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Abstract: Nanotechnology is the science of nanoscale, which is the scale of nanometers or one billionth
of a meter. Nanotechnology encompasses a broad range of technologies, materials, and manufacturing
processes that are used to design and/or enhance many products, including medicinal products.
This technology has achieved considerable progress in the oncology field in recent years.
Most chemotherapeutic agents are not specific to the cancer cells they are intended to treat, and they
can harm healthy cells, leading to numerous adverse effects. Due to this non-specific targeting,
it is not feasible to administer high doses that may harm healthy cells. Moreover, low doses can
cause cancer cells to acquire resistance, thus making them hard to kill. A solution that could potentially
enhance drug targeting and delivery lies in understanding the complexity of nanotechnology.
Engineering pharmaceutical and natural products into nano-products can enhance the diagnosis and
treatment of cancer. Novel nano-formulations such as liposomes, polymeric micelles, dendrimers,
quantum dots, nano-suspensions, and gold nanoparticles have been shown to enhance the delivery
of drugs. Improved delivery of chemotherapeutic agents targets cancer cells rather than healthy
cells, thereby preventing undesirable side effects and decreasing chemotherapeutic drug resistance.
Nanotechnology has also revolutionized cancer diagnosis by using nanotechnology-based imaging
contrast agents that can specifically target and therefore enhance tumor detection. In addition to the
delivery of drugs, nanotechnology can be used to deliver nutraceuticals like phytochemicals that
have multiple properties, such as antioxidant activity, that protect cells from oxidative damage and
reduce the risk of cancer. There have been multiple advancements and implications for the use of
nanotechnology to enhance the delivery of both pharmaceutical and nutraceutical products in cancer
prevention, diagnosis, and treatment.

Keywords: dendrimers; liposomes; nanoparticles; nanopharmaceuticals; nanonutraceuticals;
nanosuspension; polymeric micelles; quantum dots; solid lipid nanoparticles

1. Introduction

The evolution of nanoscale sciences and nanotechnology over the past two decades is responsible
for the availability and growing prominence of the field of nanomedicine. Nanomedicine is a broad
term to describe the use of devices or materials on the nanoscale (sizes in nm) to assess, diagnose, treat,
or preserve health [1]. Applying nanomedicine could include modifying how drugs are delivered in
the body as a means for optimization, using imaging for various purposes, and drug tracking within
the body [1,2].

With the inception of nanomedicine, the community discovered the intrinsic ability of this science
to circumvent some of the most fundamental shortcomings of traditional medicine, including off-target
drug side effects, non-specific cell-targeting, and drug instability. Stemming from these advancements
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are the rapidly emerging novel formulations called nanopharmaceuticals and nanonutraceuticals [2].
Nanomedicine is at the forefront of anticancer medicine, owing to the potential to limit the
aforementioned shortcomings of traditional medicine. Resistance to chemotherapy has been a
major challenge in treatment, due to insufficient targeting and the presence of efflux pumps
(p-glycoproteins (P-gp)) in the tumor that pumps out the chemotherapeutic agents. Nanoparticles
(NPs) carry medications and have the ability to overcome resistance through specific targeting of tumor
cells [3]. It is important to investigate the history and current knowledge of nanopharmaceuticals and
nanonutraceuticals as a means to better understand the anticancer properties that these formulations
hold and their potential in moving forward.

This review covers the current repertoire of nanopharmaceuticals and nanonutraceuticals that
have been approved for cancer treatment or that exhibit extensively documented anticancer properties.
We also give a brief summary of common nanoformulation techniques, their application potentials
and limitations, as well as some novel developments in nanoscale formulations that show promise for
future growth of nanopharmaceuticals and nanonutraceuticals.

2. Nanoformulations

The following nanoformulations are currently being widely studied in the medical community.
Each one has specific advantages and disadvantages that make them unique. They all have applicability
for use in cancer treatment or diagnosis. Some nano structures are better suited for certain types
of drug delivery or tumor detection over others. Additionally, each of these existing drug delivery
systems have paved the way for novel nanoformulations that have come to the forefront of studies in
recent years.

Various nanoplatforms are being used, from liposomes over the past two decades to metallic NPs
(iron and gold) in diagnosis to polymeric and solid NPs in targeted therapeutics, as highlighted below.

