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ABSTRACT Invasive aspergillosis (IA) remains the primary cause of morbidity and
mortality in chronic granulomatous disease (CGD) patients, often due to infection by
Aspergillus species refractory to antifungals. This motivates the search for alternative
treatments, including immunotherapy. We investigated the effect of exogenous type
I interferon (IFN) activation on the outcome of IA caused by three Aspergillus species,
A. fumigatus, A. nidulans, and A. tanneri, in CGD mice. The animals were treated with
poly(I):poly(C) carboxymethyl cellulose poly-L-lysine (PICLC), a mimetic of double-
stranded RNA, 24 h preinfection and postinfection. The survival rates and lung fungal
burdens were markedly improved by PICLC immunotherapy in animals infected with
any one of the three Aspergillus species. While protection from IA was remarkable, PICLC
induction of type I IFN in the lungs surged 24 h posttreatment and returned to base-
line levels by 48 h, suggesting that PICLC altered early events in protection against
IA. Immunophenotyping of recruited leukocytes and histopathological examination
of tissue sections showed that PICLC induced similar cellular infiltrates as those in
untreated-infected mice, in both cases dominated by monocytic cells and neutro-
phils. However, the PICLC immunotherapy resulted in a marked earlier recruitment
of the leukocytes. Unlike with conidia, infection with A. nidulans germlings reduced
the protective effect of PICLC immunotherapy. Additionally, antibody depletion of
neutrophils totally reversed the protection, suggesting that neutrophils are crucial
for PICLC-mediated protection. Together, these data show that prophylactic PICLC
immunotherapy prerecruits these cells, enabling them to attack the conidia and thus
resulting in a profound protection from IA.

IMPORTANCE Patients with chronic granulomatous disease (CGD) are highly sus-
ceptible to invasive aspergillosis (IA). While Aspergillus fumigatus is the most-studied
Aspergillus species, CGD patients often suffer IA caused by A. nidulans, A. tanneri,
and other rare species. These non-fumigatus Aspergillus species are more resistant to
antifungal drugs and cause higher fatality rates than A. fumigatus. Therefore, alterna-
tive therapies are needed to protect CGD patients. We report an effective immuno-
therapy of mice infected with three Aspergillus species via PICLC dosing. While pro-
tection from IA was long lasting, PICLC induction of type I IFN surged but quickly
returned to baseline levels, suggesting that PICLC was altering early events in IA. In-
terestingly, we found responding immune cells to be similar between PICLC-treated
and untreated-infected mice. However, PICLC immunotherapy resulted in an earlier
recruitment of the leukocytes and suppressed fungal growth. This study highlights
the value of type I IFN induction in CGD patients.
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Invasive aspergillosis (IA) is one of the most serious fungal diseases that immuno-
compromised patients encounter throughout the world (1, 2). The annual global

burden of IA is estimated to be more than 300,000 with a high fatality rate (30 to 95%)
(3). The patient populations at the highest risk for IA are those with prolonged
neutropenia from intensive myeloablative chemotherapy and those with primary im-
mune deficiency such as chronic granulomatous disease (CGD) (4, 5). CGD is a rare
genetic disorder of the NADPH-oxidase system, in which phagocytes are defective in
generating the microbicidal reactive oxygen species (ROS) and their metabolites (4),
which are required for host defense against a variety of pathogens. As a result, CGD
patients are susceptible to recurrent, life-threatening bacterial and fungal infections (1,
5, 6). The primary etiologic agent of IA in both neutropenic and CGD patient popula-
tions is Aspergillus fumigatus, a species generally susceptible to triazoles and ampho-
tericin B, which are the recommended antifungals for first-line therapy. It is noteworthy
that occurrences of infection caused by azole-resistant A. fumigatus mutants have been
increasingly reported (7). In contrast to patients with secondary immunosuppression,
CGD patients are also presented with less well characterized pathogenic Aspergillus
species such as A. nidulans (8), A. pseudoviridinutans (9), A. tanneri (10), A. udagawae
(11), and A. calidoustus (12). These species are almost exclusively isolated from CGD
patients, and all are more resistant to currently available antifungals than A. fumigatus
(S. Seyedmousavi, M. S. Lionakis, M. Parta, S. W. Peterson, K. J. Kwon-Chung, submitted
for publication). Generally, infections in CGD patients caused by these species are
chronic and require higher doses of antifungals or longer durations of therapy or result
in total therapy failure (8, 10, 11). The predilection of these non-fumigatus Aspergillus
species for CGD patients is not yet understood.

Despite the availability of antifungal prophylaxis for CGD patients (13), infections by
Aspergillus species are nonetheless the leading cause of mortality in these patients (14,
15). Thus, there is a clear need for alternative therapeutic modalities, especially to
combat infections by species refractory to currently available antifungal therapy. One
such strategy is immunotherapy, which aims to enhance or restore antifungal immunity
in patients (16, 17). One such antifungal immunotherapy in CGD is type II interferon
(gamma interferon [IFN-�]) administration, which promotes a protective phenotype
against aspergillosis (18, 19). While IFN-� administration is generally beneficial, recent
CGD cases of A. tanneri proved fatal even after combined IFN-� and antifungal
treatment (10), suggesting that alternative immunotherapies are needed.

