetrate gelled matrices derived from tumor cell ECMs
(matrigel) in vitro, which is used in the cancer field to evaluate
invasive capabilities of cells [20]. Little is known about the
motility mode of T. annulata-infected or normal macrophages
migrating in 3D matrices. However, two recent studies
investigated human macrophage migration in 3D and the
impact of matrix composition. These studies revealed that
blood monocyte-derived macrophages switch form amoeboid
to mesenchymal motility when the stiffness of the ECM
increases [14]. Interestingly, these macrophages migrating in
3D can form adhesion and invasion structures that resemble
2D podosomes to facilitate matrix degradation and
transmigration [21], which suggest that molecular mechanism
driving local invasion structures in macrophages are conserved

under different environmental conditions. In general, cells
migrating in 3D environments can form a variety of matrix
invading protrusions, including actin polymerization-driven
lamellipodia- and filopodia-like protrusions or contractility-
driven membrane blebs. Thus, eukaryotic cells can dynamically
control what type of protrusion is generated because
lamellipodia or blebs are formed independent of the overall cell
morphology; accordingly it was suggested that protrusion
formation is an autonomous module in the regulatory network
that controls the plasticity of cell migration [4].

We recently demonstrated that the presence of intracellular
T. annulata causes asymmetric activation of host cell actin
dynamics, the induction of podosomes and the formation of a
persistent lamellipodia in 2D [7]. However, the mode of cell
motility of macrophages infected with T. annulata in 3D
matrigel has not yet been investigated and what the analogous
structures of podosomes and lamellipodia are in infected
macrophages migrating in 3D is not known. In light of the
recent conceptual progresses mentioned above, we searched
to understand how Theileria-infected cells can penetrate
matrigel matrices with such efficacy and to describe the
necessary morphological and functional alterations. We chose
to use macrophages infected with T. annulata, which were
recently isolated [22] from Holstein cattle susceptible for
tropical Theileriosis because they display an aggressive
invasive behavior in vitro [10], which correlates with more
virulent disease progression in vivo. Using these cells as a
model system for rounded/amoeboid matrix invasion, we
described a novel mode of invasive cell motility that involves
the extension of filopodia-like membrane protrusions at the
leading edge and subsequent matrix expansion by membrane
blebs

Materials and Methods

Cell culture and reagents
TaH12810 cells (line H7, generous gift from Elizabeth Glass,

The Roslin Institute, Edinburgh) were established ex vivo from
the peripheral blood from Holstein calves previously infected
with T. annnulata Hisar sporozoites [22]. The invasive and
motile behavior of the TaH12810 cells has been recently
described in more detail [10]. TaH12810 and Thei cells [23,24]
(generous gift from Gordon Langsley) were cultivated in RPMI
1640 (Lonza) supplemented with 10% foetal calf serum (FCS,
Amimed), 10 mM Hepes pH 7.2 (Merck), 2 mM L-glutamine
(Gibco), 70 µM β-mercaptoethanol (Merck), and antibiotics
(Lonza). Buparvaquone was a gift of Dirk Dobbelaere
(Vetsuisse Faculty, Bern). TaH12810 cells expressing EGFP-
actin or lifeact-mCherry (LA-mCherry) were generated by
transfection with either pEGFP-hbeta-actin (generous gift of D.
Gerlich; Institute of Molecular Biotechnology, Vienna) or pLenti-
LA-mCherry (generous gift of Olivier Pertz). Plasmids: pEzrin-
YFP [25] (generous gift of Miguel Quintavilla), moesin-GFP [26]
(generous gift of Francisco Sánchez-Madrid). Chemicals: PP2
and SU6656 (Biaffin GmbH), H-1152 (Alexis Biochemicals,
#ALX-270-423), Antibodies: mouse mc anti-MAP4K4 (clone
MO7, Abnova), mouse mc anti-phospho Tyrosine (p-Tyr-100,
9411 Cell Signaling Technology), rabbit pc anti-Phospho-Ezrin
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(Thr567)/Radixin (Thr564)/Moesin (Thr558) (ERM) Antibody
(Cell Signaling Technology, #3141). Rabbit pc anti-Ezrin/
Radixin/Moesin (Cell Signaling Technology, #3142) and rabbit
pc anti-TaSP [27] (generous gift from Jabbar Ahmed); TRITC/
ALexa488 phalloidin (Molecular Probes).