2.1. Liposomes

Conventional liposomes are spherical amphiphilic phospholipid vesicles, approximately
25 nm–2500 nm in size that can protect hydrophobic or hydrophilic materials from aqueous or
non-aqueous environments, respectively, by forming a closed bilayer around the material [4].
This particular feature is beneficial for the delivery of both hydrophobic and hydrophilic chemotherapy
to targeted sites. For mechanisms of delivery and composition, there are five classes of liposomes
that can be utilized to optimize a product’s likelihood of achieving intended effects. These classes are
pH-sensitive, cationic, conventional, long-circulating, and immuno-liposomes [2,5,6]. pH-sensitive
liposomes stabilize when the external pH is altered, usually from a slightly alkaline or neutral
pH to an acidic pH, which makes them stable at the physiological pH of 7.4 [7]. However,
the pH-sensitive liposomes dissociate and release their content within the tumor, infected, or inflamed
areas, which exhibit acidic properties [7]. Cationic liposomes are made using positively charged lipids
and can interact with negatively-charged compounds in the body like DNA [8]. They can be used for
the delivery of vaccines against cancer by loading synthetically long peptides into the liposomes to
be delivered to dendritic cells, hence enhancing immune response [8]. Conventional liposomes were
the first generation of liposomes and consist of a lipid bilayer. The bilayer can be neutral, cationic,
or anionic phospholipids as well as cholesterol, which encompasses the aqueous volume [9]. The major
disadvantage of conventional liposomes is their fast elimination from the blood. Long-circulating
liposomes are generated by coupling of biocompatible polymers like polyethylene glycol (PEG)
to the liposomal surface that protects the liposome from being cleared rapidly from the body [9].
Immuno-liposomes are created by attaching antibodies to the surface of the liposome. Such alteration
in the liposomal structure allows for specific tissue targeting by binding to receptors specific to
tumor cells [10].

Liposomal formulation is limited by its instability, poor solubility, high cost of production,
and potential leakage of contained drug [4], though with recent advancements these issues are
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improving dramatically [11]. Liposomes have proven to be an efficacious and safe drug delivery
system that is both biocompatible and biodegradable and does not have a risk of immunogenicity
or toxicity [12]. They serve as a scaffold for carrying drugs and imaging agents, thereby increasing
the circulation half-life and achieve targeting specificity. Doxorubicin HCL liposome (Doxil) is an
example of a successful liposomal nano-anticancer agent used in the treatment of ovarian cancer,
multiple myeloma, and AIDS-related Kaposi’s sarcoma [13,14]. Doxorubicin is a hydrophilic drug
that is encapsulated inside the aqueous core of a liposome. The utilization of nanomedicine to deliver
doxorubicin not only prolongs the half-life and increases the concentration of doxorubicin in tumor
cells, but also leads to significant reduction in adverse events like cardiotoxicity because doxorubicin
as Doxil is not bioavailable to cardiac cells [13].

Liposomes can also be used for imaging and have shown potential as contrast agents for magnetic
resonance imaging (MRI) in in vivo studies [15]. Liposomes can serve as a vessel to deliver MRI
paramagnetic contrast agents, such as gadolinium, thus increasing contrast specificity to parts of the
body that are of interest and thereby reducing systemic toxicity [16].

2.2. Polymeric Micelles

Polymeric micelles (PMs) are amphiphilic block copolymers with an average diameter of 10–100 nm
that arrange via self-aggregation into nanoscale core-shell structures [17]. The core consists of a dense
hydrophobic region and the shell consists of hydrophilic co-polymers. PMs vary in their stability in
blood and in drug release rate, and they may be tweaked by the choice of chemical linkage to their
surface, e.g., esters [18]. The most widely studied copolymers are poly(ester)s, poly(L-amino acid)s,
and poly(propylene oxide) [19]. Having a hydrophilic surface protects them from non-specific uptake,
which allows this formulation to be used for systemic delivery of hydrophobic chemotherapeutic
agents [20]. Another attractive quality of PMs owing to their hydrophilic shell and nanoscopic size is
that mechanical clearance of the micelles by renal filtration, reticuloendothelial system (RES) uptake,
and/or by the spleen is prevented, allowing for prolonged circulation in the blood [21]. An example of
a PM-formulated anticancer drug is Genexol-PM, a PM formulation of paclitaxel [22]. Paclitaxel is a
poorly water-soluble chemotherapeutic agent used in the treatment of ovarian cancer, breast cancer,
non-small cell lung cancer, and AIDS-related Kaposi’s sarcomas [23]. In order to solubilize paclitaxel, it
is often formulated in Cremophor EL (polyoxyethylated castor oil), which can lead to hypersensitivity
reactions and requires pre-medication with diphenhydramine, corticosteroids, and H2 antagonists [23].
Genexol-PM overcomes the hypersensitivity reaction and has been approved in Korea for the treatment
of advanced lung cancer and metastatic breast cancer [22].

2.3. Dendrimers

Dendrimers are tree-like branched-structure polymers whose shape and size are easily influenced
and controlled via polymerization reactions. Branched nanostructures form around a spherical
core with the ends of the dendrimers available for conjugation and molecule attachments [24,25].
Utilizing this structure permits drug and gene delivery (i.e., DNA/RNA) specificity as well as size and
weight of molecule specificity, with exceptional entrapment efficiency. The high level of architectural
control over dendrimers’ structure makes them compelling in various settings, including chemotherapy
with reduced cytotoxicity, gene therapy, immune system stimulation, increasing bioavailability, and as
contrast agents for MRI [25]. Like liposomes, dendrimers can increase the solubility and bioavailability
of water-insoluble agents by either encapsulating the drug/oligonucleotide in their internal cavities or
attaching them though electrostatic or hydrophobic interactions to their surface [26]. Dendrimers can
also serve as vehicles to transport nucleic acid-based chemotherapies, which are hydrophilic molecules
that cannot easily penetrate the cell membrane [26].



