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Introduction: Coronavirus disease (COVID-19) rapidly spread from Wuhan,

China to other parts of China and other regions/countries around the

world, resulting in a pandemic due to large populations moving through

the massive transport hubs connecting all regions of China via railways

and a major international airport. COVID-19 will remain a threat until safe

and e�ective vaccines and antiviral drugs have been developed, distributed,

and administered on a global scale. Thus, there is urgent need to establish

e�ective implementation of preemptive non-pharmaceutical interventions for

appropriate prevention and control strategies, and predicting future COVID-19

cases is required to monitor and control the issue.

Methods: This study attempts to utilize a three-layer graph convolutional

network (GCN) model to predict future COVID-19 cases in 190 regions and

countries using COVID-19 case data, commercial flight route data, and digital

maps of public transportation in terms of transnational human mobility. We

compared the performance of the proposed GCN model to a multilayer

perceptron (MLP) model on a dataset of COVID-19 cases (excluding the graph

representation). The prediction performance of the models was evaluated

using the mean squared error.

Results: Our results demonstrate that the proposed GCN model can achieve

better graph utilization and performance compared to the baseline in terms of

both prediction accuracy and stability.

Discussion: The proposed GCNmodel is a useful means to predict COVID-19

cases at regional and national levels. Such predictions can be used to facilitate

public health solutions in public health responses to the COVID-19 pandemic

using deep learning and data pooling. In addition, the proposed GCN model

may help public health policymakers in decision making in terms of epidemic

prevention and control strategies.
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Introduction

Most early cases of the novel coronavirus disease-2019

(COVID-19) have been linked to exposure to wildlife at the

Huanan Seafood Wholesale Market in Wuhan, China (1).

However, an exponential increase in the number of non-linked

cases was identified in late December 2019 (2). Given the global

spread of COVID-19, public transport systems that facilitate

transnational human mobility, e.g., air travel, railroads, and

automobiles, should be considered potential risk factors in the

COVID-19 pandemic context.

According to current evidence, many early patients worked

in or visited the market, where bats, snakes, and mink are sold.

These animals are considered to be natural or intermediate hosts

of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2), and the sale of such animals suggests that transmission of the

virus to humans began during the first phase of the epidemic

(3). In addition, the occurrence of human-to-human COVID-19

transmission occurred in clusters of family members, including

relatives and friends with intimate contact with patients or

incubation carriers and medical staff in hospitals (4, 5) via

respiratory droplets or direct contact (2, 6). Furthermore, the

epidemic spread rapidly in and outside China, there resulting

in pandemic status due to large floating populations, including

more than five million migrants residing in Wuhan who

returned to their hometowns in other areas of China around

the Chinese lunar New Year through massive transport hubs

connecting all regions of China via rail (6, 7) and a major

international airport (8). Despite closing the Huanan Seafood

Wholesale Market on January 1, 2020, a lockdown of Wuhan on

January 23, 2020, and subsequent travel restriction and border

control (9), COVID-19 spread rapidly to other parts of China

and other countries around the world (10).

The COVID-19 pandemic has had great impact on human

life, society in general, and the world economy. COVID-

19 will remain a threat until safe and effective vaccines

and antiviral drugs have been developed, distributed, and

administered around the world. There is an urgent need

to establish effective implementation of non-pharmaceutical

interventions for appropriate prevention and control strategies.

We believe that predicting future COVID-19 cases can help

detect infections and disrupt the COVID-19 (11) chain of

transmission by supporting decisive action in our responses to

future pandemics (12).

Various models have been developed to predict future

COVID-19 cases using mathematical approaches (13), machine

learning (14), and deep learning (15). Moein et al. applied the

susceptible-infected-recovered model to predict the outbreak of

Abbreviations: MSE, Mean squared error; RMSE, Rootmean squared error;

MAE, Mean absolute error; RMSPE, Root mean squared percentage error;

MAPE, Mean absolute percentage error.

COVID-19 and discovered that the model was unable to forecast

the actual spread and pattern of the epidemic in the long term.

They suggested that more sophisticated modeling approaches

in line with more precise epidemiological and biomedical data

are urgently required to make the pandemic forecasting feasible

(13). Rath et al. used multiple linear regression models to

forecast the forthcoming days of active cases of COVID-19 in

Odisha and India using daily positive, recovered, and deceased

cases. Although it was found to be an effective way to forecast

the cases, limitations of the model were discussed, including

the collection of more independent variables and information

and ways to find the number of contact tracing cases (14). Xu

et al. used three deep learning models, namely, convolutional

neural network, long short-term memory, and convolutional

neural network-long short-term memory with COVID-19 data

of the following three highly impacted countries: Brazil, India,

and Russia to predict the number of COVID-19 cases. They

found that the long short-term memory model had the highest

performance in forecasting accuracy compared with other

models. Since the model prediction was high on datasets for the

three countries, they suggested the need for a larger quantity of

training data to achieve more accurate results and support the

global fight against the pandemic (15).