IF microscopy
Matrix-embedded cells were fixed in 4% paraformaldehyde

solution in PBS for 15 min. Cells were then permeabilized by
incubation in 0.5% TritonX-100 for 10 min. Blocking of non-
specific epitopes was performed in blocking buffer (10% FBS in
PBS, 0.02% sodium azide) for 15 minutes. Primary antibodies
were applied at 1:50 to 1:200 dilutions in blocking buffer at 4°C
over night. Non-confocal images were acquired in wide-field
mode either on a Nikon 80i or on an inverted Nikon Eclipse
TE2000-U microscope by using Openlab software. Confocal IF
images were acquired on a laser-scanning microscope (Leica
SP-2 and SP-5) using Leica software. Image procession and
quantification were performed using Imaris, Adobe Photoshop
and ImageJ software.

Time-lapse imaging
Time-lapse imaging using video microscopy was performed

using a Nikon Eclipse TE2000-U or a Leica LX inverted
microscope, both equipped with a temperature- and CO2-
controlled chamber. Data acquisition and image processing
were performed using NIS software for the Nikon Instrument
and Leica application suite (LAS) and ImageJ software for the
Leica microscope. DIC and fluorescence images were acquired
and assembled in AVI movies by NIS and exported for web in
m4v format by QuickTime player.

Matrix embedding
Cells were embedded in matrices in 15 well ibidi slides as

described below: Collagen gels were prepared according to
[28]. For 100 µl collagen solution, 5 µl sodium bicarbonate
(7.5% stock, 50 mM final) was combined with 10 µl 10x PBS.
85 µl bovine collagen I solution (PureCol, 3 mg/ml stock,
advanced BioMatrix) was added and carefully mixed on ice. 15
µl cell suspension (1-5 x 105 cells/ml, 1.5-7.5 x 103 cells/well)
were mixed with collagen solution, transferred into the ibidi
slides and allowed to polymerize for 30 minutes at 37°C in the
incubator. This results in a final collagen concentration of 2.5%.
Matrigel: 10 µl cell suspension at 1.5 x 105 cells/ml were mixed
with 90 µl growth factor-reduce basement membrane matrix
(BD Biosciences), transferred into 15 well ibidi slides and
allowed to polymerize for 30 minutes. OQel: 1 vial freeze-dried
QGel matrix was resuspended in 500 µl ice-cold matrix
resuspension buffer according to the manufacturers (QGel SA,
Lausanne) instructions. 5 µl cell suspension at 3 x 105 cells/ml
were added to ready-made QGel matrix, transferred into ibidi
slides and allowed to polymerize for 30 minutes at 37°C in the
incubator.

Rho-GTPase pull-down
Rho, Rac, Cdc42 pull-down assay (Cell Biolabs. Inc.)

according to manufacturer instructions. In brief: Cells were

lysed in pull-down lysis buffer (25 mM HEPES (pH 7.5), 150
mM NaCl, 1% NP-40, 1 mM EDTA, 2% glycerol). 800 µg
protein was used per pull-down. Rho was pulled down using 40
µl slurry Rhotekin RBD agarose (20 µg bound Rhotekin RBD
protein), and Rac and Cdc42 were pulled down using 40 µl
slurry PAK1 PBD agarose (20 µg bound PAK1 PBD) for 1 h at
4°C. Pull-downs were then separated using 15% SDS-PAGE.
Detection antibodies used: mouse mc anti-RhoA (No 240302),
mouse mc anti-Rac1 (No 240106), mouse mc anti-Cdc42 (No
240201)

Quantifications, repetitions and statistical analyses
Speed equals distance (d)/time (t) and the speed of single

cells were determined as the average d/ti, where ti is the
interval time. Bleb area was determined by measuring the area
in µm2 of the bleb using ImageJ software.

Quantitative data for speed and motility mode determination
were collected from at least three independent experiments.
IFA studies and Rho-GTPase pull downs were done at least
twice.

T-tests (unpaired, two-tailed) for statistical analysis were
performed using Prism software.

