
animals

Article

Macro-Nutritional Adaptive Strategies of Moose
(Alces alces) Related to Population Density

Yingjie Ma 1,2,3,†, Heng Bao 1,† , Roberta Bencini 4, David Raubenheimer 5, Hongliang Dou 6,
Hui Liu 7, Sirui Wang 1 and Guangshun Jiang 1,*

1 Feline Research Center of Chinese State Forestry Administration, College of Wildlife and Protected Areas,
Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; mayingjie328@gmail.com (Y.M.);
baoheng@nefu.edu.cn (H.B.); wangsirui91@163.com (S.W.)

2 Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences,
1-5 Beichenxi Road, Beijing 100101, China

3 University of Chinese Academy of Sciences, Beijing 100049, China
4 School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway,

Perth 6009, Australia; roberta.bencini@uwa.edu.au
5 Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney,

Sydney, NSW 2006, Australia; david.raubenheimer@sydney.edu.au
6 College of Animal Science and Technology, Jinlin Agricultural University, Changchun 130118, China;

douhongliang8@163.com
7 Institute of Tropical Agriculture and Forestry, Hainan University, No. 58, Renmin Avenue,

Haikou 570228, China; liuhui_leen@163.com
* Correspondence: jgshun@126.com
† These authors contributed equally to this work.

Received: 25 October 2019; Accepted: 21 December 2019; Published: 31 December 2019
����������
�������

Simple Summary: Animals living in variable environments require flexible nutritional strategies for
dealing with nutritional uncertainty. We investigated the diet and macro-nutritional strategies of
male and female moose in six sites in northeast China, representing variable habitat quality and using
spatially explicit capture-recapture to determine the local population density of moose during the
snowy seasons. The moose populations experienced different forage availability and quality. Female
and male moose equally tended to maintain a specifically balanced diet with a high ratio of protein
and total nonstructural carbohydrates (N:C) across all populations, despite their differences in forage
availability. A higher ratio of N:C in the vegetation was a positive indicator for population density.

Abstract: The distribution area of moose in China has been shrinking back toward the north and
northeast because of climate change and human disturbance, and the population number has been
declining. Between 2011 and 2015, we studied moose at six sites in the northeast of China during
the snowy seasons. We collected fecal samples and plant samples that were used to estimate
population densities for moose, as well as their macro-nutrient selection. Out of a total of 257 fecal
samples collected at six sites, we identified a total of 120 individual moose (57 females and 63 males).
The population density (moose/km2

± SE) was highest at Hanma with 0.305 ± 0.064 moose/km2

and lowest at Meitian with only 0.028 ± 0.013 moose/km2. Forage availability was different
among sites, with the lowest availability at Mohe (58.17 number/20 m2) and highest was Zhanhe
(250.44 number/20 m2). Moose at Zhanhe, Hanma, and Nanwenghe had a balanced diet with higher
N:C (1:7), while at Meitian, Shuanghe and Mohe the N:C was 1:8. Our results indicate that the
southern areas had low forage quality and quantity and this may be the reason for the distribution of
the population of moose shrinking northward.
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1. Introduction

Herbivores face many nutritional challenges, such as foods that vary in poorly digestible fiber [1],
plant-produced toxins [2], and nutritionally imbalanced foods [3–5]. Therefore, it is important for
herbivores foraging in heterogeneous environments to have a flexible feeding strategy to compensate
for the natural variation in diet quality and quantity. It is also important to recognize whether and
how herbivores can reach their nutritional requirements in the face of differences in the quality and
quantity of diet on offer [6]. This is because they are the main factors regulating herbivore feeding
patterns at the level of landscapes, as well as plant species and individual plant parts [7–10].

Protein and carbohydrates are the principal macro-nutrients that influence animal growth and
reproduction, especially in folivores [5,11], with specific ratios of these nutrients often required for
optimal performance [5,12,13]. However, searching for forages that contain protein and carbohydrates
in optimal ratios is not an easy task for many wild animals [5,11]. This is especially true for herbivores
because plants can be highly variable in their protein and carbohydrate content [14]. Additionally,
access to high-quality foods may be restricted by the risk of predation [15], lack of forage availability [16],
or lack of food diversity [17,18].