Biomedicines 2020, 8, 347 4 of 22

2.4. Quantum Dots

Quantum dots (QDs) are semiconducting materials in nanocrystal form, 2–10 nm in size, with an
inorganic core and an organic-coated shell [27,28]. QDs can emit fluorescence when stimulated by
light. This unique characteristic of QDs makes them a useful technology in imaging and tracking of
intracellular processes [29,30]. QDs can accumulate in tumor tissue, allowing for tumor visualization
and non-invasive diagnosis [30]. QDs have shown promising results when studied in vitro for rapid
localizations of HER-2 receptors and for targeted chemotherapy and imaging-guided therapy [31].

2.5. Additional Novel Formulations

Adding to the commonly used formulations discussed above, Table 1 lists additional novel
formulations, their size, and a brief summary of their characteristics and application potential.

Table 1. Novel nanoformulations and their characteristics or applications in oncological medicine.

Nanoformulation Size (nm) Characteristics/Applications References

Carbon nanotubes 0.5–3 by 20–1000

Hexagonal networks of carbon that form
tube-like structures. Unique size, geometry,
and surface characteristics make these optimal
drug carriers for chemotherapy.
Studied in vitro as a potential drug delivery
system for controlled release of methotrexate
(MTX); the nano-formulated agent significantly
improved the antitumor function of MTX.

[32–36]

Fullerenes 0.7–1

Carbon atoms arranged in a cage-like structure.
Used in imaging, drug delivery,
photosensitizing, and stimulating immune
response. Gd-metallofullerenol shown to
deplete breast cancer stem cells,
block epithelial-to-mesenchymal transition and
was non-toxic to healthy mammary epithelial
cells. Their targeted activity inhibited both
tumor initiation and metastasis.

[37–39]

Gold nanoparticles
(AuNP) 1–150

Can be fashioned into different shapes and sizes
(e.g., gold nanorods, nanospheres, nanoshells,
nanostars, nanocages). Unique shapes and
sizes make them compelling for delivery of
genes/oligonucleotides, proteins, and drugs to
specific sites of interest and for cancer
diagnosis and targeted phototherapy. MTX,
when conjugated to AuNPs, accumulates more
in tumor cells and at a faster rate than free
MTX. Doxorubicin uptake was enhanced via
AuNP conjugation in multi-drug resistant
MCF7/ADR breast cancer, enhancing toxicity
and overcoming drug resistance. Unique shape
of gold nanostar allows light absorption and
provides high photon-to-heat conversion
efficiency, making them a compelling
therapeutic option in tumor cell ablation.

[40–44]
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Table 1. Cont.

Nanoformulation Size (nm) Characteristics/Applications References

Polymer-based
nanoparticles 10–1000

Biodegradable polymers that are biocompatible
and can load both hydrophobic and
hydrophilic agents. Low toxicity and are
cheaply fabricated. Most commonly used
polymer is polylactic-co-glycolic acid (PLGA)
nanoparticle. Their architectural design may
affect their physiochemical properties, such as
efficiency of drug encapsulation, particle size,
distribution, stability, and shape. Introducing
target moieties like folic acid, biotin, antibodies,
and peptides to their surface that are
specifically recognized by tumor cell receptors
enhances targeting of chemotherapy.
Development of PLGA nanoparticles with the
peptide Pluronic P85, which inhibits drug
efflux pump, both enhances tumor suppression
and overcomes drug resistance. PLGA has
been studied with other anticancer agents like
mitramycin, paclitaxel, daunorubicin,
and doxorubicin to enhance tumor targeting.

[45–49]

Iron oxide
nanoparticles (IONP) 1–100

Type of magnetic nanoparticles (MNPs) with
characteristically large surface area,
small particle size, superparamagnetism,
and magnetic response. Applications in
diagnosis and targeted drug delivery.
Most common use has been as MRI contrast
agent to aid early detection of cancer.
Ferumoxil (GastroMARK) is an example of an
IONP that enhances MRI of gastrointestinal
lumen. One study suggested that IONP
inhibits tumor growth via induction of
pro-inflammatory macrophages, particularly in
liver cells, which accumulate high
concentrations of IV IONP. IONPs can provide
chemotherapeutic and magnetic hyperthermia
therapy; they act as chemotherapy drug
nanocarriers while generating localized heat
when exposed to alternating magnetic field,
e.g., conjugation of doxorubicin with magnetic
oxide nanoparticle led to a higher cell killing
response as a result of the alternating magnetic
field, leading to heat generation by
hyperthermia and release of doxorubicin inside
the tumor cell, thus showing promising results
in brain cancer cells treatment.