These models struggle to deal with the epidemiological

process of the disease that spreads across countries or continents

and is spatially heterogeneous. A COVID-19 prediction model

must consider an important characteristic of the pandemic.

COVID-19 is transmitted from person to person along with

human mobility via public transportation (6–8) and in local

environment. It is important to model contagion dynamics on

complex networks (16). To address this issue, we proposed a

graph convolutional network (GCN) model that captures latent

geographical flow of people via a public transportation network

represented as a graph comprising nodes and edges.

Materials and methods

Our experimental process involved collecting and

preprocessing data, conducting experiments, and assessing

the performance of the proposed GCN model.

Data collection

Data on daily new confirmed COVID-19 cases were

collected from Our World in Data (17). In addition, data on the

public transportation networks were obtained from the OAG

flight data (18) and Natural Earth (19), which capture latent

transnational human mobility. The OAG flight data include

airplane operation records, i.e., takeoff and landing airports.

Here, the data period was November 2019, just before the

COVD-19 pandemic. In addition, the geographical boundary
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FIGURE 1

Proposed three-layer graph convolutional network model.

data, i.e., region and country, were obtained from Natural

Earth (19).

Data preprocessing

The collected data were preprocessed to create a dataset

to be used in our deep learning experiments. We calculated

the latitude and longitude of the capital city of each region or

country from a digital map, created an ISO region/country code

list, and created a data that holds two values, i.e., the latitude

and longitude of the capital city in each region or country and

the ISO region/country code, as a pair. This data is made to

correspond to the data on COVID-19. In this study, we selected

190 regions and countries with the highest number of infected

people. Note that the number of daily new confirmedCOVID-19

cases was normalized from 0 to 1.

We constructed three types of graphs with nodes and

identified pairs of nodes (edges including self-loops) using

the collected data and assigned attributes to each node and

edge. The nodes in the graphs represent regions and countries

that contain daily new confirmed COVID-19 cases, and

the edges represent the airways (Supplementary Figure S1A),

railways (Supplementary Figure S1B), and roads that connect

regions and countries (Supplementary Figure S1C). Note that

we assumed two regions and countries that are adjacent to each

other are connected by roads.

Graph convolutional networks

The preprocessed datasets were used to train the proposed

GCN model, which operates on graphs and aggregates their

structural information (20). The goal of a GCN model is to

learn a function of features in a graph G = (V, E) that takes the

following as input (i) a feature xi for each node i summarized in

an N × D feature matrix X (where N is the number of nodes,

and D is the number of input features), and (ii) a representative

description of the graph structure in matrix form (typically in

the form of an adjacency matrix A or some function thereof).

The GCN model produces a node-level output Z (i.e., an N

× F feature matrix, where F is the number of output features

per node).

Thus, each neural network layer can be written as a non-

linear function:

H(l+1) = f
(

H(l),A
)

,

whereH(0) = X andH(l) = Z (or z for graph-level outputs), and

l is the number of layers. Note that specific models differ only in

terms of how f (·,·) is selected and parameterized.

To sum all feature vectors of all neighboring nodes with self-

loops and take the weighted average of all neighboring node

features with self-loops, we employ a multilayer GCN with the

following layer-wise propagation rule:

f
(

H(l),A
)

= σ

(

D̂
−1/2

ÂD̂
−1/2

H(l)W(l)
)

,

where W(l) is a weight matrix for the l-th neural network layer.

Here, Â= A+ I, where I is the identity matrix, D̂ is the diagonal

node degree matrix of Â, and σ(·) is a non-linear activation

function, e.g., ReLU.

Note that adding the identity matrix to adjacency matrix

A can contribute to summing all of the feature vectors of all

neighboring nodes along with self-loops. Normalizing adjacency

matrix A by multiplying it with the inverse degree matrix D

corresponds to taking the average of the neighboring node

features (20, 21).
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Experiments

The experimental datasets consist of two parts. One part is

the COVID-19 case data, which describe changes in the number

of daily new confirmed COVID-19 cases from January 22, 2020

to September 17, 2021 in each region or country. We aggregated

these data as a feature matrix, where each row represents a

single region or country, and each column is the number of

new confirmed COVID-19 cases in different time periods. Here,

we aggregated the number of new confirmed COVID-19 cases

in each region or country every 7 days. Another one is a 190

× 190 adjacency matrix that describes the spatial relationship

between regions and countries. Here, each row represents a

single region or country, and the values in the matrix represent

the connectivity of airways, railways, or roads between regions

and countries. This adjacency matrix only contains elements of

0 and 1, where 0 represents no link between regions/countries,

and 1 represents the existence of a link.

