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Abstract

Establishing the genetic diversity and population structure of a species can guide the selec-

tion of appropriate conservation and sustainable utilization strategies. Next-generation

sequencing (NGS) approaches are increasingly being used to generate multi-locus data for

genetic structure determination. This study presents the genetic structure of a fodder spe-

cies -Trema orientalis based on two genome-wide high-throughput diversity array technol-

ogy (DArT) markers; silicoDArT and single nucleotide polymorphisms (SNPs). Genotyping

of 119 individuals generated 40,650 silicoDArT and 4767 SNP markers. Both marker types

had a high average scoring reproducibility (>99%). Genetic relationships explored by princi-

pal coordinates analysis (PCoA) showed that the first principal coordinate axis explained

most of the variation in both the SilicoDArT (34.2%) and SNP (89.6%) marker data. The

average polymorphic information content did not highly differ between silicoDArT (0.22) and

SNPs (0.17) suggesting minimal differences in informativeness in the two groups of mark-

ers. The, mean observed (Ho) and expected (He) heterozygosity were low and differed

between the silicoDArT and SNPs respectively, estimated at Ho = 0.08 and He = 0.05 for sili-

coDArT and Ho = 0.23 and He = 0.19 for SNPs. The population of T. orientalis was moder-

ately differentiated (FST = 0.20–0.53) and formed 2 distinct clusters based on maximum

likelihood and principal coordinates analysis. Analysis of molecular variance revealed that

clusters contributed more to the variation (46.3–60.8%) than individuals (32.9–31.2%).

Overall, the results suggest a high relatedness of the individuals sampled and a threatened

genetic potential of T. orientalis in the wild. Therefore, genetic management activities such

as ex-situ germplasm management are required for the sustainability of the species. Ex-situ

conservation efforts should involve core collection of individuals from different populations

to capture efficient diversity. This study demonstrates the importance of silicoDArT and

SNP makers in population structure and genetic diversity analysis of Trema orientalis, useful

for future genome wide studies in the species.

Introduction

Indigenous or naturalised fodder trees and shrubs are important feed sources for livestock in a

wide range of farming systems in East Africa, where over 200 000 smallholder farmers plant
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fodder trees [1]. In Uganda, a wide range of species are used for fodder, and have been selected

based on their palatability, medicinal values and coppicing ability [2]. Calliandra calothyrsus,
Leucaena trichandra or Gliricidia sepium have been the most promoted fodder species [3].

While these species have provided a basis for increased tree fodder use, promoting alternative

fodder trees to supplement the current livestock feeding strategies of smallholders in mixed

farming systems is key to resilience. Trema orientalis is a potential multi-purpose fodder. How-

ever, lack of suitable seed is still a major challenge in most fodder promotion efforts [1]. For T.

orientalis, seeds are collected from the wild, where populations have dwindled, in part due to

degradation of natural habitats. Herbivory may also be important in determining distribution

of pioneer species such as T. orientalis [4]. This likely affects the effective sizes with consequent

stochastic changes in the genetic integrity of the seeds of this promising fodder species in the

wild [5,6]. Establishing the genetic structure of T. orientalis can help to establish appropriate

conservation, management, and sustainable utilization strategies [7–10].

Molecular markers have become valuable tools for quantifying genetic diversity, spatial

genetic structure, mating systems, gene flow and breeding patterns of tree species and many

wild and cultivated plants [11]. From restriction fragment length polymorphisms (RFLPs) to

simple sequence repeats (SSRs) and then to next generation sequencing of single nucleotide

polymorphisms (SNPs), the types of molecular markers used to characterise genetic diversity

have evolved over the past several decades [12]. However, SNPs are becoming the choice

marker for genetic analysis and breeding because of the large number of markers that can be

generated at a reduced cost. SNPs are also the most frequent source of variation in eukaryotic

genomes and their bi-allelic nature offers accuracy in variant calling [13]. In contrast to whole

genome sequencing techniques, the recent genotyping-by-sequencing (GBS) techniques such

as Diversity Array Technology (DArT) (http://www.diversityarrays.com/) enables simulta-

neous SNP discovery and sequencing from a targeted subset of the whole-genome. The more

recent DArT sequencing (DArTseq) further reduces genome representation by sequencing

only the most informative representations of genomic DNA, which improves the rate of geno-

type calling and the ability to sequence more samples for less cost [14]. DArTseq produces

dominant (SilicoDArT) and co-dominant (SNP) markers that have been successfully applied

for genetic structure analysis in several crops [15,16]. The markers especially allow the charac-

terisation of population structure without prior knowledge of the genome or diversity [17,18].