Induction of type I IFN is another immune therapy strategy studied for eventual use
against cancer and/or infectious disease. The role of type I IFN is well documented in
host defense against viral infection (20), but it has also been demonstrated to affect the
outcome of infections with bacteria (21), parasites (22, 23), and fungi (24–27). The type
I IFN family is a multigene cytokine family that encodes 13 partially homologous IFN-�
subtypes in humans (14 in mice), a single IFN-�, and several less well defined single-
gene products (IFN-�, IFN-�, IFN-�, IFN-�, IFN-	, and IFN-
) (25, 26). During fungal
infection, type I IFN-mediated signaling exerted a protective role against Candida
albicans and Cryptococcus neoformans in mice (24, 27, 28), while it had a deleterious
effect against Histoplasma capsulatum (29) and Candida glabrata (30). Poly(I:C) and its
stabilized derivative [Hiltonol; poly(I:C) condensed with poly-L-lysine and carboxy-
methyl cellulose (PICLC)] are synthetic mimics of the viral double-stranded RNA (dsRNA)
designed to stimulate prolonged and high-level production of type I IFNs (31–34).
PICLC is currently being investigated in phase II clinical studies in patients with
metastatic solid tumors: sarcomas, melanoma, squamous cell skin cancer, and head and
neck cancers (clinicaltrials.gov, NCT01984892) (35).

In the current study, we investigated the effect of an elevated type I IFN environ-
ment induced by PICLC immunotherapy in murine aspergillosis caused by A. fumigatus
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and two non-fumigatus Aspergillus species, A. tanneri and A. nidulans, uniquely associ-
ated with especially problematic IA in CGD patients (8, 10). PICLC immunotherapy
protected mice from all three species by reducing the growth of fungi in the lung.
Analysis of immune cells in the lung indicated that PICLC immunotherapy recruited
significantly higher numbers of neutrophils and other myeloid leukocytes earlier than
in the untreated control mice.

RESULTS
Immunotherapy with PICLC protects CGD mice against A. fumigatus infection.

Since exogenous induction of type I IFN has shown positive results for the experimental
treatment of cancer (35) and some infectious diseases (24), we resolved to investigate
the efficacy of exogenous induction of type I IFN by PICLC in the setting of IA caused
by Aspergillus species which are refractory to antifungal treatment in CGD patients.
PICLC immunotherapy significantly improved survival compared to the nontreated
controls in mice infected with A. fumigatus (Fig. 1A) and resulted in significant sup-
pression of the fungal burden as measured by lung fungal DNA load throughout the
experimental period (Fig. 1B). In histopathology sections taken 3 days postinfection,
small lesions were visible throughout the lung in both groups of infected animals.
However, fewer infectious foci were observed in the animals which received PICLC
immunotherapy (Fig. 1C).

PICLC immunotherapy protects CGD mice against A. nidulans infection. To
expand these results to non-fumigatus Aspergillus species, identical PICLC immunother-

FIG 1 PICLC protects CGD mice against A. fumigatus infection. CGD mice were treated with either PICLC
(15 �g PICLC in 30 �l PBS/mouse) or PBS via pharyngeal aspiration 24 h pre- and post-infection with A.
fumigatus (5 � 103 conidia/mouse). (A) The survival of mice (n � 6) was monitored for 15 days. (B) At 3, 6,
and 15 days postinfection, lungs (n � 12) were harvested and fungal burdens were estimated by measuring
fungal DNA by qPCR. *, P � 0.05. (C) In H&E-stained histology sections taken at 3 days postinfection, fewer
infectious foci were observed in the animals which received PICLC immunotherapy. Bar, 2 mm.
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apy was tested in A. nidulans infection. PICLC immunotherapy was also protective in
this model, as 80% of the mice in the control group (phosphate-buffered saline [PBS]
treated) succumbed to IA within 28 days postinfection, whereas no deaths were
observed in the PICLC immunotherapy group during the same period (Fig. 2A). Fungal