Results

Rounded/amoeboid motility of infected macrophages in
collagen and matrigel

T. annulata-infected macrophages migrate efficiently in
different 3D environments and they are able to penetrate and
migrate in collagen and matrigel matrices. We previously
demonstrated that motility of infected cells depends on their
capability to polarize [7,29] and to trigger membrane blebs at
the leading edge [10]. To better understand morphodynamic
characteristics of this rounded/amoeboid cell motility, we
visualized and quantified motility of infected cells in collagen
and matrigel matrices by time-lapse video microscopy. We first
compared speed of TaH12810 cells [10] migrating either in
collagen, matrigel or a synthetic matrix based on cross-linked
polyethylene glycol (QGel) (Figure 1A). Cells migrated
efficiently in both collagen (movie S1) and matrigel (movie S2)
while they remained stationary when embedded in QGel matrix
(not shown). Interestingly, the comparison of cell speeds in
collagen and matrigel revealed no significant differences with
an average speed of approximately 0.5 µm/min. Considering
the different stiffness and pore sizes of collagen and matrigel,
we asked what morphological alterations we could observe at
the single cell level in matrigel. Live-cell microscopy revealed
two types of motile behavior, which we named tunneling and
saltatory. Cells migrating in the tunneling mode, penetrated the
matrix rounded with occasionally apparent rear constrictions
contrasting the marked central constrictions of cells migrating
in the saltatory mode (see below). Tunneling mode cells
generated a tunnel-like cavity with a diameter that corresponds
to the diameter of the cell (movie S3). In this tunnel, the cells
can move at high speed in both directions, simply by switching
the polarity axis. Interestingly, degradation and/or engulfment
of the matrix occurred mostly on both ends of the tunnel but
rarely in an angle off the initial axis of migration. In contrast,
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cells migrating in the saltatory mode penetrated the matrix in a
series of sequential steps that results in a (“saltatory”) forward
migration speed that oscillates between stagnation and rapid
forward movements (movie S4). These steps are described in
more detail below. A significantly larger number of cells (Figure
1B) migrated in the saltatory mode (37.65% ± 5.4), indicating
that this form of migration is more favorable when large
distances need to be overcome. Consistently, cells migrating in
the tunneling mode (13.94% ± 2.89) tended to switch to the
saltatory mode (movie S2). We measured the speed (distance/
time) of cells migrating in these two different modes and found
that cells migrated at maximal speeds when inside a tunnel
(from one end to the other) whereby they reached
approximately 9 µm/minute (see movie S3). Maximal speeds in
the saltatory mode were approximately 3-fold lower with
maxima around 3.5 µm/min. Speed diagrams shown in Figure
1C visualize cell displacements in µm from one interval to the
next over a time period of 15 hours. The frequency of the
oscillation displays the frequency of speed changes over time.
In the tunneling mode, the speed is close to zero µm/m
(valleys), when the cells hit one end of the tunnel and maximal
(peaks) when migrating trough the tunnel. These data show
that TaH12810 cells can migrate efficiently in both collagen and
matrigel matrices by adopting either a tunneling or a saltatory
mode of migration. The cells can migrate at very high speeds in
pre-formed matrigel tunnels. However, saltatory migration is
more efficient because it results in higher velocity
(displacement from origin/time, see dot plots in Figure 1C) and
might be used by cells for directional and chemotactic
movements. The saltatory mode implies cellular compliance
and the capability to expand membranous protrusions into the
matrix in order to extend preexisting cavities.

Actin cytoskeleton dynamics are increased in leading
edge protrusions of cells penetrating matrigel

Closer inspection of migrating cells revealed that cells
extended protrusions at the leading edge in the direction of
migration and generated pores with a diameter corresponding
to approximately 1/4 cell diameter (Figure 2A, movies S6, S7 &
S14). Transmigration of the cell body through these pores
appeared to be restricted by the compressibility of the nucleus
(Figure 2B), which sets the limit for circumferential
compression of a cell [30]. In the tunneling mode, cells
extended filopodia-like protrusions at the leading edge, while
the formation of membrane blebs appeared markedly reduced
(Figure S1 and movie S5). During transmigration in the
saltatory mode, the cells assumed an hourglass shape, which
was hallmarked by a neck zone of maximal compression
(Figure 2B, arrowheads). 3D reconstruction of multiple confocal
sections revealed that the zone of maximal compression was
reinforced inside the cell by an F-actin-rich ring (Figure 2C,
arrow). The protrusions at the leading edge were rich in F-actin
as well, suggesting that de-novo actin polymerization is
required for forward extension of the cell. Indeed, using cells
expressing lifeact-GFP, we found that F-actin polymerization
was predominately active at the leading edge of invading cells
and particularly in protrusions penetrating the matrigel (Figure
2B and movie S8), while polymerization activity was less

abundant in the tail. Zones particular rich in F-actin were the
submembranous skeletons in the neck zone and near regions
at the leading edge where membranous protrusions emerge.
To determine what the function of F-actin polymerization at the
leading edge might be, we visualized the initial steps of
protrusion formation in cells expressing lifeact-GFP. We found
that filamentous or sheet-like, actin-rich assemblies resembling
lamellipodia of matrix-invading epithelial cell [31], initiated the
protrusions. However, instead of assuming spindle shaped
morphology like these cells, parasitized macrophages
remained rounded and progressively expanded the initial
protrusions until large enough to accommodate the nucleus
(Figure 2D). Furthermore, we observed accumulation of F-actin
at the neck zone and at the leading edge, and overall a
markedly increased content of F-actin in the protrusion that
clears the way for the cell. Taken together, massive F-actin
polymerization at the leading edge follows initial polarization of
the cells and is likely needed for invasive migration of these
cells.