Trema orientalis has very few genomic resources that can contribute to its improvement

and domestication. Notably, the genome has been sequenced [19], providing valuable genetic

information for accurately identifying the species, clarifying taxonomy and reconstructing the

intergeneric phylogeny of Cannabaceae [19]. However, knowledge of the intraspecific genetic

structure of T. orientalis.is required for its management. Therefore, we used high-throughput

genotyping-by-sequencing (GBS) genotyping using the DArTseq platform to assess intraspe-

cific genome-wide diversity and population structure of T. orientalis. The objectives of this

study were: 1) to assess genetic diversity in T. orientalis using SilicoDArT and SNP markers; 2)

to investigate fine-scale population structure of T. orientalis. This study lays a foundation for

future genome-wide association studies or genomic selection in T. orientalis.

Materials and methods

Study species and sample collection

Trema orientalis also known as Celtis orientalis Linn., Celtis guineensis Schum. and Thonn.,

Trema bracteolate Hochst Blume, Sponia orientalis Linn. Decne, and Trema guineensis
(Schum. and Thonn.) Ficalho is a species of flowering tree in the hemp family, Cannabaceae

[20]. It is a shrub or small to medium size tree that can grow up to 18 m high in forest regions,
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and up to 1.5 m tall in the savannah. The flowers are small, inconspicuous, and greenish, car-

ried in short dense bunches. They are usually unisexual, i.e. male and female are separate, and

occasionally bisexual. Flowers appear irregularly from late February to April, being pollinated

by bees or wind [21]. Besides its use for fodder in Uganda as well as other African and Asian

countries, the tree is useful for various wood and non-wood products [22]. T. orientalis was

selected in Uganda through the National Forestry Resources Research Institute (NaFORRI), as

a potential forage and therefore of interest for conservation and management.

In Uganda, T. orientalis occurs in forest fallows especially in the Central, Eastern and West-

ern part of the country [23]. However, most forest reserves where it occurs have been

degraded, which threatens the species [24], and designing conservation strategies for priority

species has been identified as a key intervention. Therefore, we characterised the genetic struc-

ture of this species, to guide in-situ conservation as well as germplasm collection for ex-situ

conservation. From West Bugwe Forest reserve and the surrounding woodlands (Fig 1), 119

leaf samples were randomly collected from mature trees for DNA extraction. Upon collection,

the leaves were immediately preserved with silica gel.

DNA extraction

The leaf samples with silica gel were sent to Biosciences Eastern and Central Africa

(BecA-ILRI) hub in Nairobi for DNA extraction. DNA extraction was done using Nucleomag

plant genomic DNA extraction kit (Macherey-Nagel). The genomic DNA extracted was in the

range of 50–100 ng/ul. DNA quality was checked on 0.8% agarose gel.

DArTseq genotyping

DNA was shipped to Diversity Arrays Technology Pty Ltd laboratories in Canberra, Australia

for processing using the DArTseq™ platform using protocol optimised for T. orientalis. DNA

samples were processed in digestion/ligation reactions using a combination of PstI and HpaII

Restriction Enzymes (RE) [14] with modifications, where a single PstI-compatible adaptor was

replaced with two different adaptors corresponding to two different RE overhangs. The PstI-

Fig 1. Map of Uganda (inset) and the enhanced site showing the location of West Bugwe forest and the

surrounding woodlands (red mark on map) where leaf samples of T. orientalis were collected.

https://doi.org/10.1371/journal.pone.0267464.g001
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compatible adapter was designed to include Illumina flowcell attachment sequence, sequenc-

ing primer sequence and “staggered”, varying length barcode region, similar to the sequence

that has been previously reported [17]. Reverse adapter contained flowcell attachment region

and HpaII-compatible overhang sequence.