To predict the number of future COVID-19 cases on the

eighth day (D + 1) based on data from the previous 7 days (D

= 7) corresponding to 190 regions or countries, we trained the

proposed three-layer GCN model (Figure 1) on the following

graph data with the node features: (I) airways, (II) railways,

(III) roads, (IV) airways, railways, and roads, (V) airways and

railways, (VI) airways and roads, and (VII) railways and roads.

Here, all activation functions were ReLU (except for the last

linear layer). The dataset was split into 60% for training and 40%

to evaluate the performance of themodel. Themodel was trained

for 500 epochs with 256 batches per epoch. In this experiment,

the Adam optimizer was used with a learning rate of 0.01. The

training model was applied to the test dataset to evaluate the

performance of the model.

We compared the performance of the proposed three-layer

GCN model to a multilayer perceptron (MLP) model excluding

the graph representation on the COVID-19 case dataset. The

prediction performance of the models was evaluated in terms

of the mean squared error (MSE), the root mean squared

error (RMSE), mean absolute error (MAE), root mean squared

percentage error (RMSPE), and mean absolute percentage error

(MAPE) for both the normalized test data and test data on the

actual number of infected people. The MSE is defined as the

mean or average of the square of the difference between the

actual and predicted values. The RMSE takes square root for an

MSE value. The MAE is the mean of the absolute values of the

difference between the actual and predicted values. Note that the

MSE, RMSE, and MAE take positive values, where a value close

to zero implies that the corresponding prediction model obtains

higher accuracy. The RMSPE is the mean of the percentages

of squared error between actual and predicted values. It is

an evaluation of the percentage by which the predicted value

deviates from the actual value. Similar to RMSPE, the MAPE

is the mean of the percentages of absolute error between actual

and predicted values divided by the actual value. Note that the
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TABLE 2 Mean squared error for the di�erence between predicted and actual numbers of infected people.

Model Graph connection Evaluation metrics

Airway Rail Road MSE RMSE MAE

MLP 865.52 ±1,711.86 14,819.08 ±11,784.90 5,633.10 ±4,668.20

GCN X 27.86 ±2.24 3,393.88 ±137.64 914.28 ±91.33

X 34.28 ±3.26 3,763.86 ±173.74 1,000.07 ±146.66

X 32.25 ±5.77 3,641.18 ±317.85 1,085.26 ±197.08

X X 37.63 ±5.33 3,938.73 ±272.45 1,453.42 ±146.58

X X 50.75 ±17.37 4,523.61 ±746.62 1,442.33 ±125.21

X X 40.90 ±4.45 4,109.81 ±222.28 1,292.86 ±54.58

X X X 76.36 ±30.84 5,535.77 ±990.79 2,132.54 ±509.85

Bold values denote the results of airway.

RMSPE andMAPE compute division by actual value. Therefore,

we omit the computation of these metrics in case that the actual

value is zero to avoid zero-division.

Note that experimental results may not be consistent due

to the influence of the initial values of the network parameters.

Thus, we conducted ten comparative experiments for the

proposed GCN with each combination of (I) through (VII) and

for theMLP, and we calculated the mean and standard deviation.

Results

Table 1 shows the MSE, RMSE, MAE, RMSPE, and MAPE

results for the GCN and the baseline MLP obtained on the

normalized test data. Note that Table 1 lists the MSE, RMSE, and

MAE for normalized values between 0 and 1. In terms of the

MSE, RMSE, and MAE for the normalized values, the proposed

GCN model achieved good performance compared to the MLP

for all combinations of (I) through (VII). Focusing on the used

graph connection in the GCN model, the results with airway

demonstrates that the lowest prediction errors. In contrast, the

results with all connections (i.e., airway, railway, and road)

achieved higher prediction error than those of the other graph

connections. These results indicate that connecting nodes as

many as possible degenerates the prediction accuracy, and that

selecting meaningful connections is important. Meanwhile, in

terms of RMSPE and MAPE, the GCN with railway achieved

better prediction performance. Here, the RMSPE and MAPE

divide the difference between actual and predicted values by

the actual value. If we compute these values for small actual

values, these errors easily become high. We deal with the daily

new confirmed COVID-19 cases. Depending on the day and

region/country, actual values can be zero or extremely small.

Hence, the GCNwith railway connection accurately predicts the

small number of COVID-19 cases.