FIG 2 PICLC protects CGD mice against A. nidulans infection. CGD mice were treated with either PICLC (15 �g PICLC
in 30 �l PBS/mouse) or PBS via pharyngeal aspiration 24 h pre- and post-infection with A. nidulans (5 � 103

conidia/mouse). (A) The survival of mice (n � 6) was monitored for 28 days. (B) Lungs from infected mice were taken
at 3 and 15 days postinfection (n � 8), and fungal burdens were estimated by measuring fungal DNA by qPCR. *, P �
0.05. (C) Montaged 25� images of H&E-stained sections taken 3 days postinfection showing size and frequency of
infectious foci in PICLC immunotherapy and control mice. Bar, 2 mm. (D) Higher-magnification images of infectious foci
at 3 days postinfection (pi) (top row) and granuloma at 15 days postinfection (bottom row). Left columns, H&E-stained
sections; right columns, GMS-stained sections. Bars, 100 �m (H&E images) and 50 �m (GMS images).
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DNA loads were substantially higher in the lungs of the control group mice than the
PICLC-dosed mice, suggesting that growth of A. nidulans in host tissue was hampered
by PICLC immunotherapy (Fig. 2B). While fewer lung infectious foci were observed
3 days postinfection in PICLC immunotherapy mice than in control mice, individual foci
were similarly sized and contained similar germinated fungal elements (Fig. 2C and D,
top row). By 15 days postinfection, foci had matured into granulomas in both PICLC
immunotherapy and control mice, but fungal elements were noticeably smaller and
fewer in lung granulomas of PICLC immunotherapy mice than in infected-untreated
controls (Fig. 2D, bottom row).

PICLC immunotherapy protects CGD mice against A. tanneri infection. A. tanneri
is a novel species noted for its high baseline resistance to antifungal drugs (10), isolated
from two fatal cases of IA in CGD patients. While infection kinetics were different
between A. tanneri and the two abovementioned Aspergillus species, PICLC immuno-
therapy was nonetheless protective against A. tanneri. As shown in Fig. 3A, all mice in
the control group succumbed to IA in 90 days, whereas 100% of the mice dosed with
PICLC were still alive at 90 days postinfection. Fungal DNA loads were also substantially
higher in the lungs of the control group mice than in the PICLC-treated mice (Fig. 3B).
Histology confirmed the presence of granulomas at 30 days postinfection in the lungs
of control group mice, but fewer and smaller lesions were observed in the PICLC-dosed
mice (Fig. 3C). Thus, PICLC immunotherapy was protective against multiple Aspergillus
species.

Type I IFN is briefly induced by PICLC in the lungs of CGD mice. To confirm that
PICLC was able to induce type I IFN in CGD mice, IFN protein was measured following

FIG 3 PICLC protects CGD mice against A. tanneri infection. CGD mice were treated with either PICLC (15 �g
PICLC in 30 �l PBS/mouse) or PBS via pharyngeal aspiration 24 hours pre- and post-infection with A. tanneri (5 �
103 conidia/mouse). (A) The survival of mice (n � 6) was monitored for 90 days. (B) Fungal DNA loads as measured
by qPCR in the lungs of PICLC-treated and control mice (n � 8) at 15 and 30 days postinfection. *, P � 0.05. (C)
Histology confirmed the presence of granulomas at 30 days postinfection in the lungs of control group mice, but
fewer lesions were observed in the PICLC-dosed mice. Bar, 2 mm.
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a single dose of PICLC. As shown in Fig. 4, there was significant expression (P value �

0.05) of IFN-� and IFN-� from 6 to 30 hours postinjection, which then returned to near
baseline by 48 h postinjection. These data indicate that CGD mice mount a type I IFN
response to PICLC exposure and that this response lasts for approximately 2 days
following injection.

PICLC immunotherapy induces significant leukocyte recruitment in the lungs.
Since the IFN response to PICLC lasts approximately 2 days following injection (Fig. 4)
coupled with effective protection from IA (Figs. 1 to 3), we hypothesized that PICLC
immunotherapy results in some immunologic change that impacts the early events of
Aspergillus infections. To characterize the effects of PICLC on these early immune
events, leukocytes were isolated from the lungs of A. nidulans-infected or control mice
with or without PICLC dosing at the time of infection (0 days postinfection) or 1 and
3 days postinfection. Full leukocyte recruitment into the lungs was monitored utilizing
a fluorescein isothiocyanate (FITC)-conjugated CD45-specific antibody injected into the
mice intravenously 3 to 5 min prior to euthanasia. This technique marks vascular cells
with FITC by flow cytometry. In samples taken 24 h after a single dose of PICLC and
before infection (day 0), a significant influx of immune cells was observed compared to
control samples (Fig. 5A, 0 days postinfection). Histopathological analysis of similarly
dosed samples shows that these recruited leukocytes are especially notable as infil-
trates accumulating near airways (Fig. 6A and C) and as newly recruited cells near
endothelium (Fig. 6B). It should be noted that this time point represents the condition
of the lungs at the time of infection in the PICLC immunotherapy-receiving animals.
Immunophenotyping of the lung leukocyte populations showed that PICLC results in
the recruitment of several immune cell types. Monocyte-derived myeloid cells and
neutrophils dominated this infiltrate, but increased numbers of blood monocytes, NK
cells, and plasmacytoid dendritic cells were also observed in response to PICLC (Fig. 5B).