Only “mixed fragments” (PstI-HpaII) were effectively amplified in 30 rounds of polymerase

chain reaction (PCR) using the following reaction conditions: 94˚C for 1 min, 30 cycles of;

94˚C for 20 sec, 58˚C for 30 sec, 72˚C for 45 sec, followed by a final hold of 72˚C for 7 min.

After PCR, equimolar amounts of amplification products from each sample of the 96-well

microtiter plate were bulked and applied to c-Bot (Illumina) bridge PCR followed by sequenc-

ing on Illumina Hiseq2500. The sequencing (single read) was run for 77 cycles. Sequences gen-

erated from each lane were processed using proprietary DArT analytical pipelines. In the

primary pipeline the poor-quality sequences were filtered away. The pipeline applied more

stringent selection criteria to the barcode region compared to the rest of the sequence. In that

way the assignments of the sequences to specific samples carried in the “barcode split” step

were very reliable. Filtering was performed on the raw sequences using the following

parameters:

Approximately 2,500,000 sequences per sample were used in marker calling. Single nucleotide

polymorphisms were identified by aligning reads to create clusters across all individuals

sequenced. As T. orientalis is a nonmodel species, reference alleles and SNP alleles for each locus

were assigned arbitrarily—in most cases, reference alleles were indicated as the allele that was most

frequent across all samples for that locus. SNP markers were aligned to the reference genomes in

the accessions of Chickpea_ICC_v2 and Grape_v8 of the National Centre for Biotechnology Infor-

mation (NCBI) in order to identify chromosome positions. The SNPs were also aligned to several

bacteria genomes to identify bacterial contamination. The BLASTN algorithm with an e-value�

5e-7 and percentage identity of 90% was used. SilicoDArTs and SNPs were scored as "dominant"

markers, with "1" = Presence and "0" = Absence of a restriction fragment with the marker sequence

in genomic representation of the sample. SNPs were scored as codominant markers with 0 for the

homozygous allele aa, 1 for the heterozygous allele Aa and 2 for the homozygous allele AA.Finally,

identical sequences were collapsed into “fastqcoll files”. The fastqcoll files were “groomed” using

DArT PL’s proprietary algorithm which corrects low quality base from singleton tags into a correct

base using collapsed tags with multiple members as a template. The “groomed” fastqcoll files were

used in the DArTs proprietary SNP and presence/absence variation (SilicoDArT) calling pipeline,

DArTsoft14. For SNP calling all tags from all libraries included in the DArTsoft14 analysis are

clustered using DArT PL’s C++ algorithm at the threshold sequence distance of 3 base pairs, fol-

lowed by parsing of the clusters into separate SNP loci using a range of technical parameters, espe-

cially the balance of read counts for the allelic pairs. In addition, multiple samples were processed

as technical replicates (from DNA to allelic calls) and scoring consistency was used as the main

selection criteria for high quality/low error rate markers.

Quality analysis of marker data

The markers were tested for reproducibility (%)–the proportion of technical replicate assay

pairs for which the marker score exhibited consistency; call rate (%)–the success of reading the

Filter Filter Parameters

Barcode region Min Phred pass score 30, Min pass percentage 75

Whole read Min Phred pass score 10, Min pass percentage 50

https://doi.org/10.1371/journal.pone.0267464.t001
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marker sequence across the sample; polymorphism information content (PIC)—the degree of

diversity of the marker in the population and the usefulness of the marker for linkage analysis;

and one ratio–the proportion of the samples for which genotype scores equalled ‘1’. The Spear-

man correlation between the Euclidean distances of the matrices of DArTseq and SNP markers

was determined using the Mantel test in R. The raw SNP data were deposited at doi: 10.6084/

m9.figshare.19181729.