A species potentially exposed to such issues is the moose (Alces alces), the largest species of
the Cervidae family, which lives in forest-wetland environments with a circumpolar distribution.
In northeast China, moose are only found in the Greater Khingan Mountains and part of the Lesser
Khingan Mountains, the southernmost edge of its distribution area in the world, where they have very
few natural predators and hunting is strictly prohibited [19]. Moose are known to select areas with
higher densities of mixed deciduous broad-leaf forest and mixed coniferous and broad leaf forest [20].
The distribution area of moose has been shrinking back toward the north and northeast, and the
population number in China has been declining [21,22]. This decline is thought to be associated with
climate change [22] and human disturbance [20], both of which fundamentally impact moose habitat
and diet. Moose have different ways of adapting to heterogeneous environments, such as seasonal diet
alterations [23], changes to metabolism [24], and variation not only in migratory strategies, but also
in home ranges [25]. There is, however, limited knowledge on their macro-nutritional strategy at a
regional scale and on how this herbivore adapts to heterogeneous environments at a local scale.

Macro-nutrient requirements, food selection, and dietary intake are likely to differ between
sexes due to different physiological needs and post-ingestive nutrient processing [26–28]. Generally,
metabolic rate decreases with increasing body mass [29]. Therefore, in ungulates where males are
considerably larger than females, larger body sizes are associated with larger rumens and slower rate
of passage of food through the gut [30]. Consequently, male ungulates are likely to be more efficient at
extracting energy from fiber than females, and females need to compensate for this digestive constraint
by either increasing foraging quantity or by selecting higher quality forage than that consumed by
males [31].

To date, no studies have explored sex-specific macro-nutrient selection in moose. To examine
this, we used proportion-based nutritional geometry, a multidimensional modeling approach [32–34],
to explore the nutritional strategy of moose, and combined this with habitat quality to understand
how the moose’s foraging strategy relates to its nutritional intake in heterogeneous environments.
We expected that (1) under various circumstances, moose would choose to reach their optimal
macro-nutrient targets as much as they can despite of the difference of forage availability, which means
they would maintain a specific nutrient balanced diet [32,33]. Subsequently, we expected that (2)
at sites where moose can maintain a better balanced diet (higher ratio of protein to carbohydrate),
we would find a higher population density since nutritional intake condition of animals affects both
survival and reproduction [35,36].
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2. Materials and Methods

2.1. Study Area

The current distribution of moose in China is in the Greater Khingan Mountains and the Lesser
Khingan Mountains in the northeast of China. For this research, we selected six areas in different
geographical gradients (latitude 49◦12′ N–53◦18′ N, longitude 121◦24′ E–125◦30′ E) in the Greater and
Lesser Khingan Mountains.

This study was conducted during the snowy seasons (December to March) in different years
and areas in the northeast of China. It included six sites: Mohe (2011–2012, 2014–2015), Nanwenhe
(2011–2012, 2014–2015), Zhanhe (2012, 2014–2015), Shuanghe (2011–2012), Hanma (2011–2012), and
Meitian (2013–2014) (Figure 1). During the study, deciduous trees and shrubs were mostly leafless and
snow cover (depth: 0–30 cm) was common throughout the winter. Temperatures during the study
were −20–50 ◦C. We defined each site as ‘local scale’ and the whole six sites together as the ‘regional
scale’.
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Figure 1. Location and vegetation of six sites where we studied the diet of moose (Alces alces) in
northeastern China.

In this region, moose are not migratory. Since the Chinese government strictly forbids the hunting
of moose, we assumed that there would be no effect of hunting on moose population density.

2.2. Sample Collection

We used a total of 96 line transects, each ≥ 3 km long, systematically distributed at intervals of
2.5–3 km at each site, including 23 in Mohe, 17 in Nanwenghe, 20 in Zhanhe, 12 in Shuanghe, nine
in Hanma, and 15 in Meitian. At each site, we also established 1316 survey plots (10 m × 10 m) at
intervals of 200 m along the line transects. Five subplots (2 m × 2 m), one in the center and the other
four at the corners, were also laid out in each 100-m2 plot to measure the number of annual new shoots
of edible shrubs (heights: 0.5–3 m, Appendix A Table A1), as well as the shoots browsed by moose,
for a total of 6580 subplots [37]. We then used these plots to calculate the availability of forage. In total,
we numbered 192,653 shoots, including 9502 in Mohe, 37,250 in Nanwenghe, 87,698 in Zhanhe, 19,578
in Shuanghe, 17,879 in Hanma, and 20,746 in Meitian.