[50–56]

Artificial exosomes 50–120

Similar to liposomes, composed of a lipid
bilayer and can encapsulate both hydrophobic
and hydrophilic drugs. Easily PEGylated to
enhance circulation time of a drug in blood.
Also engineered with various targeting ligands
and many proteins (like tetraspanins) that
provide specific organotropism. Shown to
improve potency and treat
multi-drug-resistance cancers. For example,
paclitaxel-encapsulated exosomes were
effective in vitro against human pancreatic cells
compared to control formulation.

[57–59]



Biomedicines 2020, 8, 347 6 of 22

Table 1. Cont.

Nanoformulation Size (nm) Characteristics/Applications References

Albumin
nanovectors 5–140

Biocompatible, safe, and cost-effective to
fabricate and can deliver both hydrophobic and
hydrophilic drugs and diagnostic agents.
Abraxane is an albumin-bound
nano-formulation of paclitaxel and approved
for the treatment of metastatic breast cancer,
locally advanced or metastatic lung cancer,
and metastatic adenocarcinoma of the pancreas.

[60,61]

Virosomes ~150

Spherical unilamellar vesicles that contain viral
envelopes exclusive of the viral genome that
serve as drug carriers in experimental cancer
therapies. Mostly used in vaccine development
like influenza (Inflexal) and hepatitis A (Epaxal)
vaccines. Phase 1 trial for using virosome to
formulate Her-2/neu multi-peptide vaccine
resulted in induction of anti-Her-2/neu 2
specific antibodies in patients with metastatic
breast cancer.

[62,63]

Silica-based
nanoparticles 20–200

Mesoporous silica-based nanoparticle (MSN)
structures can be used to load and deliver
antitumor agents. Well-ordered internal
mesopores (~2–6 nm), large surface area,
modifiable size, easy surface modifications,
shape, and robustness make them ideal
nano-delivery systems. Use of MSNs for
doxorubicin delivery has improved the ability
to cross the blood–brain barrier in cell models,
thus making MSNs ideal for delivery of
antitumor agents to the brain as in
glioblastomas. Another example is formulation
of cisplatin with silica-based nanoparticles for
release into brain cancer cells.

[64–69]

Nanoshells <100

Silica core coated with metallic outer shell.
Properties modifiable by adjusting shell-to-core
ratio. Used for diagnostic, therapy,
immunologic. Can be contrast agents to image
HER2 clinical marker in breast cancer.
Nanoshells’ exposure to HER2 or IgG
PEGylated antibodies facilitates targeting of
breast cancer cells.

[70–72]

Nanobubbles 40–800

Bubble-like structures generated against
hydrophobic surfaces in liquids. Cancer drugs
can be incorporated and easily visualized via
ultrasound. Internalization of drugs to tumor
cells when nanobubble accumulates inside
tumor’s interstitium due to their ability to
extravasate through defective tumor
microvasculature. Once inside,
nanobubble acts as a strong contrast for
ultrasound and once imaging is achieved, drug
is released from nanobubble.

[73–75]
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Table 1. Cont.

Nanoformulation Size (nm) Characteristics/Applications References

Niosomes 25–100

Non-ionic, self-associating surfactant-based
vesicle in an aqueous phase. Unique delivery
system for both hydrophilic and lipophilic
drugs such as chemotherapies. Have potential
for targeted delivery of chemotherapy to
desired tumor site. Niosomal encapsulation of
methotrexate (MTX) and doxorubicin has
shown increased delivery to tumor and
increased tumor killing.

[76–78]

Nanosuspensions <1000

Fine colloid, solid pharmaceutically active
ingredient particles suspended and dispersed
in aqueous vehicles. Increases bioavailability
and dissolution rate of a drug. Used in in vitro
and in vivo studies to formulate injectable
sorafenib for treatment of hepatocellular
carcinoma. Sorafenib nanosuspension showed
significantly superior antitumor effect when
compared to oral and injectable sorafenib.

[79–82]

3. Nanopharmaceuticals

The creation of nanotechnology birthed limitless potential in many fields. Most relevant for this
review is the field of nanomedicine. Specifically, in cancer therapy this technology has allowed a choice
of formulations with benefits that were previously unavailable. These benefits include targeting tumor
cells, initiation of apoptosis, and accumulation of drug in specific tissue for increased exposure to cancer
cells. Formulation of existing pharmaceuticals into the nanoscale has decreased toxicity and increased
cell specificity. Table 2 summarizes nanopharmaceuticals that have been approved for the indicated
applications. The success of these nanopharmaceuticals has proven the legitimacy of this technology
and its potential in the field of oncology, a field that has been particularly limited by many obstacles,
such as costs of development, regulatory frameworks, applicability of test protocols, and mechanisms
to test for safety/efficacy [83]. As nanomedicine has matured, there has been vast commercialization of
related technology, including hardware and software that can be used to create and customize these
nanoformulations with reproducible quality and quantity in modest-sized lab settings [84].