Data filtering process

The data was filtered using the dartR v 1.9.9.1 package [25] in R to remove all SNPs and silico-

DArT markers that had > 5% missing data and individuals with > 10% missing data. Markers

with a reproducibility score (RepAvg) < 100% were also removed as well as those that origi-

nated from the same fragment. Non-informative monomorphic markers were also removed.

SNPs with a minor allele frequency (MAF) of< 1% were also discarded MAF filtration was

not done for presence/absence silicoDArT. The markers were further filtered based on the one

ratio value, where markers with extremely low one ratio (<0.05) were not included in the

analysis.

To elaborate the genetic structure of the populations, a model-based Bayesian clustering

was conducted using STRUCTURE 2.3.4 software. STRUCTURE uses a hierarchical Bayesian

model to identify subpopulations and estimate global ancestry for each sampled individual

based on allele frequency data [26]. The analysis was run separately for silicoDArT and SNPs.

Numbers in the range from 1 to 10 were assumed for K. The initial burn-in period, for each

run, was set to 100,000 with 100,000 MCMC (Markov chain Monte Carlo) iterations [27]. The

admixture model was applied without using any prior population information. To find the

suitable value of K, the number of clusters (K) was tested in the range from 1 to 10, and were

then plotted against ΔK in STRUCTURE HARVESTER [28] to identify the most likely value

of K.

Using dartR, principal coordinate analyses (PCoA) was used to investigate genetic relation-

ships among individuals. PCoA was performed separately on the SilicoDArT and SNP data-

sets. To further explore the genetic relationships of T. orientalis individuals evaluated in this

study, a maximum likelihood dendrogram was constructed in MEGA X using SNP markers

with no prior population assumptions [29]. Using MEGA X, maximum likelihood fits of 24

different nucleotide substitution models to estimate substitution rates were developed.

Genetic diversity analyses

Using selected markers, all genetic diversity indices were estimated using the R package “ADE-

GENET” [30]. The R package ADEGENET uses discriminant analysis of principal components

to allow for data dimensionality reduction in large genomic datasets. The following diversity

indices were therefore computed to illustrate the overall genetic divergence among the sub-

populations: observed (Ho) and expected heterozygosity (He), total gene diversity (Ht), genetic

differentiation (Fst) and population inbreeding coefficient (Fis), fixation index (Fst). Marker

allele frequency–the frequency at which the second most common allele occurs in a given pop-

ulation [31], was also computed as the number of minor alleles in the population/total number

of alleles in the population. Analysis of molecular variance was done using hierfstat package in

R [32].

Sequence similarity search

To put the study sequences in the context of other published sequences, 100 sequences of

SNPs were randomly selected at different nodes and their similarity with published sequences
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searched in the NCBI database using BLASTN algorithm. A minimum e-value of 1e-5 and

>80% identity, query coverage as well as total score were considered. Another dendrogram of

T. orientalis and selected sequences from other species was generated using MEGA X [29].

Results

T. orientalis silicoDArT and SNP detection

A total of 4767 SNPs and 40,650 and silicoDArT markers were generated from 119 individuals

of T. orientalis. The call rate of the silicoDArT markers varied between 72–100%, with an aver-

age of 98%. Missing values ranged from 5 to 10% for individual trees, and 0 to 33% for the

markers. Reproducibility of the silicoDArT markers averaged to 99% (range 91% - 100%). For

SNPs, missing values ranged from 0 to 50% for individual trees, and 0 to 42% for the markers.

The call rate ranged from 35 to 100% with an average of 90%. The reproducibility of markers

ranged from 90% to 100% with an average of 99%. The quality of marker calling was further

verified by the ratio of transitions (Ts; i.e. A/G or T/C substitutions) versus transversions (Tv;

i.e. A/T, A/C, T/G or C/G substitutions) which approximated to 0.5 (for both SNPs and silico-

DArTs) in most of the 24 different nucleotide substitution models (S1 Table).

Genetic diversity and Polymorphism Information Content (PIC)

Overall, silicoDArT markers retained, the PIC value ranged from 0.02–0.5 (average = 0.22).