Interestingly, the numbers of recruited CD45� leukocytes and of most individual
immune cell types were converging in the lungs of infected mice either with or without
PICLC immunotherapy at 1 and 3 days postinfection (Fig. 5A and B). This is consistent
with similar periendothelial accumulation of recruited cells (Fig. 6B) in the two mouse
groups. Thus, A. nidulans infection resulted in a robust recruitment of immune cells
between 24 and 72 hours postinfection in the mice not receiving immunotherapy, but
these mice were unable to control the fungus and eventually succumbed to the
infection (Fig. 2). While PICLC-dosed mice recruit essentially the same types of cells, the
timing of the recruitment was earlier and correlated with protection (Fig. 2). Impor-
tantly, Aspergillus species go through a gradual morphological change in this period
from dormant spores (conidia) to developing hyphae. Thus, we hypothesized that this

FIG 4 PICLC dosing results in a robust but temporary induction of type I IFN in the lungs of CGD mice. Uninfected CGD mouse lung
homogenate was analyzed for IFN-� (A) and IFN-� (B) at the indicated time points following a single PICLC aspiration. There was
significant expression of IFN-� and IFN-� from 6 to 48 hours postinjection (*, P � 0.05).
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early recruitment allows immune cells to act on conidia, which are more susceptible to
the antifungal activities mustered by CGD hosts (36).

Protection by PICLC immunotherapy is significantly diminished in CGD mice
infected with germinated conidia. To test the specificity of PICLC immunotherapy for
the conidial stage of IA, we compared the differences between CGD mice infected with
resting conidia and with conidia germinated for 5 h (germlings) of A. nidulans (Fig. 7A).
We hypothesized that infection with germlings would bypass whatever susceptibility
exists in the conidial stage and that early prerecruited leukocytes would be less efficient
in eradicating germlings, rendering PICLC immunotherapy less protective. In Fig. 7B,
CGD mice infected with the germinated A. nidulans conidia were only partially pro-
tected by PICLC immunotherapy, whereas mice infected with resting conidia were
completely protected. This indicates that a significant portion of PICLC immunothera-
peutic protection is attributable to the ability of prerecruited immune cells to suppress
conidia.

Neutrophils are required for PICLC immunotherapy-mediated protection from
IA. We observed significantly more neutrophils in PICLC immunotherapy mice than in
control mice at experimental day 0 (after receiving one dose of PICLC but before
infection), but no difference was detected between the treated and untreated infected
mice at days 1 and 3 postinfection (Fig. 5B). Infiltration of neutrophils was also noted
by histopathology, gathering on the parenchymal side of the endothelium, near
airways, and in the alveoli of PICLC-dosed mice at day 0 (Fig. 6C and D, green-circled
cells). As neutrophils have a well-established role in IA infection and were highly

FIG 5 Immunophenotyping of leukocytic infiltrates. Immunophenotyping of single-cell suspensions derived from A. nidulans-infected
and PICLC-dosed or control lungs from CGD mice isolated 0, 1, and 3 days postinfection. Consistent with the previous PICLC dosing
schedule, mice analyzed on days 0 and 1 received one dose of PICLC, while mice harvested on day 3 received the second PICLC dose.
(A) Total CD45-positive (immune) cells in the lungs. (B) Calculated total cells per lung for various immune cell populations (y axis): alveolar
macrophages (AM), blood monocytes (mono), monocyte-derived myeloid cells (MDMC), classical dendritic cells (cDC), plasmacytoid
dendritic cells (pDC), neutrophils (polymorphonuclear leukocytes [PMN]), eosinophils (EOS), natural killer cells (NK), B cells, CD4 T cells,
and CD8 T cells. Note that all the measured cells are parenchymal, CD45-FITC negative, except for the blood monocytes, which are
CD45-FITC positive. *, P � 0.05; **, P � 0.01; ***, P � 0.001. (C) Representative flow plot panels gated on neutrophils depicting
parenchymal staining of cells on the y axis and forward scatter (FSC) on the x axis. Data displayed are from one representative experiment
from two total experiments. Indicated statistical comparisons are between PBS and PICLC conditions and corresponding time points.
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recruited by PICLC, we probed the role of neutrophils in PICLC-mediated protection
utilizing monoclonal antibody (MAb) depletion. The 1A8 monoclonal antibody, admin-
istered to the mice prior to infection, efficiently depleted neutrophils, resulting in a 90%
reduction in recruited neutrophils 1 day postinfection (Fig. 8A). This depletion of
neutrophils resulted in significantly higher day 3 fungal burdens than in those mice
receiving PICLC immunotherapy alone (Fig. 8B). These data suggest that neutrophils in
the lung may play a protective role in PICLC immunotherapy.

DISCUSSION

PICLC immunotherapy was effective in reducing mortality, pathology, and fungal
loads in the CGD model of murine IA for all three Aspergillus species tested. Prophylactic
PICLC immunotherapy recruited leukocytes so that immune cells were present in the
lungs in significant numbers and localized specifically in the alveoli preceding the
arrival of the infectious conidia. However, a similar set of leukocytes was recruited in
mice infected with Aspergillus alone with a delayed kinetics compared to PICLC
immunotherapy. While we have not excluded the importance of other types of immune
cells, we observed neutrophils to be the critical cells for mediating this protection
based on their presence in the alveoli subsequent to PICLC dosing and the loss of
protection upon depletion of these cells. Several studies have demonstrated the critical
role that neutrophils play in host defense against Aspergillus (reviewed in references 37
to 41). Our data support the hypothesis that PICLC immunotherapy induces very early
recruitment of neutrophils, which destroy a significant fraction of the fungus before it
can fully differentiate into hyphae.