ERM protein localization to leading edge, neck and tail
of the cells

We have recently described that ERM proteins accumulate in
lamellipodia of infected cells migrating on 2D substrata [7]. To
determine whether ERM proteins localized to leading edge
structures in cells migrating inside 3D matrices as well, we
visualized ERM protein distribution at different stages of matrix
invasion by immunofluorescence microscopy (Figure 3). We
localized the leading edge of migrating Theileria-infected
macrophages by two ways. First, we localized the parasite by
nuclear staining with Hoechst, which visualized both host cell
and parasite nuclei. In polarized, migrating cells, the parasite is
always located between the host cell nucleus and the trailing
edge of the cell (Figure 3A, arrows). Parasite localization with
respect to the host cell nucleus can thus be used as a
directionality indicator to determine the leading edge. Second,
we found that the protein cortactin (Figure S2A and B) and
tyrosine phosphorylated proteins (Figure S2C) accumulated at
the invasion front in migrating cells. Cortactin is a well-
established organizer of the cortical actin cytoskeleton at the
leading edge to promote motility and invasiveness of cancer
cells [32]. Therefore, we used anti-cortactin immunostaining as
leading edge indicator and asked as to whether ERM proteins
co-distributed with cortactin. We found that cortactin and ERM
protein detection overlapped in invading cells and that co-
distribution of the two proteins was particularly evident in the
neck zone, where ERM protein accumulation remained
prominent throughout most of the penetration process. Once
nuclear translocation trough the pore was accomplished, ERM
proteins were detected at the rear of migrating cells,
suggesting a function of ERM proteins for tail compression and
rear retraction. To determine ERM protein distribution in living
cells, we expressed YFP-fused ezrin and monitored YFP-ezrin
dynamics in cells migrating through matrigel by time-lapse
imaging. We detected YFP-ezrin at the plasma membrane near
the leading edge and highly enriched in the tail (Figure 3B
arrow). After nuclear translocation, YFP-ezrin began to
accumulate at the invading leading edge again (Figure 3B
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 arrowhead), which suggested a function of ERM proteins both
at leading and trailing edges.

Host cell MAP4K4 and ERM proteins co-distribute to
leading and trailing cell compartments

ERM protein activity and function are regulated by C-terminal
phosphorylation. One C-terminal regulatory kinases is MAP4K4