To collect fecal and plant samples, we followed the tracks of moose in the snow that were fresh
(<24 h), using backtracks for both researchers’ safety and to avoid disturbing the behavior of the animals.
In total, we followed 84 snow tracks (>3 km) of moose, including 12 in Mohe, 17 in Nanwenghe, seven
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in Zhanhe, 16 in Shuanghe, 17 in Hanma, and 15 in Meitian. In total, we collected 257 fecal samples,
including 39 in Hanma, 45 in Mohe, 47 in Nanwenghe, 44 in Shuanghe, 48 in Meitian, and 34 in Zhanhe.

2.3. Population Density

The population density of moose was estimated using spatially explicit capture-recapture [38].
This model is based on the hypothesis of closed population and on the activity of the species. Based
on the individual identification results of the DNA analyses and our survey of GPS data for moose,
spatially explicit capture-recapture was used to estimate the population density of moose in R Package
(Package ‘SPACECAP’), using the results of individual identification to derive the spatial distribution
points of all individuals in the research area. Since there is no research on the daily activity distance of
moose in China, the calculation formula was based on research conducted in Europe [39]. According
to that study, the activity distance of moose per hour is 0.075 km in winter. Thus, the daily activity
distance of moose is 1.8 km.

2.4. Sex and Individual Determination

The fecal samples were collected from study sites and stored at−20 ◦C. Fecal DNA was extracted by
QIAamp DNA Stool Mini Kit (QIAGEN, Hilden, Germany) following the manufacturer’s instructions.
Multiplex PCRs were carried out with two pairs of primers, SRY12, designed to amplify the Y
chromosome SRY region, and MAF46, designed to amplify one autosomal microsatellite locus as a
positive control [40]. Each sample was amplified five times by independent parallel PCR. If more than
three target bands appeared, the individual was judged to be male.

The MStools plug-in of Microsoft Office Excel software was used to judge whether the samples
came from the same individual by the matching rate of multiple genotypes of each sample amplification
result. Different samples came from same individual if: (1) all microsatellite loci had the same genotype;
and (2) there were differences in one allele at only one locus. If more than four microsatellite loci failed
to amplify, the sample was discarded for subsequent analysis.

2.5. Diet Composition of Moose

We collected moose feces and plant twigs from available plants foraged by moose at each site.
Samples of moose feces were processed to identify the presence of macro-plant fragments using
micro-histological analysis [37,41,42]. This methodology is widely used for estimating the diet
composition of herbivores [43]. We followed similar methods in preparing reference slides (514 slides,
check five lines of each, 2 cm × 5 cm) of plant species, which we used to identify plant fragments
in fecal samples. Unidentified plant fragments were categorized as “unidentified” [44,45] and were
not included in subsequent calculations. After identifying plant species, we estimated their relative
frequency and converted them to the dry weight (DW%) of diets [45,46].

2.6. Nutritional Composition of Diet

Samples were ground and oven-dried at 65–70 ◦C for 48 h. Nutritional content was determined
from the dry plant samples following Rothman et al. 2012 [47]. First, samples were ground in a Wiley
Mill through a 1-mm screen. Crude fiber was measured via sequential analysis using an A2000i fiber
analyzer (ANKOM Technology Corp., Macedon, NY, USA). Ash was measured by incinerating samples
at 550 ◦C. Total nitrogen in plants was estimated using the Kjeldahl method (Kjeltec™ 8400, FOSS,
Hillerød, Denmark). Crude protein was estimated by multiplying N% by 6.25 [48]. Crude fat was
determined by Soxhlet extraction, in which samples were wrapped in filter paper and extracted by
diethyl ether in a Soxhlet extractor at 70 ◦C for 4 h. Total nonstructural carbohydrates (TNC) were
estimated by subtraction, where the sum of the percentages of fiber, crude fat, crude protein, and ash
were subtracted from 100%. Nutritional composition of every fecal sample of moose was calculated
by multiplying the specific dry weight (%) of each plant represented in the sample by its nutritional
content. The nutritional composition of every individual was calculated as the mean of all fecal samples
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from the same individual. Similarly, nutritional composition of one site was calculated as the mean of
the nutritional composition of all individuals found at that site.