We suggest that the earliest stages of Aspergillus infection are a window of oppor-
tunity for CGD hosts where efficient induction of immunity can limit infection because
our results also indicated that the in vitro-differentiated germlings were more refractory

FIG 6 PICLC dosing recruits immune cells to lung airways and alveoli but does not seem to alter the
composition of early infectious foci. Hematoxylin-and-eosin-stained lung sections harvested from PICLC-
dosed or control CGD mice (day 0) or PICLC-dosed or control mice infected with A. nidulans (day 3
postinfection [dpi]). Images in row A were acquired using an �100 magnification, whereas all other
images were acquired at �400. (A) Lung airways and recruited leukocytes (visible at this magnification
as dark areas). (B) Perivascular lung areas depicting immune cell extravasation. (C) Airway epithelia and
surrounding tissue with recruited immune cells. (D) Lung alveoli. Note that in rows B, C, and D
neutrophils are highlighted with green circles. Bars, 100 �m (A) and 20 �m (C and D) (bar in row C also
applies to row B).
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to PICLC immunotherapy than conidia (Fig. 7B). While CGD neutrophils are defective in
hyphal killing due to their deficiency in phagosomal oxidase activity, recent studies
have shown that these cells do retain killing activity against Aspergillus conidia via
nonoxidative pathways specifically involving CD11b/CD18 integrin and phosphatidyl-
inositol 3-kinase (PI3K)- and lactoferrin-mediated iron depletion (36, 40, 42). However,
the Aspergillus factors which contribute to this conidial susceptibility to nonoxidative
killing remain uncharacterized. Additionally, the most susceptible stage of Aspergillus
may not be conidia but rather the early stages of conidium germination, because
lactoferrin-mediated iron depletion arrests the growth of Aspergillus at the germling
stage but not at the initiation of germination (42). Ultimately, the factors that result in

FIG 7 Infection with germlings compromises PICLC protection. (A) A. nidulans germlings were generated
by incubating fresh conidia for 5 h in RPMI medium at 37°C. Germination was monitored by estimation
of germ tube length by light microscopy. Bars, 10 �m. (B) CGD mice were left untreated or PICLC dosed
as described above and then infected with resting conidia or pregerminated cells. Survival of infected
mice was monitored for 28 days.

FIG 8 Depletion of neutrophils with a monoclonal antibody reverses PICLC protection. CGD mice were dosed with PICLC and infected with A. nidulans
as described above. One group of mice was treated with 1A8 monoclonal antibody to deplete neutrophils prior to PICLC dosing and infection. (A) At day
1 postinfection, cells were isolated from mouse lungs and neutrophils were enumerated by flow cytometry. n � 2 mice per group. (B) Three days
postinfection, lungs were harvested and fungal load was measured using qPCR. n � 4 mice per group. Data from one representative experiment from
two total experiments are displayed. *, P � 0.05; ns, not significant.
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the susceptibility of Aspergillus conidia to nonoxidative killing remain an exciting
avenue of future study, especially since manipulation of any putative susceptibility
factors may itself become a possible therapeutic strategy for IA.

We consider our results as having important implications for Aspergillus pathobiol-
ogy. Following deposition of Aspergillus conidia into the lung, a fraction of these
conidia are destroyed by the relatively numerous resident alveolar macrophages (AMs)
(39, 43, 44) and the relatively scarce neutrophils that are resident in the lungs or are
recruited in the first few hours of infection (36, 38, 42). However, some conidia escape
these initial defenses (Fig. 9, i and ii). These conidia swell and germinate in response to
environmental cues in the first 5 to 12 h of an infection (Fig. 9B). In humans and mice
with normal immune function, neutrophils kill hyphal Aspergillus through ROS produc-
tion (36, 40), which stifles the infection subclinically (Fig. 9, iv). Neutrophils from CGD
patients and CGD model mice, however, are unable to kill germinated Aspergillus (36,
40, 42). This allows the progressive growth of fully germinated vegetative hyphae
(Fig. 9, v), which is associated with morbidity. PICLC prophylaxis alters this trajectory in
CGD mice as immunotherapy recruits the immune cells, especially neutrophils, into
alveoli, which intercept a significant fraction of conidia (Fig. 9, iii). The few remaining
conidia in PICLC immunotherapy lungs do seem to germinate normally and generate
similar infectious foci (Fig. 2C) but at a greatly reduced frequency per animal (Fig. 1C
and 2C), eventually resulting in reduced overall fungal loads (Fig. 9, vi) and a signifi-
cantly better survival outcome of the PICLC-treated mice.