However, there was 29% of the PIC values between 0.1–0.5 (Fig 2). The polymorphic informa-

tion content (PIC) of SNPs ranged from 0 to 0.49 (average = 0.17), with 84% ranging between

0.1–0.5.

The mean minor allele frequency (MAF) based on SNPs ranged between 0.004–0.5 with an

average of 0.16. Only 5% of the SNP markers had minor allele frequency less than 0.05 indicat-

ing that most markers were common genetic variants. MAF was not estimated for the domi-

nant silicoDArT markers. After the filtration criteria above, 117 individuals were retained and

2061 SNP markers, while all individuals and 18, 163 silicoDArT markers were retained. These

were used for the proceeding analyses.

The genetic diversity values calculated as expected heterozygosity (He) in the population

varied from 0.05 for silicoDArTs and 0.27 for SNPs (Table 1). The low mean observed (Ho)

and expected (He) heterozygosity (Table 1) corroborates with the low PIC values above.

Fig 2. The polymorphic information content of the a) silicoDArT and b) SNP markers.

https://doi.org/10.1371/journal.pone.0267464.g002
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Population structure analysis

Genetic relationships among the T. orientalis individuals were assessed using a model-based

clustering method that infers population structure using genotype data consisting of unlinked

markers. Results from silicoDArT markers revealed 2 clusters (K = 2) (Figs 3 and S1), where

cluster I consisted of more individuals than cluster II (Table 2). Therefore, the STRUCTURE

results at K = 2 were subject to population genetics analyses. Similarly, SNPs clustering

revealed that there were more individuals in cluster 1 than in cluster 2. Similar clustering was

also visible in the dendrogram that identified two major clusters based on SNP markers

(S2 Fig).

Genetic relationships among individuals were further explored by principal coordinates

analysis (PCoA) (Fig 4). Using silicoDArT and SNP markers, PCoA identified two subpopula-

tions, revealing the influence of tree location on the genetic diversity within T. orientalis. The

first principal coordinate axis explained a higher proportion of variation (34.2% and 89.6%)

than the second principal coordinate axis (18.3% and 2.9%) for both silicoDArT and SNPs

(Fig 4a & 4b). For the SNP data, the clustering was tighter, and clusters had less overlap than

the silicoDArT markers.

Table 1. Genetic diversity of T. orientalis based on silicoDArT and SNP markers. Estimates with p indicate that

these are corrected e.g. corrected Fst = Fstp.

silicoDArT SNPs

Ho 0.08 0.23

He 0.05 0.19

Ht 0.06 0.40

Htp 0.08 0.61

Dst 0.01 0.21

Dstp 0.03 0.43

Fst 0.20 0.53

Fstp 0.33 0.70

Fis -0.51 -0.23

Dest 0.03 0.52

https://doi.org/10.1371/journal.pone.0267464.t002

Fig 3. Number of clusters of the T. orientalis population using silicoDArT marker data estimated using the model-based Bayesian

algorithm implemented in the STRUCTURE program. A similar graph was obtained for the SNP markers (graph not shown).

https://doi.org/10.1371/journal.pone.0267464.g003
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Genetic differentiation of T. orientalis
Based on the two clusters identified in STRUCTURE, the silicoDArT markers also showed

lower estimates of total genetic diversity (Ht) and genetic diversity (Dst) among groups/popu-

lations (Ht = 0.06, Dst = 0.01) compared with SNP markers (Ht = 0.40, Dst = 0.21) (Table 1).

The estimates for genetic differentiation (Fst) were also lower with silicoDArT markers

(Fst = 0.20) compared to SNPs (Fst = 0.53) (Table 1). The low PIC values observed above and

differences between Ho and He was consistent with the moderate inbreeding coefficient (Fis),

where Fis = -0.51[silicoDArT] and -023 [SNPs].

Overall, results indicated the presence of higher variation (AMOVA results) contained

between clusters inferred using silicoDArTs (46.3%) and SNPs (60.8%) than individuals. Vari-

ation among individuals was 32.9% and 31.2% based on silicoDArTs and SNPs respectively.