Active nano-targeting for tumor-targeted delivery could be achieved using high-affinity ligand
for a unique target that is overexpressed by cancer cells and their associated microenvironment,
such as the case with integrin αvβ3, PSMA, or CD44 for delivery of chemotherapy into specific
tumors [85–91]. Nanotechnology has been studied in vitro and in vivo to potentially restrict the
action of the anti-angiogenic agent, diamino tetraiodothyroacetic acid (DAT) to the integrin avβ3
by conjugating DAT to PLGA NPs, forming DAT-conjugated PLGA (NDAT). The results of the
study showed that nanotechnology allows for more specific tumor targeting, thereby allowing the
use of lower doses of the toxic chemotherapeutic regimens [85]. Similarly, theranostic nanocarriers
(folate-HBPE (CT20p)) were studied in the delivery of therapeutic peptide (CT20p) to allow for a more
selective toxicity to prostate cancer cells that express PSMA. The results of the in vivo study indicated
that nanocarriers can significantly and selectively facilitate tumor reduction [86]. Similar promising
results were also shown in other studies, for example in the use of docetaxel nano-targeted delivery
for the treatment of prostate cancer, use of NDAT for the targeted delivery of paclitaxel, cisplatin,
and doxorubicin in tumor xenografts and in the delivery of toremifene in prostate cancer [87–91].
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Table 2. Approved oncological nanopharmaceuticals and their applications.

Product Drug Formulation Company ROA Application (Approval Year)

DaunoXome Daunorubicin Citrate Liposome Galen IV Kaposi Sarcoma (1996)
DepoCyt Cytarabine Liposome Pacira IT Neoplastic and Lymphomatous Meningitis (1999)

Doxil Doxorubicin HCl Liposome Janssen IV Kaposi Sarcoma, Ovarian cancer, Multiple myeloma (1995)
Marqibo Vincristine Sulfate Liposome Spectrum IV Acute Lymphoid Leukemia (2012)
Mepact Mifamurtide Liposome Takeda IV High-grade Non-metastatic Osteosarcoma (EU 2009)
Myocet Doxorubicin Liposome Teva IV Metastatic Breast Cancer (EU 2000)

Neulasta Filgrastim PEGylated protein Amgen SC Febrile Neutropenia, in Non-myeloid Malignancies (2002)
Oncaspar Pegaspargase PEGylated protein Shire IM/IV Acute Lymphoblastic Leukemia (1994)
Eligard Leuprolide Acetate Polymer-based Tolmar SC Advanced Prostate Cancer (2002)
Genexol Paclitaxel Polymer-based Samyang IV Pancreatic Cancer, Metastatic Breast Cancer (SK 2001)
Opaxio Paclitaxel Polymer-based CTI Biopharma IV Glioblastoma, NSC Lung Cancer, Ovarian cancer (pending)

Zinostatin stimalamer Styrenemaleic acid and
NCS protein Polymer-based Astellas IV Hepatoma (JP 1994)

Abraxane Albumin and paclitaxel Protein-drug conj. Celgene IV Metastatic Breast Cancer, NSC Lung Cancer, Metastatic
Adenocarcinoma of the Pancreas (2005)

Kadcyla Trastuzumab emtansine Protein-drug conj. Genentech IV Metastatic Breast Cancer (2013)
Ontak Denileukin diftitox Protein-drug conj. Eisai IV Persistent or Recurrent Cutaneous T-cell Lymphoma (1999)

NanoTherm Iron oxide+aminosilane Metal-based MagForce ITU Prostate cancer, Pancreatic cancer, Glioblastoma (EU 2013)
Gendicine rAd-p53 Virosome Shenzhen ITU Head and Neck Squamous Cell Carcinoma (CN 2003)
Rexin-G Cyclin G1 inhibitor Virosome Epeius IV Solid Tumors (PH 2007)

ROA, route of administration; IV, intravenous; IT, intrathecal; SC, subcutaneous; IM, intramuscular; ITU, intratumorally; PEG, polyethylene glycol; Two letters before year notates approval
in specific countries/regions; EU, Europe; SK, South Korea; JP, Japan; CN, Canada; PH, Philippines; all others approved in the United States.
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4. Nanonutraceuticals

Nutraceuticals are typically defined as pharmaceutical-grade standardized nutrients derived
from food sources that, in addition to providing basic nutrients, also provide extra health benefits [92].
They mainly differ from non-pharmaceuticals in that they do not provide a pharmacologically active
ingredient and instead deliver nutritional supplementation for medicinal purposes [93]. There has
been widespread growth in the use of phytochemicals in nutraceuticals [94].