The mechanisms and shortcomings of IA immunotherapy elucidated in this study have
important implications for the conception and development of future IA-targeted immu-
notherapies. These data and others (36, 39, 40, 42) clearly separate early IA into two major
immunologic stages roughly corresponding to the dominant fungal morphology. We
suggest that effective immunotherapy for IA will require enhancing immunity during one,
or both, of these stages, probably by addressing the immunologic deficiencies of each
stage. During the initial stage of infection, Aspergillus conidia are killed via nonoxidative
killing by macrophages and neutrophils in both healthy and CGD patients (36). A clear
limitation of immunity during this stage is the relatively small population of phagocytes

FIG 9 Model of early immune response against Aspergillus in CGD versus normal lungs. Illustrative model
of the early pulmonary pathobiology of Aspergillus infection showing very early stages, just after conidia
enter the alveoli (A), and later following Aspergillus germination and leukocyte recruitment (B). Several
alveoli are depicted, with each alveolus representing a condition examined in this work. In non-CGD
lungs, a fraction of conidia are killed by alveolar macrophages, leaving some conidia to germinate (i), but
upon recruitment of fully fungicidal neutrophils, the infection is contained in a reactive oxygen
species-dependent manner (iv). In CGD lungs, initial stages proceed similarly (ii). These infectious foci
recruit many neutrophils (v), but due to their deficiency in ROS production, these cells cannot contain the
infection and contain many hyphae. PICLC prophylaxis alters the initial stages in CGD lungs in that the
prerecruited neutrophils drastically reduce the initial infectious load at the conidial stage (iii). The few
fungal elements that do survive and germinate in PICLC-treated CGD lungs do seem to develop into
infectious foci (vi), but the overall infection is nonlethal.

Seyedmousavi et al. ®

March/April 2018 Volume 9 Issue 2 e00422-18 mbio.asm.org 10

http://mbio.asm.org


present in unperturbed lungs (Figs. 5 and 6). Therefore, putative immunotherapeutic
approaches which aim to act on this first stage need to result in the enhanced recruitment
of neutrophils and perhaps other phagocytes capable of killing conidia. Our data predict
that significant numbers of leukocytes need to be present within the first few hours of
infection to be efficacious, so successful strategies which target this stage will probably
require prophylactic dosing, such as demonstrated here by PICLC. Once the Aspergillus
germinates into full hyphae, generation of reactive oxygen is required to kill the mold. So,
while there are plenty of local neutrophils at this stage, CGD neutrophils are incapable of
fungal control. This suggests that an immunomodulatory strategy that targets this later
stage would need to enhance hyphal killing but not necessarily improve recruitment. An
example of immunotherapy aimed at this later stage is recombinant IFN-� treatment
(described clinically in reference 18), which improves activity of neutrophils against Asper-
gillus hyphae in vitro (45). While the evidence presented in this study strongly supports
PICLC immunotherapy acting during the conidial stage, we cannot rule out some additional
PICLC effects which act later at the hyphal stage. In fact, while histological analysis of
infected lungs early after infection shows similarly composed infectious foci with and
without PICLC immunotherapy (Fig. 2C), later time points show markedly less fungal
material in granuloma cores from PICLC-dosed mice than from untreated groups (Fig. 2D).
Furthermore, infection with germlings only partially reversed PICLC-mediated protection
(Fig. 7). Together, these results suggest that PICLC immunotherapy induces some additional
antihyphal activity in CGD mice, perhaps similar to that of IFN-� (45). Type I IFN has been
shown to positively influence several potentially relevant neutrophil activities in other
models such as direct cytotoxicity (46), neutrophil extracellular trap formation (47, 48), and
maximal neutrophil differentiation allowing full release of cytotoxic factors (47), reinforcing
the plausibility of PICLC immunotherapy having some activity during the hyphal stage.
Future studies are therefore necessary to test whether any PICLC-mediated antihyphal
activities exist and whether they show efficacy against IA in vivo.

Overall, while the data presented here provide some insight into the generalized
parameters for IA immunotherapies, we believe that the efficacy shown here by PICLC
merits further development as a possible clinical prophylactic agent for patients at high
risk of IA. While prophylactic regimens can be burdensome, several prophylactic
strategies are standard practice in certain immunocompromised populations, including
CGD patients who are at risk for IA. PICLC immunotherapy may also have some distinct
advantages over existing antifungal strategies (summarized in reference 13). Prophy-
lactic antifungal chemotherapy can be effective against susceptible organisms, but
resistant organisms are unaffected, and despite the common prophylactic regimens, a
significant clinical IA burden remains (14, 15). Because immune therapies, such as
PICLC, function by entirely different mechanisms, they can be effective even against
antifungal-resistant organisms. As proof of this principle, here we show the efficacy of
PICLC immunotherapy against two such azole-resistant species, A. nidulans and A.
tanneri (Figs. 2 and 3). Furthermore, PICLC may be less costly than recombinant IFN-�
(13), as polymer compounds are typically less expensive to manufacture than recom-
binant proteins. In some situations, type I IFN can lead to less immunopathology than
IFN-� (49). Relatedly, long-term PICLC dosing was well tolerated in mice (24). Finally, we
showed that PICLC immunotherapy is effective in the mouse A. tanneri IA model,
suggesting that this treatment may be useful in preventing IA caused by Aspergillus
species which are refractory to IFN-� treatment (10). Thus, while it is too early to
speculate about the efficacy of PICLC immunotherapy compared to other prophylactic
regimens, the data presented here demonstrate clear efficacy in the CGD model of IA
and suggest further study of this promising immunotherapy.