Figure 1.  Modes of motility of.  T. annulata-infected macrophages embed in matrigel.
(A) Motility of cells embedded in collagen, matrigel or Qgel matrices was recorded for 15 h by live-video microscopy. Vertical scatter
dot plots show speed calculated as µm/min (collagen: 55 cells, matrigel: 19 cells, QGel: 10 cells). T-test, *** p < 0.0001. B) Infected
cells adopt different modes of motility in matrigel. These include forward movement by tunneling, which requires matrix degradation/
engulfment at the leading edge (movie S3 and S5). Alternatively, cells can move in a saltatory mode, where cells squeeze through
narrow pores and forward movement oscillates between rapid movements and phases of stagnation (movie S4 and S6). Vertical
scatter dot plots show percentage of cells migrating in tunneling (14%) or saltatory (38%) mode. 48% of the cells could not be
allocated to one of the two modes (immobile). 147 cells total, T-test, ** p = 0.0014. C) X/Y plots show representative paths of cells
migrating in the tunneling (left) or in the saltatory mode (right). Dot plots show representative track lengths of tunneling and saltatory
migration in µm. Speed diagrams compare fluctuations in speed development of tunneling and saltatory movements; peak =
maximum speed, valley = minimal speed or stagnation.
doi: 10.1371/journal.pone.0075577.g001
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Figure 2.  Actin polymerization at invasion front of cells migrating in saltatory mode.  A) TaH12810 cells were embedded in
matrigel and migration was monitored by time-lapse imaging. Green dots indicate circumference of cavities in migration path, red
lines indicate position of pores between holes. B) Time-lapse microscopy of EGFP-actin expressing TaH12810 cell invading
matrigel (movies S7 and S8). Top: grey scale images, bottom: EGFP-actin fluorescence. C) 3D reconstruction of confocal
microscopy sections of TaH12810 cell migrating in matrigel. Actin cytoskeleton stained with TRITC-phalloidin (red). Arrow indicates
actin–rich circle in maximal constriction zone at pore after nuclear translocation (inset shows F-actin in gray scale, 2x magnification).
D) As in B but focus on initial phase of matrigel invasion. EGFP-actin fluorescence intensity was measured along line indicated and
plotted against line length in µm. Arrows indicate peak fluorescence at cell cortex where protrusion emerges, arrowheads F-actin-
rich ring at circular constriction zone, asterisks leading edge F-actin.
doi: 10.1371/journal.pone.0075577.g002
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Figure 3.  ERM proteins localize sequentially to leading edge, the neck zone and the trailing edge.  A) If microscopy analysis
of ERM protein localization in cells migrating in matrigel using anti-ERM antibodies (red). Leading edge of cells was determined
using cortactin localization (green). The location of the trailing edge was confirmed by visualizing host and parasite nuclei (arrows)
using hoechst stain. Arrowheads indicate neck zones. B) Quantification of YFP-ezrin fluorescence intensity (leading to trailing
edge). Top row shows still images of YFP-fluorescence of time lapsed-image acquisition for a period of 9 min. Bottom row are the
corresponding gray-scale images. Middle row shows intensity histograms of YFP-fluorescence along the white line (top row left).
Arrows indicate tail, arrowhead leading edge.
doi: 10.1371/journal.pone.0075577.g003
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(mitogen-activated protein kinase kinase kinase kinase 4), a
serine/threonine kinase, which phosphorylates ERM proteins
for lamellipodia formation [33]. MAP4K4 is an essential kinase
for macrophage function in the context of inflammatory
signaling induced by TNF-alpha [34], a parasite-induced
cytokine expressed in T. annulata-infected macrophages [22].
If MAP4K4 would be involved in the regulation of ERM function,
we would expect it to be localized near leading and trailing
edges of invading cells. By IF microscopy, we detected
MAP4K4 at the leading edge of matrigel invading cells with
apparent polarization (Figure 4A); when differential interference
contrast (DIC) images in grey-scale were overlaid with RGB
images generated with anti-MAP4K4 staining (Figure 4A
magnifications), we observed preferential accumulation of
MAP4K4 inside membrane blebs. Interestingly, anti-ERM and
anti-MAP4K4 staining did not accurately co-localize; instead,
ERM proteins localized predominately to the neck zone and
cortex of membrane blebs (Figure 4A, magnification). We
confirmed the localization pattern of MAP4K4 and ERM
proteins by ectopically expressing MAP4K4 (GFP-MAP4K4)
and Ezrin (ezrin-YFP) as fusions to GFP and YFP,
respectively. We visualized dynamic alterations in subcellular
distribution of the two proteins by fluorescent live-cell imaging
in TaH12810 cells migrating inside matrigel. Analogous to the
IF data, we detected ectopically expressed MAP4K4
predominately at the leading edge of migrating cells (Figure 4B,
movies S9 & S10). However, we also observed GFP
fluorescence in the trailing end of the cells (Figure 4B, lower),
which suggested that MAP4K4 could be distributed to the rear
and needed there as well. We observed strong ezrin-YFP
fluorescence in trailing edge membranes and somewhat
weaker in protrusions at the leading edge (Figure 4B, lower,
movie S13), where F-actin dynamics are particularly high
(Figure 4B, lower, movie S12; see movie S11 for grey scale
live-cell imaging of same cell). Furthermore, ezrin-YFP
accumulated in the neck zone during matrix penetration, where
it remained throughout the penetration process. Combined,
these observations indicate that spatially restricted
accumulation of ERM proteins and of their regulator MAP4K4
could contribute to leading edge actin and membrane dynamics
in T. annulata-infected cells.

Filopodia-like protrusions lead the way while
membrane blebbing expands the matrix for invading
cells

To further understand dynamic alterations at the leading
edge during matrigel invasion, we monitored the invasion
process at high spatial and temporal resolution. Figure 5A
shows how a cell migrates in saltatory mode, thereby
penetrating the matrix and translocating the nucleus in a
stepwise process. Figure 5B focuses on the invasion zone at
the very leading edge of the same cell and shows the dynamic
morphological alterations in that zone. We observed that
membrane blebs expand along existing filopodia-like
protrusions, whereby expansion began at the base of the
protrusion and extended outward. We quantified the expansion
and retraction processes by monitoring and measuring the size
of a growing bleb every 15 seconds for 3 minutes (Figure 5B