For simplicity, we show compare the MSE, RMSE, andMAE

results for the predicted and actual numbers of infected people

in Table 2. Here, we computed these errors of infected people

by inversely converting the normalized values. Note that the

maximum number of daily new confirmed COVID-19 cases

is 414,188. As for these errors converted to actual number of

infected people, differences were depending on the type and

combination of adjacency matrixes. The proposed GCN models

predicted the number of infected people with an average MSE

value from 27 to 76 (Table 2), and the MLP model predicted

the number of infected people with an average MSE value of

865 (Table 2). The RMSEs of GCNs are between 3,000 and 5,500

and that of MLP is about 14,000. The MAEs of GCNs are

between 900 and 2,000 and that of MLP is about 5,600. Thus,

the proposed GCN model exhibited better graph utilization and

better performance compared to the baseline MLP model in

terms of both prediction accuracy and stability. In particular,

the proposed GCN model with the adjacency matrix for airway

demonstrated the best prediction accuracy.

Figures 2A,B show the predictions and ground truth values

of the proposed GCN model with the airway adjacency matrix

and the MLP model for the top eight regions/countries in

terms of the cumulative number of infected cases and deaths

as of January 20, 2022. Here, the orange lines represent the

prediction results obtained by the model on the normalized

test data, and the blue lines represent the ground truth values

(i.e., the normalized COVID-19 case data). As can be seen,

in this case, the proposed GCN model exhibits the smallest

generalization gap between the predictions and ground truth.

Yet, in the countries with rapidly changing number of cases,

the model may face challenges in capturing the changing trends.

In addition, the curves in the predictions and ground truth are

similar, which indicates higher performance in regions/countries

with low fluctuation in the number of COVID-19 cases,

e.g., the United Kingdom, Russia, and Italy (Figure 2A). For

the MLP model, deviations between the model’s predictions

and the ground truth are observed in seven countries (i.e.,

United States of America, India, Brazil, Russia, France, Turkey,

and United Kingdom), with the exception of Italy (Figure 2B).

Supplementary Figures S2A,B show the learning curves for

the loss function of the proposed GCN model with the airway
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FIGURE 2

(A) Test predictions and ground truth values for the graph convolutional network model with the airway adjacency matrix in the top eight

countries with the highest number of new infections. (B) Test predictions and ground truth values for the multilayer perceptron model in the top

eight countries with the highest number of new infections.

adjacency matrix and the MLP model, respectively. For the

proposed GCN model, after 50 epochs, the loss curves of the

training and test sets tend to converge with no sign of overfitting.

With the MLP, the loss curves for the test data increase

rapidly early during training. Supplementary Figure S2A shows

that the proposed GCN model obtains better stability and a

smaller generalization gap between the training and test loss

than the MLP.
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Discussion

Our findings suggest that the proposed GCN model

is useful in terms of predicting COVID-19 cases at both

regional and country levels in terms of MSE, RMSE, MAE,

RMSPE, and MAPE. We found that the proposed GCN

model outperformed the MLP model, and the proposed

GCN model was trained in a stable manner. We believe that

the proposed GCN model outperformed the MLP model

because it better exploits the graph structural information

about the public transportation network by effectively

extracting meaningful features from the sequential graph data

via multiple spatiotemporal graph convolution units. The

proposed GCN model may offer positive contribution to the

prediction of the future COVID-19 cases and the detection of

potential factors influencing the COVID-19 pandemic. The

experimental results demonstrate that the proposed GCN

models with the adjacency matrix for public transportation

networks improve prediction accuracy compared with the MLP

model. These results suggest that human mobility via public

transportation may continue to introduce infection to other

regions/countries. Given relatively recent epidemics, e.g., severe

SARS, public transportation (particularly commercial air travel)

is considered a potential risk factor in the rapid global spread

of infectious diseases (22). Wuhan serves massive transport

hubs including not only airways but also roads and railways,

passing through the cities and connecting to other major

regions/countries. The transport hubs may have accelerated the

COVID-19 pandemic.

We expect that graph-based deep learning with data

pooling will provide digital health solutions to public health

responses to the COVID-19 pandemic. The proposed GCN

model will help in predicting COVID-19 dynamics (that may be

caused by variants of concern) at regional and national levels.

Implementing border control measures in regions and countries

having the variants and testing for COVID-19 infection (23)

will help to control the spread of any variant of COVID-19

infection. In addition, integrating deep learning techniques into

early warning systems may help realize effective alert systems

and the generation of maps identifying locations with high

risk of infection, which can be used to guide appropriate

responses to emerging and reemerging infectious diseases with

pandemic potential.
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