2.7. Data Analyses

We used right-angled mixture triangle (RMT, proportions-based nutritional geometry) analysis [32]
to examine the balance of macro-nutrients. We used a three-dimensional RMT, where each
macro-nutrient was presented as percentage of total macro-nutrients (e.g., % protein = protein/(protein
+ fat + carbohydrate) × 100) on a dry matter basis (based on dry matter after the initial oven-drying).
This method did not yield the composition of absolute proportion of separate nutrients. Rather,
by comparing the relative percentage of nutrients we were able to focus on the macro-nutrients that
we were interested in and exclude the effect of others [32]. We applied RMT at the regional scale (mean
value of each population) to explore the differences between sites.

Margalef Richness Index (D), Shannon–Wiener Index (H’), species evenness index (J’), and species
niche breadths (B) were calculated as:

D = (S− 1)/ ln (1)

H′ = −
s∑

i=1

pi ln pi (2)

J′ = H′/ ln S (3)

B = 1/
∑

pi2 (4)

where N is the total detection number, pi is the proportion of individuals found in the ith species and S
is the number of species in the sample [49].

We used multiple comparisons method (one-way ANOVA, Tamhane’s T2 test) to compare the
difference of forage availability for moose across sites, and one-sample t-test to test the macro-nutrients
differences in RMT. All tests were performed by SPSS v.22.0 (IBM corp., Armonk, NY, USA). We used
linear regression to test the difference between the ratio of protein intake and total nonstructural
carbohydrate intake (N:C) and population density, which was carried out with Graphpad Prism 5
(http://www.graphpad.com).

3. Results

Out of a total of 257 fecal samples collected at six sites, we identified a total of 120 individual
moose, 57 females and 63 males, including eight females and four males at Mohe, 12 females and nine
males at Nanwenghe, six females and 11 males at Zhanhe, six females and 12 males at Shuanghe,
19 females and 19 males at Hanma, and six females and eight males at Meitian.

The population density (moose/km2
± SE) was highest at Hanma with 0.305 ± 0.064 moose/km2

and lowest at Meitian with only 0.028 ± 0.013 moose/km2 (Table 1).

Table 1. Population density ± SE calculated with the spatially explicit capture recapture method in R.

Site Population Density (moose/km2) Area (km2) Sampled Moose Individuals

Hanma 0.305 ± 0.064 216.3 38
Zhanhe 0.150 ± 0.051 156.44 17

Nanwenghe 0.111 ± 0.056 256.15 21
Shuanghe 0.056 ± 0.018 193.1 18

Mohe 0.052 ± 0.005 269.91 12
Meitian 0.028 ± 0.013 207.78 14

3.1. Forage Availability and Diet Composition

Forage availability was lowest at Mohe (58.17 number of annual twigs/20 m2) and highest at
Zhanhe (250.44 number/20 m2) (Figure 2). Except for among Meitian, Nanwenghe, and Zhanhe,

http://www.graphpad.com
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as well as between Shuanghe and Hanma, there were significant differences (p < 0.05) between sites
(Appendix A Table A2).
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Figure 2. Forage availability expressed as the number of annual new shoots in the survey plots (10 m
× 10 m) in Mohe, Nanwenghe, Zhanhe, Shuanghe, Hanma, and Meitian. Except for among Meitian,
Nanwenghe, and Zhanhe, as well as between Shuanghe and Hanma, there were significant differences
between sites. Asterisks indicate significant differences (F = 15.64, p < 0.05).

The plant species detected from moose feces were birch (Betula spp.), Tilia spp., Rhododendron
spp., Lespedeza spp., willow (Salix spp.), larch (Larix spp.), alder (Alnus spp.), aspen (Populus spp.),
spruce (Picea asperata Mast.), elm (Ulmus spp.), hazelnut (Corylus spp.), pine (Pinus sylvestris Linn),
and Mongolian oak (Quercus spp.). The moose staple food items varied across the six local sites
(Appendix A Figure A1). There were no significant differences between female and male moose in
species richness, Shannon–Wiener, evenness, or niche breadth index. However, both female and
male moose at Mohe had the lowest value of Shannon–Wiener, evenness, and niche breadth index.
Female moose at Zhanhe had the highest value of Shannon–Wiener, evenness, and niche breadth index
(Table 2).