and C). Unlike membrane blebs of TaH12810 cells embedded
in collagen (movie S1), which showed rapid bleb expansion
and slow retraction [10], expansion and retraction dynamics of
leading edge blebs in cells embedded in matrigel were
comparable (Figure 5C). Confocal microscopy analysis of the
blebbing protrusions showed that they consisted of rounded
expansions that were lined with F-actin and decorated with
multiple filopodia (Figure 5D). We have previously shown that
Src kinase activity is needed for the polarization of Theileria-
infected macrophage and herein we detected increased protein
tyrosine phosphorylation at the leading edge of invading cells
(Figure S2). To determine whether Src kinase activity could be
a determinant for TaH12810 morphology during invasion, we
treated infected cells embedded in matrigel with the Src kinase
inhibitor Su6656 (not shown) or PP2 (Figure 5E). Both
inhibitors reduced asymmetric, cortical F-actin accumulation
and the formation of invasion structures compared to control
cells. In contrast, cell treated with the Rho kinase inhibitor
H-1152 displayed polarized morphology and massive
protrusions (Figure 5E). However, analogous to what we
observed in collagen-embedded TaH12810 cells [10], these
protrusions appeared disorganized and the nucleus failed to
transmigrate. 5F schematically shows dynamic morphological
alterations during matrigel invasion, bleb formation, matrix
expansion and retraction of the trailing edge.

Discussion

In this study we visualized dynamic morphological alterations
of rounded/amoeboid cell invasion by live and fixed cell
microscopy and sought to determine molecules associated with
relevant invasion structures. We used bovine macrophages
infected and oncogenically transformed by the protozoan
parasite Theileria annulata as a model for rounded/amoeboid
cell motility, which we found to be highly motile and invasive
when embedded in 3D matrices. We show that the cells can
switch motility modes in matrigel and either migrate in a
tunneling or a saltatory mode. Cells migrating in the tunneling
mode displayed reduced membrane blebbing at the leading
edge and appeared to depend on matrix degradation and/or
engulfment. In contrast, cells migrating in the saltatory mode
depended on progressive matrix compression, contractility and
nuclear deformation. A characteristic feature of cells migrating
in the saltatory mode is the conjunction of filopodia-like
protrusions with membrane blebbing at the leading edge, which
we found herein to be a highly efficient mechanism to penetrate
stiff matrices. By combining these seemingly unrelated cellular
protrusions structures in an invasion machinery, cells can
efficiently overcome physical barriers by locally directed matrix
expansion and subsequent transmigration through pores
markedly smaller that the cell diameter. Our study thus
highlights a novel aspect of the plasticity of eukaryotic cell
motility, which likely determines the motile capabilities of
activated myeloid cells or invasive cancer cells.

We propose that asymmetrical rigidification of the cortical
cytoskeleton at the rear increases contractility and intracellular
pressure. This increased intracellular pressure is relieved by
membrane expansion at sites of reduced cortical stiffness.
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Figure 4.  The ERM kinase MAP4K4 localizes to leading and trailing edges of migrating TaH12810 cells.  A) IF microscopy
analysis of ERM and MAP4K4 protein localization in cells migrating in matrigel using anti-ERM and anti-MAP4K4 antibodies.
Magnifications are 4x of boxed area and highlight MAP4K4 accumulation in membrane blebs. Arrows indicate direction of migration.
B) Time-lapse microscopy of TaH12810 cells expressing either YFP-ezrin (movies S11 & S13) or EGFP-MAP4K4 (movies S9 &
S10). LA-mCherry was used to visualize leading edge actin dynamics (movie S12). Cells migrate in matrigel either in saltatory
(upper) or tunneling (lower) mode (from left to right: grey scale, GFP or YFP fluorescence, overlay). Dotted line indicates cavity
boundary, stars indicate leading edge of cells.
doi: 10.1371/journal.pone.0075577.g004
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Figure 5.  Membrane blebs evolve along filopodia-like protrusions at leading edge.  A) Still images of DIC live-cell microscopy
(movie S14). Arrowheads indicate filopodia-like protrusions, arrow neck zone of maximal compression. B) Higher magnification of
leading edge of cell shown in A. Arrowhead highlights blebbing protrusion at maximal expansion. C) Quantification of surface area
of blebbing protrusion shown in B. D) Confocal microscopy image of TaH128101 cells invading matrigel. Green: F-actin, red:
parasite surface (anti-TaSP), blue: DNA. Insets show leading F-actin and host cell nuclear DNA. E) as D but cells were incubated in
the presence of either the Src kinase inhibitor PP2 (5 µM) or the Rho kinase inhibitor H-1152 (5 µM). F) model of F-actin distribution
and leading edge membrane dynamics of TaH12810 cells invading matrigel.
doi: 10.1371/journal.pone.0075577.g005
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Such sites include zones of high actin dynamics, where the
cortical cytoskeleton and the plasma membrane transiently
detach [35], such as those at the leading edge. Indeed, we
observed membrane blebs that develop and decay along
leading edge filopodia-like protrusions, which is indicative for
enhanced intracellular pressure. Rho kinase is an essential
component for blebbing motility of cancer cells [19] and
inhibition of Rho kinase activity impairs TaH12810 migration
inside 3D matrices (Figure 5E and [10]). However, Rho kinase
activity is dispensable for the formation of leading edge
protrusion in TaH12810 cells as these can still form in the
presence of Rho-kinase inhibitor H-1152 (Figure 5E).
Therefore, matrix invasion in transformed macrophages is
mechanistically analogous to invading breast cancer cells
where Rho-kinase-MLC-driven contractility is dispensable for
protrusion formation but required for forward movement of the
cell body [19]. Unfortunately, we were not able to determine
Rho GTPase activity in infected cells because the amount of
Rhotekin-bound bovine Rho was below the detection limit of
our assay. Interestingly however, we detected markedly higher
Cdc42 activity in the virulent TaH12810 cells compared to the
culture-attenuated Thei cell line or drug-cured Thei cells
(Figure S3, see also below).