Phytochemicals are the naturally occurring chemicals in many plants that exhibit biologically
active characteristics, including plant growth or defense. Many of these phytochemicals have been
studied for centuries for their wide-ranging effects and medicinal value [94]. Phytochemicals like
flavonoids suppress oxidative stress-induced DNA damage, primarily through their antioxidant
properties, and thus they play a role in cancer chemoprevention [95,96]. Another example is the use of
indoles found in cabbage that reduce the effects of estrogen and hence reduce the risk of developing
breast cancer [97]. Capsaicin, found in chili pepper, is believed to protect DNA from carcinogens [98].
Formulating these nutraceuticals on the nanoscale, similarly to nanopharmaceuticals, may allow more
pronounced and targeted effects that were previously unachievable.

Nutraceuticals derived from phytochemicals that have been studied for their potential anticancer
properties exhibit promising results. Table 3 is a comprehensive list of phytochemicals that have been
nano-formulated and studied in the corresponding cancer models. Moving forward, this subgroup of
nanomedicine has great potential for growth because the major limiting characteristics of nutraceuticals,
such as poor bioavailability and limited absorption in the gastrointestinal tract, can be overcome [99].
As the trend of seeking natural alternatives for prescription medications continues to grow, the younger,
less-explored field of nanonutraceuticals may prove to be the lowest hanging fruit of all.

Table 3. Phytochemicals and their application in nanomedicine.

Phytochemical Application/Targets Delivery System

β-Lapachone Colon cancer cells, lung [100], prostate,
breast cancer cells [101] PEG-PLA polymer micelles [102,103]

Curcumin

Brain [104], leukemia, colon [105],
breast [106], prostate [107],
cervical [108–110], pancreatic cancer
cells [111], neuroblastoma [112]

PLGA, PLA-vitamin E TPGS copolymer,
alginate NPs, soy protein NPs,
PVP conjugate micelle, α-CD derivatives,
thermosensitive polymer NP,
nanoprecipitation, liposomal formulation,
magnetic NP, hollow capsules,
albumin nanosuspension [113,114]

Daidzein Cardiovascular system [115],
breast cancer [116] SLN with PEGylated phospholipid

Dibenzoylmethane
Cervical cancer cells, hepatic cancer,
prostate cancer, lung cancer,
osteosarcoma [117–119]

PLA NP

Dihydroartemisinin Breast cancer [120], ovarian cancer [121],
esophageal cancer [122] Magnetic NP

Ellagic acid

Breast cancer [123], prostate cancer,
colorectal cancer, melanoma,
ovarian cancer, non-small cell lung cancer
(NSCLC), bladder cancer [124,125]

PLGA NP, PEG, mesoporous silica NP

Epigallocatechin Gallate
(EGCG)

Prostate cancer cells, pancreatic cancer
cells [126], breast cancer [127],
ovarian cancer, endometrial cancer,
renal cancer, and colon cancer

Lipid NP, polymeric NP (PLA and PLGA),
liposomes, gold NP, selenium
nanocarriers, PEG [128]

Eugenol Colon and liver cancer [129],
breast cancer [130,131] Nanoemulsions, magnetic NP
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Table 3. Cont.

Phytochemical Application/Targets Delivery System

Ferulic acid Hepatocellular cancer, colon cancer [132],
pancreatic cancer [133] NP, chitosan-coated SLN

Gambogic acid Breast cancer, pancreatic cancer [134]

Glycol chitosan NP, NP coated with red
blood cell membranes [135],
carbo nanotube and graphene
nanodelivery, magnetic NPs

Genistein

Breast cancer, prostate cancer,
colon cancer [136], osteosarcoma, human
gastric carcinoma, neuroblastoma,
bladder cancer, lung cancer,
cervical cancer [137]

Biodegradable TPGS-b-PCL NP,
PEGylated silica NP, hybrid nanomaterial

Honokiol

Liver cancer [138], breast cancer [139],
colorectal cancer [140], lymphoid
malignant cells [141], melanoma [142],
thyroid cancer [143], glioblastoma [144]

NP, nanosome, QD

Naringenin Cervical cancer [145], glioblastoma,
lung cancer [146], pancreatic cancer [147]

Silk fibroin NP, naringenin loaded PCL
NP, multi-walled carbon nanotubes,
naringenin-loaded PLGA NP

Nobiletin

Breast cancer, ovarian cancer,
prostate cancer, colon cancer [148],
liver cancer, hepatocellular carcinomas,
glioblastoma, gastric cancer, lung cancer,
nasopharyngeal cancer [149]

Nano-emulsion [150], micelles

Quercetin

Breast cancer [151],
ovarian cancer [152,153], cervical cancer,
prostate cancer, colorectal cancer,
gastrointestinal cancer, liver cancer [154],
thyroid cancer, lung cancer,
pancreatic cancer, lymphomas

Quercetin encapsulated in SLN [155],
gold NP-quercetin into PLGA, graphene
oxide nanocarrier