MATERIALS AND METHODS
Fungal strains. Three Aspergillus species isolated from IA cases were used for in vitro and in vivo

studies, including Aspergillus fumigatus B-5233 (50) and A. nidulans M24 and A. tanneri NIH 1004 (10), all
three strains being isolated from CGD patients. The isolates were stored in 10% glycerol at �80°C and
were revived on malt extract agar (MEA) for 5 to 7 days at 37°C. All isolates were freshly cultured on MEA
for 5 to 7 days at 37°C before preparation of the inoculum.
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Animals and husbandry. The gp91phox� CGD mice (51) (7- to 11-week-old males) from Jackson
Laboratories, USA, were housed under standard conditions, with drink and feed supplied ad libitum. To
evaluate the efficacy of PICLC immunotherapy, animals were randomized into groups of 22 (6 mice for
survival analysis, 8 mice for the determination of fungal burdens in the lung using quantitative real-time
PCR [qPCR], and 8 mice for histopathological analysis). In addition, CGD mice were randomized in groups
of 3, 5, and 5 mice to quantify interferon, immunophenotyping of leukocytic infiltrates, and depletion of
neutrophils with a monoclonal antibody. All PICLC immunotherapy experiments for each strain were
performed using two independent replicates. To avoid selection bias, all studies were blind, in that
animals were preassigned to survival, qPCR, and histopathology groups at the time of infection.

Animal infection model. CGD mice were infected with 30 �l freshly harvested Aspergillus conidial
suspension (5 � 103 CFU/mouse) by the pharyngeal aspiration technique, as described previously (52).
Before performing the experiment, the conidial suspension was filtered through sterile 30-�m cell
strainers (MACS Smart strainers; Miltenyi Biotec, Auburn, CA) to remove any hyphae and conidial clumps,
and the number of conidia was counted in a hemacytometer. The inoculum size was determined from
hemacytometer counts and conidial viability. After the inoculum was adjusted to the required concen-
tration, the conidial suspension was stored overnight at 4°C until use. In all survival studies, experienced
individuals who were blind to the animal treatment monitored the infected mice at least twice daily.

Histopathological analysis. For some experiments lungs were isolated from randomly chosen
surviving animals for histopathological analysis. Preparation of histopathological sections and staining
with hematoxylin and eosin (H&E) and Gomori’s methenamine-silver (GMS) were performed by Histoserv
Inc., Germantown, MD. Color microscopy images were acquired using a Zeiss Axio Observer inverted
microscope and Zeiss Zen microscope software. All images were acquired using identical illumination
and camera settings for each magnification setting. Images displayed here were identically scaled,
cropped, and resized. Image acquisition and postprocessing used Zen software (Carl Zeiss Microscopy,
Jena, Germany).

PICLC formulation and dosing. The animals were treated with PICLC [poly(I:C) condensed with
poly-L-lysine and carboxymethyl cellulose], a stabilized synthetic analogue of viral dsRNA via pharyngeal
aspiration 24 h preinfection and postinfection. The commercial formulation of PICLC (Hiltonol) was
supplied by Oncovir Inc., Washington, DC. Working-concentration drug solutions (15 �g PICLC in 30 �l
PBS/mouse) were prepared each day of administration. The control mice received PBS.

Determination of fungal burden in lung. On the indicated days postchallenge, lungs were isolated
and DNA was extracted from lungs using the Fast DNA Spin kit (MP Biomedicals, Santa Ana, CA)
according to the manufacturer’s protocol as described previously (10). The concentration of total DNA
isolated from lung tissue was measured by the NanoDrop ND-1000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA). Aspergillus loads were determined by real-time qPCR using primers and probe
(6-carboxyfluorescein [FAM] labeled) targeting the 28S-ITS2 region of the ribosomal subunit gene of each
Aspergillus species, as described previously (53). The primer and probe sequences used in the current
study are shown in Table S1 in the supplemental material. The qPCRs were run with 250 ng of lung DNA
as the template. To determine the Aspergillus load in each organ sample (picograms per nanogram of
total DNA isolated), the fungal DNA concentration was calculated from a standard curve derived from an
8-fold dilution series of the genomic DNA of each Aspergillus species.