We observed ezrin distribution in living, invading cells both at
the leading and the trailing edges, where it co-distributes with
its potential activator MAP4K4 [33]. Activated ERM proteins
stabilize the cortical actin cytoskeleton and adjacent
membranes by tethering F-actin to transmembrane receptors
[36] and the expression of dominant active T567D ezrin
reduces membrane bleb formation [37]. Conversely, presence
of ezrin and moesin was evidenced in expanding and retracting
membrane blebs [38], suggesting that their reversible
phosphorylation might determine ERM effects on bleb
formation. Since MAP4K4 and ERM proteins co-distribute to
the leading edge of invading cells, it is conceivable that
MAP4K4-mediated ERM phosphorylation is needed to balance
cortical rigidity and local membrane dynamics. However,
several other kinases including PKC [39], LOK [40] and ROCK
[41] have been shown to phosphorylate and activate ERM
proteins. Therefore, additional studies are needed to determine
the possible functional interaction of MAP4K4 and ERM
proteins and their spatio-temporal activation patterns in
Theileria-transformed macrophages.

Our data contrast with the motility mode of human
macrophages and fibrosarcoma cells [14], where the matrix
architecture (density and rigidity of the matrix) influenced the
motility of both normal macrophages and cancer cells: In low
density, fibrillar matrix (fibrillar collagen), the cells migrate in a
rounded/amoeboid mode, whereas in high density and stiff
matrices (matrigel or gelled collagen), the cells adopt a spindle-
like, proteolytic mode. We tested whether the elimination of the
parasite reverted amoeboid motility in matrigel and promoted
spindle morphology. However, only very few cured (drug-
treated cells) cells free of parasites survived when embedded
in matrigel (not shown). We do not yet understand what the
underlying cause of decreased survival of cured cells in
matrigel is but it is possible that reduced autocrine stimulation
of isolated cells in a stiff matrix environment is not sufficient for

cured cells to survive. In human cancer cells, filopodia-like
protrusions are needed to promote survival and proliferation of
extravasating cancer cells by inducing ß1-integrin-dependent
activation of the focal adhesion kinase FAK. Consistent with
the possibility that filopodia-like protrusions are constitutively
induced and important for infected cell motility and survival is
our observation of high Cdc42 GTPase activity in TaH12810
cells and of its inactivation upon parasite elimination (Figure
S3). One possible mechanism of Cdc42 induction in Theileria-
transformed cells could involve TNF-alpha, which is induced in
TaH12810 cells in parasite-dependent manner [22] and was
shown to promote robust filopodia induction via Cdc42
activation in mouse embryonic fibroblasts [42].

The present study leaves several issues unresolved, namely
what the molecular basis of TaH12819 cells is that determines
whether the cells migrate either in the tunneling or the saltatory
mode, what controls ERM protein localization to the leading
edge and how initial polarization is triggered. However, it
reveals for the first time that a divergent form of membrane
blebs can develop in conjunction with filopodia-like fibrillar
protrusions at the leading edge, which combined may facilitate
matrix invasion of rounded/amoeboid migrating cells.