Table 2. Food species, diversity, evenness indices, and niche width of moose during winter.

Site Sex Margalef (S) Shannon-Wiener (H’) Species Evenness
(J’)

Species Niche
Breadth (B)

Mohe
F 13 1.8 0.70 4.7
M 12 1.76 0.71 4.63

Nanwenghe F 13 2.11 0.82 6.98
M 13 2.15 0.84 7.28

Zhanhe
F 13 2.33 0.91 8.33
M 13 2.2 0.86 6.68

Shuanghe F 13 2.26 0.88 8.21
M 13 2.29 0.89 7.99

Hanma
F 12 2.14 0.86 7.11
M 11 1.94 0.81 5.41

Meitian
F 11 2.09 0.87 7.38
M 10 1.91 0.83 5.62
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3.2. Macro-Nutrient Balance of the Diet

At the local scale, according to the balance among protein (range from 9.72 to 11.33), fat (range
from 12.02 to 13.81), and TNC (range from 75.39 to 77.54) of diet, female and male moose at Zhanhe
consumed a diet with the highest protein and lowest fat (p < 0.05, Figure 3), while female moose at
Shuanghe consumed a diet with the highest fat (p < 0.05, Figure 3). Both sexes of moose at Hanma
consumed a significantly higher percentage of TNC and female moose had the highest protein, while
male moose at Meitian consumed the lowest protein but the highest TNC (p < 0.05, Figure 3).
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(pink) and male (blue) moose at Mohe (1), Nanwenghe (2), Zhanhe (3), Shuanghe (4), Hanma (5), and
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With respect to the ratio of N:C (range from 0.125 to 0.151), both female and male moose at Hanma,
Zhanhe and Nanwenghe had higher N:C (1:7) than moose at Mohe, Shuanghe and Meitian (1:8). There
was a pronounced positive linear relationship (R2 = 0.74, p = 0.028) between N:C and population
density. With a higher N:C ratio, population density was higher (Figure 4).
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4. Discussion

Our analysis indicated that moose functionally responded to differences in forage quality and
quantity at different local sites. Although forage quality was different among sites, the balance between
protein, fat, and TNC among them spanned within a narrow range, and this is consistent with our first
hypothesis that moose would maintain a specific nutrient balanced diet. For ungulates, the winter
period has severely limited forage availability compared with summer, and digestible protein is
much lower in stems than leaves [50]. Although reproduction is often linked to the condition of
moose in autumn [51], winter food was linked to fecundity and calf survival [52], and the amount
of forage should be an important factor influencing foraging location [53,54]. Our results suggested,
however, that forage availability was not a consistent predictor for better nutritional intake at the
regional scale (larger scale) during winter [55–57]. At the local scale, separately, Meitian had a higher
forage availability (Figure 2), but the moose at this site had low protein intake and N:C. On the other
hand, Hanma had a low forage availability, however, the moose had a high protein intake and N:C.
This suggests that forage availability was not critical in determining their nutritional intake balance.
It was the forage quality and forage quantity together that gave them the chance to balance their diet
during winter.

Our results demonstrated that higher ratios of N:C in the food were positively related to the
population density, and this was in line with our second hypothesis that when moose can maintain
a more balanced diet, they have a higher population density. Based on the nutrient balancing
hypothesis [5,58], when sufficient food is available, the primary goal of an animal is to obtain a
nutritionally balanced diet [47,59,60]. Felton et al. [61] demonstrated that in captivity moose were in
line with the nutrient balancing hypothesis and reached a balance in macro-nutrients when they were
provided access to sufficient nutrients. These authors also indicated that captive moose obtained a ratio
of P:NPI (protein:non-protein intake) that included total nonstructural carbohydrate and fat of 0.12–0.41.
In our study, the intake ratio of P:NPI by moose spanned a lower range of 0.11–0.13. Additionally,
it was reported that moose require approximately 6.8% protein on a dry weight basis in their diet as a
minimum requirement for maintenance [62], and our results showed that the percentage of protein
ranged from 6.41% to 7.48%, indicating that moose in our study sites had limitation on protein intake
in winter. Thus, the moose consumed winter forages that were near the limits of adequate protein
content to support maintenance or reproductive requirements [63]. It was also confirmed that moose
selected for plant material that matched a specific nutritional composition and they used birch foliage
with more protein and less TNC [64].