Resveratrol Skin cancer, breast cancer, prostate cancer,
pancreatic cancer Gold NP [156], SLN [157]

Thymoquinone

Glioblastoma [158], breast cancer,
ovarian cancer, osteosarcoma,
colorectal cancer, adenocarcinoma,
pancreatic carcinoma, myeloblastic
leukemia [159,160]

Silica NP core loaded with thymoquinone,
thymoquinone-loaded nanostructured
lipid carriers, PLGA and PEG,
thymoquinone-encapsulated chitosan NP,
1,2-dipalmitoyl-sn-glycerol-3-phosphocholine
liposomal system, micelles

Triptolide Breast cancer [161], liver cancer,
lung cancer, pancreatic cancer [162,163]

Triptolide-loaded cationic liposomes,
triptolide coupled to vitamin E using
dithiodiglycolic acid and co-dissolved
with PEG2000-linoleic acid,
nucleolin-specific aptamer mediated
polymeric nanocarrier

Taxifolin Colorectal cancer,
breast cancer [164] [165,166]

Zinc oxide NP, NP by liquid
antisolvent precipitation

Ursolic acid

Cervical cancer [167], breast cancer [168],
prostate cancer, lung cancer,
hepatocellular carcinoma [169], gall
bladder carcinoma, melanoma [170]

Gold-ursolic acid into PLGA NP,
long-circulating and pH-sensitive
liposomes [171], PEG modified
liposome [172], ursolic acid-loaded
chitosan NP [173], pH-sensitive
mesoporous silica NP

CD, cyclodextrin; NP, nanoparticle; PCL, polycaprolactone; PEG, polyethylene glycol; PLA, poly(lactide); PLGA,
poly lactic-co-glycolic acid; PVP, poly(vinyl pyrrolidone); QD, quantum dot; SLN, solid lipid NP; TPGS, tocopheryl
polyethylene glycol 1000 succinate.
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The physicochemical properties of phytochemicals such as polyphenols, phytosterols, carotenoids,
vitamins, and minerals have a number of limitations, such as solubility, stability, and permeability,
which could be improved using biodegradable nano assembly systems such as PLGA, chitosan,
and natural fatty acids. Nanoformulation of natural bioactive compounds or natural extracts has
demonstrated improved bio-accessibility/bioavailability. Different nanonutraceuticals demonstrated
improved pharmacokinetic and pharmacodynamic properties that could facilitate their transition into
pharmaceuticals and nanopharmaceuticals [125,174–178].

5. The Promising Future for Oncology with Nanomedicine

There are innumerable limitations when it comes to oncologic therapy. Most often cited is the
lack of targeting and cell specification that leads to exaggerated negative side effects. These side
effects are typically detrimental to patients’ health and can have a significant impact on quality of life.
Using nanotechnology with enhanced tumor targeting capabilities may significantly save patients from
immense pain and suffering and will combat multi-drug resistance and enhance tumor killing [179].

Nanotechnology has much potential in that it could be used for cancer diagnosis, treatment,
and potentially the development of vaccines. Nanotechnology allows for more sensitive diagnosis
of cancer by targeting specific cancer biomarkers, such as exosomes, cancer-associated proteins,
circulating tumor DNA, and tumor cells [180]. Nanotechnology has been extensively studied in
laboratory settings, however clinical data are often lacking. There are multiple ongoing trials looking
at the use of nanotechnology in increasing the sensitivity and specificity of cancer diagnosis. A phase
1 trial is currently evaluating the use of ultrasmall silica particle in brain tumor imaging in humans [181].
This is the first human trial evaluating silica NPs in brain cancers. Understanding the mechanisms
of distribution and excretion of the silica NPs in humans would be beneficial in future targeted
oncological therapies. Carbon NPs are being studied as lymph node tracers in colorectal cancers
to assess whether carbon NPs can increase lymph node yield after surgery [182]. Ferumoxytol-iron
oxide NPs magnetic resonance is being evaluated as a potential tool to gain insights about the
spread of cancers [183]. Another study evaluated the use of nanosensors in the diagnosis of gastric
diseases [184]. Nanochip technology is also being studied as a potential tool for monitoring treatment
response and detection of relapse in patients with diffuse large B-cell lymphomas [185]. As clinical
research continues, we will see nanotechnology flourish in the field of oncology to aid in diagnosis
and treatment.

6. Challenges and Promises in the Advancement of Nanoproducts (Nanomedicine)

Challenges facing the delivery of NPs carrying anticancer drugs to solid tumors include tumor
microenvironments, matrix barriers such as fibrosis, collagen, and other matrices, tumor heterogeneity
with variable vasculature, and the poorly vascularized tumor core. Current research in NP-based
tumor drug delivery is focused on “active” targeting of NPs to the target rather than the traditional
“passive” targeting through the enhanced permeability and retention (EPR) system.