Supporting Information

Figure S1.  Cells migrating in tunneling and those
migrating in saltatory mode are morphologically
distinguishable. Cells were embedded in matrigel. Still
images of time-lased image acquisition for 50 min are shown
24h after seeding (movies S5 & S6). White dotted lines indicate
boundaries of differentially shaped cavities formed by the cells.
(TIF)

Figure S2.  Determining direction of migration by cortactin
localization. A) Cortactin accumulates at leading edge of
matrix-invading cell. Cortactin and ERM proteins were
visualized in matrigel embedded cells by fluorescence
microscopy. DIC image (left) shows cluster of cells with
polarized single cell (a) migrating away from cluster (b). Arrow
indicates direction of migration. Cortactin (green) and ERM
accumulate near the leading edge in migrating cell. a:
polarized, matrix-invading cell; b: non-polarized, stationary cell.
Magnifications: 4x. B) 3D reconstruction of confocal sections of
a TaH12810 cell migrating in collagen. Top-left image shows
cell from top. Top-right shows cell after counter-clockwise
horizontal rotation by 45°. Bottom-right as top-left but without
green (actin) fluorescence. Bottom-left shows schematic
interpretation of microscopy images. Staining: green: actin
(phalloidin A4588), red: parasite surface (anti-TaSP, Cy3),
blue: cortactin (anti-cortatcin, Cy5), white: DNA (hoechst). D)
Fluorescence microscopy analysis of matrigel embedded
TaH12810 cells. Staining: green: pTyr (anti-pTyr, A4588), red:
ERM proteins (anti-ERM, TRITC), blue: DNA (hoechst). Arrows
indicate direction of migration. C) Schematic illustration of
infected cell migrating in matrigel.
(TIF)
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Figure S3.  Cdc42 activity is increased in virulent
TaH12810 cells. Rho, Rac and Cdc42-pull down assay from T.
annulata-infected and BW720c-cured macrophages. Western-
blots of GTP-bound active (upper) and total GTPases (lower)
using anti-Rho, anti-Rac and anti-Cdc42 antibodies as
indicated are shown.
(TIF)

Movie S1.  TaH12810 cell embedded in collagen 24h.
Recording time: 45 min, intervals: 4.5 sec, run time: 18 sec,
FPS: 33.
(M4V)

Movie S2.  TaH12810 cells embedded in matrigel. Recording
time: 1200 min, intervals: 300 sec, run time: 24 sec, FPS: 30.
(M4V)

Movie S3.  TaH12810 cells embedded in matrigel. Recording
time: 930 min, intervals: 30 sec, runtime: 18 sec, FPS: 30.
(M4V)

Movie S4.  TaH12810 cells embedded in matrigel. Recording
time: 1200 min, intervals: 30 sec, run time: 24 sec, FPS: 30.
(M4V)

Movie S5.  TaH12810 cells embedded in matrigel. Recording
time: 55 min, intervals: 15 sec, run time: 21 sec, FPS: 30.
(M4V)

Movie S6.  TaH12810 cells embedded in matrigel. Recording
time: 53 min, intervals: 15 sec, run time: 17 sec, FPS: 30.
(M4V)

Movie S7.  TaH12810 cells embedded in matrigel. Recording
time: 300 min, intervals: 60 sec, run time: 18 sec, FPS: 30.
(M4V)

Movie S8.  TaH12810 cells embedded in matrigel. Actin-
GFP fluorescence, Recording time: 300 min, intervals: 60 sec,
run time: 18 sec, FPS: 30.
(M4V)

Movie S9.  TaH12810 cells embedded in matrigel. DIC
imaging, Recording time: 180 min, intervals: 6 sec, run time: 26
sec, FPS: 30.

(M4V)

Movie S10.  TaH12810 cells embedded in matrigel. Actin-
GFP fluorescence, Recording time: 180 min, intervals: 6 sec,
run time: 26 sec, FPS: 30.
(M4V)

Movie S11.  TaH12810 cells embedded in matrigel. Phase-
contrast, Recording time: 266 min, intervals: 60 sec, run time: 9
sec, FPS: 30.
(M4V)

Movie S12.  TaH12810 cells embedded in matrigel. Lifeact-
cherry fluorescence, Recording time: 266 min, intervals: 60
sec, run time: 9 sec, FPS: 30.
(M4V)

Movie S13.  TaH12810 cells embedded in matrigel. Ezrin-
YFP imaging, Recording time: 266 min, intervals: 60 sec, run
time: 9 sec, FPS: 30.
(M4V)

Movie S14.  TaH12810 cells embedded in matrigel. DIC
imaging, Recording time: 50 min, intervals: 15 sec, run time: 19
sec, FPS: 30.
(M4V)
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