Our results showed that both sexes of moose had a specific N:C ratio around 1:7, and when
moose had a higher intake of protein, they had a higher ratio of N:C. It is reasonable that moose at our
sites had no apparent nutritional segregation, since the forage quality of moose in winter was quite
low. Similar results were reported for the greater kudu (Tragelaphus strepsiceros), in which females
and males showed distinct separation in nutrient rich habitats, while there was no clear pattern of
segregation in the poor habitats [65]. It is becoming more and more recognized that the consumption of
macro-nutrients in optimal proportions is much more beneficial than the consumption of a particular
macro-nutrient in an optimal amount [36,66].

Our results demonstrated that the population density of moose was positively correlated with
the ratio of N:C, so higher ratios of N:C in the vegetation resulted in higher population density of
moose in winter. Understanding the mechanisms governing the dietary choices of wild herbivores is
fundamental to understand the adaptations of foragers, as well as their roles in structuring ecological
communities [5]. Better quality food results in greater population densities of moose, suggesting
that poor or reduced food quality could be one of the reasons for the decline in moose populations.
Previous studies have demonstrated that the distribution of moose in China has been shrinking back
toward the north and northeast [22]. However, our study indicated that forage quality and moose
population density were better in Hanma and Nanwenghe (intermediate latitudes) and in the east
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site (Zhanhe) than other sites (Mohe, Shuanghe, and Meitian) in winter. In the future, we will need to
explore the diets and nutritional balance of moose in summer.

5. Conclusions

Our results demonstrated that although moose experienced different forage quality and quantity
under heterogeneous environments in winter, they tended to maintain a balanced diet (higher N:C) at
a regional scale, and forage availability and quality should be put together to predict their nutritional
state. When nutrients were severely restricted during winter, female and male moose did not adopt
different foraging strategies due to nutritional restrictions. Additionally, a higher ratio of N:C was
a positive indicator for population density. If climate change and human disturbance keep driving
moose northward, the population size is likely to decline. The fact that southern areas had low forage
quality and quantity may help to explain why the population of moose is shrinking northward.
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Table A1. Moose winter edible shrubs.

Spieces

Salix spp.
Betula spp.

Corylus spp.
Populus spp.
Pinus spp.

Tilia amurensis
Quercus spp.
Alnus spp.

Picea asperata Mast.
Cornus alba

Padus asiatica
Lonicera spp.
Deutzia spp.

Sambucus spp.
Spiraea spp.

Schizandra chinensis
Sorbaria sorbifolia

Acanthopanx senticosus
Ulmus spp.

Viburnum sargenlii
Evonymus sacrosancta
Philadelphus schrenkii

Berberis amurensis
Acer mono

Vaccinium spp.
Ribes mandshuricum
Syringa amurensis

Rasa spp.
Deyeuxia angustifolia

Carcx spp.
Equisetum spp.Tilia spp.

Rhododendron spp.
Lespedeza spp.

Larix spp.
Leaf litler

Table A2. Multiple comparisons of moose forage availability.

Group 1 Group 2 Mean Difference Standard Error p 95% Upper
Limit

95% Lower
Limit

Mohe

Nanwenghe −149.15 14.88 0.000 −193.02 −105.27
Zhanhe −192.27 22.07 0.000 −257.30 −127.24

Shuanghe −67.70 10.70 0.000 −99.38 −36.01
Hanma −60.47 9.16 0.000 −87.58 −33.36
Meitian −154.21 26.99 0.000 −235.58 −72.83

Nanwenghe

Zhanhe −43.12 25.78 0.776 −118.92 32.68
Shuanghe 81.45 17.09 0.000 31.13 131.78

Hanma 88.68 16.18 0.000 41.04 136.31
Meitian −5.06 30.11 1.000 −94.91 84.79

Zhanhe
Shuanghe 124.57 23.61 0.000 55.06 194.08

Hanma 131.80 22.96 0.000 64.19 199.41
Meitian 38.06 34.23 0.991 −63.41 139.53

Shuanghe Hanma 7.23 12.44 1.000 −29.50 43.96
Meitian −86.51 28.27 .042 −171.34 −1.68

Hanma Meitian −93.74 27.73 .016 −177.09 −10.39
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