Nonpharmaceutical formulations have distinct challenges from conventional pharmaceutical
products that make their development more challenging. Cost of production of nanopharmaceuticals
poses an important challenge. Nanopharmaceuticals are highly complex molecules that require
careful selection of shape, vehicles, inorganic materials, and optimization of pharmacokinetic
parameters to meet therapeutic needs and proper storage. Large-scale production of nanotherapeutics
require high-efficiency equipment, time, and space. The higher the complexity of the desired
nonpharmaceutical, the higher the cost of production and cost of acquisition. The cost-effectiveness
of developing nanopharmaceuticals/nanonutraceuticals must be taken into consideration [186,187].
To justify their cost of production, a carefully planned and well-designed manufacturing process is going
to be essential [188]. If careful manufacturing planning is not completed, reliability of nanotechnology
in cancer diagnosis and treatment may be compromised. For example, there are various factors that
affect the NP detection signaling and thus the sensitivity and specificity of cancer detection [189].
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Manufacturing might not be an issue for all approved products that were aimed at passive targeting,
but it might represent a challenge for active nano-targeting where there is a need to chemically
conjugate the targeting moiety (small molecule, antibody, or aptamer) to the nanoplatform and then
load the drugs to be delivered into the tumor and its microenvironment. However, those challenges
can also be overcome. An example of such success is the case with BIND-014, a PSMA-targeted
ACCURIN containing docetaxel, in patients with chemotherapy-naive metastatic castration-resistant
prostate cancer. BIND-014 was clinically active and well-tolerated and the study met its primary
endpoint, with 71% of patients achieving relative progression-free survival of at least six months.
Unfortunately, the success rate for phase 3 trials was a mere ~14%, with failures stemming from lack of
efficacy [190,191].

Physiochemical properties of the NPs such as shape, size, surface charges, surface ligands,
absorption, distribution, metabolization, and excretion play a role in potential toxicity in the human
body. Moreover, long-term toxicity from prolonged NP exposure (e.g., from nano-based imaging and
treatment) cannot be fully and quickly known from in vivo studies [188].

Another important challenge to consider is FDA regulation of nanopharmaceuticals/

nanonutraceuticals. Currently, the FDA approach to reviewing nanopharmaceuticals is the same
as products that do not contain nanomaterials. Complexity and diversity of nano formulations is
increasing significantly and thus the regulatory structure set forth by the FDA seems inadequate.
Challenges involving safety, efficacy, and proper labeling are likely to arise [188,192,193].

Despite these challenges, nano-delivery of approved or new novel anticancer mechanisms
holds great promise in the improved management of cancer and other disorders [194–198].
Nanoparticle-based drug delivery improves efficacy, solubility of hydrophobic drugs, half-lives
of unstable compounds and proteins, and allows controlled and targeted release of drugs at the
tumor site and its microenvironment. Ultimately, the integration of various enabling technologies
and cross-collaboration with multidisciplinary theoretical and experimental scientists across academia
and the pharmaceutical industry will accelerate these developments from the bench to the bedside
and eventually to the market. Effective and safe cancer management continues to be a major issue in
achieving improved survival and quality of life, because most anticancer drugs are cytotoxic and have
a narrow therapeutic index.

7. Moving Forward Toward the Adaption of Nanomedicine toward Precision Medicine

Several nanopharmaceutical products in cancer and non-cancer indications are progressing at
various stages of clinical development with great promises to improve the efficacy and safety of
existing or new and novel compounds [199]. Clearly nanomedicine has provided recent success in
drug delivery and tumor targetability that will increase the adaption of nanoproducts in cancer and
beyond in the upcoming 2020–2030 decade. Nano-targeted delivery of active pharmaceuticals or
biopharmaceuticals into the tumor site and its microenvironment should improve efficacy and safety as
well as bypass hepatic pharmacogenomic variability in drug metabolism, allowing for better precision
medicines in cancer and beyond.

8. Conclusions

The once hypothetical visions of what nanotechnology had to offer nanomedicine, specifically in
the subgroups of nanopharmaceuticals and nanonutraceuticals, are now becoming reality. With the
extensive investments that have been put into nanomedicine over the past two decades, there have
been groundbreaking discoveries that paved the way to the approvals of many nanopharmaceuticals,
with many more currently in process. In recent years, billions of dollars have been fronted to create
academic institutes dedicated to the study of nanotechnology, and thus scientists are flocking to the
field, with many dedicated to the study of nanomedicine. As nanomedicine continues to prove its
value and legitimacy, nanoformulations of pharmaceuticals and nutraceuticals should continue to
grow prolifically. Oncology, in particular, has many obstacles to overcome, because current treatment



Biomedicines 2020, 8, 347 13 of 22

options are less than ideal. Thus, the options for oncology therapeutics are just beginning to propagate
as the gold rush to nanomedicine matures. It is, however, important to remember that although
nanotechnology holds great potential, it may not be the answer to curing all cancers.
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