Quantification of interferon in naive CGD mice. Lungs of uninfected CGD mice were isolated 6, 24,
30, and 48 h after a single dose of PICLC or PBS, and then each mouse lung was homogenized in 1 ml
of lysis buffer (0.5% Tween 20, 1 mM EDTA, 1 mM benzamidine, 0.1 mM benzethonium chloride, and
0.1 mM phenylmethylsulfonyl fluoride [PMSF]) using a probe homogenizer (TH; Omni Inc., Kennesaw,
GA). Cleared (centrifuged at 7,000 � g for 5 min) homogenate was analyzed for total protein concen-
tration (RC/DC protein assay kit; Bio-Rad, Hercules, CA) as well as IFN-� and IFN-� concentration using
VeriKine mouse alpha interferon and beta interferon enzyme-linked immunosorbent assay (ELISA) kits
(R&D Systems, Minneapolis, MN).

In vivo efficacy of PICLC against A. nidulans hyphae. To assess the impact of PICLC treatment on
A. nidulans germlings versus conidia, the conidia were germinated for 5 h at 37°C in RPMI 1640 medium
containing L-glutamine but without phenol red (Gibco, Gaithersburg, MD). Prepared in this manner,
Aspergillus conidia swell and germinate to form 6- to 8-�m-long germlings (Fig. 7A). These germlings
were then inoculated into mice via pharyngeal aspiration identically to the conidia described above.

Vascular staining, lung dissection, and isolation of immune cells. Mice were intravenously
injected with FITC-conjugated anti-CD45 antibody (BioLegend, San Diego, CA) 3 to 5 min before
euthanasia to mark immune cells still present in the vasculature. Following humane euthanasia, mouse
lungs were isolated and suspensions of single cells were obtained by enzymatic and mechanical
disruption using the gentleMACS dissociator system (Miltenyi Biotec, Auburn, CA) as previously described
(54). Live cells were stained using acridine orange-propidium iodine and counted using a Cellometer K2
cytometer (Nexcelom, Lawrence, MA).

Flow cytometry. Following isolation and enumeration, 1 � 106 live cells from single-cell suspensions
were preblocked in mouse Fc block (BD Biosciences, USA), and then extracellular antigens were stained
with SiglecF-BV421, B220-BV510, major histocompatibility complex class II (MHC-II)-BV510, CD11c-BV605,
Ly6C-BV711, CD11b-BV785, PDCA1-phycoerythrin (PE), Ly6G-allophycocyanin (APC), and CD45-APC-R700
for myeloid cells and granulocytes. Other samples were stained with B220-BV510, CD8-BV605, CD49b-
BV711, NK1.1-BV785, CD3e-peridinin chlorophyll protein (PerCP)-Cy5.5, CD4-PE, CD19-PE-Cy7, and CD45-
APC-R700 for lymphocytes. Samples were then stained for viability using fixable viability dye eFluor780
(eBioscience, Thermo Fisher Scientific, Waltham, MA), rinsed, and then fixed. Myeloid panels were
permeabilized with the FoxP3/transcription factor staining buffer kit (eBioscience, Thermo Fisher Scien-
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tific, Waltham, MA) and then stained using CD68-PerCP-Cy5.5 for the intracellular antigen. Analysis of
stained cells was performed with a BD Fortessa flow cytometer using FACSDiva software (BD Biosciences,
USA). Compensation settings were acquired using OneComp beads (eBioscience, Thermo Fisher Scien-
tific, Waltham, MA) for the antibody channels and ArC amine-reactive beads (Molecular Probes, Eugene,
OR) for the viability stain. Analysis of flow cytometry data utilized FlowJo software (BD Biosciences, USA).
The gating strategy for flow cytometry analysis is shown in Fig. S1.

In vivo depletion of cell subsets. Neutrophils were depleted using anti-Ly6G monoclonal antibody
(MAb) 1A8 (Bio X Cell, West Lebanon, NH). Antibodies were administered to groups of 5 CGD mice by
intraperitoneal injection on days �6, �4, and �1 preinfection and day �1 postinfection. Injections
comprised 500 �g per mouse in 200 �l. Depletion efficiency was monitored using flow cytometry as
described above.

Ethics statement. The Institutional Animal Care and Use Committee of the National Institute of
Allergy and Infectious Diseases approved all animal studies (approval no. LCIM-5E). Studies were
performed in accordance with the recommendations of the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health (55).

Statistical analysis. All data analyses were performed using GraphPad Prism, version 7 (GraphPad
Software, San Diego, CA). Mortality data were analyzed by the log rank test. Student’s t test and two-way
analysis of variance (ANOVA) followed by multiple-comparison test were used to define whether there
are significant differences between indicated samples. Statistical significance for comparisons was
defined as a P value of �0.05 (two-tailed), which was reported as follows: nonsignificant (NS), P � 0.05;
*, P � 0.05; **, P � 0.01; ***, P � 0.001.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00422-18.
FIG S1, PDF file, 0.5 MB.
TABLE S1, DOC file, 0.04 MB.
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