The consistency of these results is also reflected in the Mantel test that revealed strong associa-

tion (r = 0.61; P< 0.0001) between both markers.

Sequence similarity

To put the resulting SNPs in the context of other sequences produced using other sequencing

methods, the length of the short sequence reads corresponding with SilicoDArT markers ran-

ged from 20 to 69 nucleotides (nt), with an average of 55.2nt and for SNPs the range was 22–

69 (average 64.6 nt).

Blasting the 100 sequences selected over the branches of the dendrogram, 52 SNPs could

not match any other sequence, while 15 SNPs matched Cannabis sativum (Cannabaceae)

Table 2. Genetic divergence among (net nucleotide distance) and within (expected heterozygosity) populations, and the proportion of membership of the popula-

tion samples based on silicoDArT and SNP markers.

silicoDArT SNPs

Group 1 Group 2 Group 1 Group 2

Proportion of membership 83.7 16.3 86.2 13.8

Nucleotide distance 0.44 0.53

Expected heterozygosity 0.09 0.20 0.06 0.26

Genetic differentiation (FST) 0.76 0.55 0.96 0.55

https://doi.org/10.1371/journal.pone.0267464.t003

Fig 4. Principal coordinates analysis plot to infer group structure of T. orientalis based on a) silicoDArT b) SNP markers. Axis explained

respectively 34.2% and 89.6% of the total variation in the samples based on respectively silicoDArT and SNP markers.

https://doi.org/10.1371/journal.pone.0267464.g004
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sequences, 9 sequences matched Morus notabilis (Moraceae) while the rest were more similar

to sequences T. orientale, Prunus dulcis, Juglans regia, Ziziphus jujuba, Fragaria vesca, Corylus
avellana, Vigna radiata, Quercus lobata, Populus eupratica, Pistacia vera, Chenopodium quinoa
and Nymphaea colorata. The genetic relationship among the sequences of T. orientalis and the

above species is illustrated in Fig 5. The close relationship of the SNPs in this study with close

members in the same lineages suggests that the identified silicoDArT and SNP markers were

of high quality.

Discussion

The importance of understanding the genetic diversity of fodder species is critical for conser-

vation and utilization of their germplasm in breeding programs. While most studies that have

used the DArT platform have mainly worked with cultivated species [16,33,34], our study

highlights the suitability of DArT platform for the genomic dissection of a variety of wild plant

species. Given that the average cost per data point of silicoDArT is less than SNP markers [35],

the DArT platform provides opportunities for genetic-based management of diverse species in

less developed countries. The DArT system enabled the detection of two types of markers, the

SNPs and silicoDArT markers which; (i) exhibited high call rates and reproducibility, (ii)

showed reduced genetic diversity (iii) exhibited strong genetic differentiation; and (iv) were

consistent with other published sequences of taxa related to T. orientalis. Such high call rate

and reproducibility has been recorded for DArT technologies in different plant species [27,36]

indicating the reliability of the DArT methods for genotyping several plant species.

The results from the silicoDArT and SNP markers indicated low genetic variation in T.

orientalis with potential consequences on the species ability to recover from demographic,

environmental and genetic stochasticity [10]. Genetic variation in populations is measured in

several ways, the most common of which has traditionally been the proportion of polymorphic

loci and patterns of observed and expected heterozygosity. The polymorphism information

content (PIC) values range from 0 to 0.5, where the following classification on the informative-

ness based on PIC values has been derived: low (0 to 0.10), medium (0.10 to 0.25), high (0.30

to 0.40) and very high (0.40 to 0.50) [37,38]. The results from the study showed that both sili-

coDArTs and SNPs exhibited medium to high informativeness (average PIC = 0.17–0.22) sug-

gesting that they can detect the polymorphism among the individuals of T. orientalis. The PIC

values were in the range of those established for other trees like Macadamia, where PIC for sili-

coDArT and SNP markers were 0.29 and 0.21 respectively, although the distribution was dif-

ferent [27]. The PIC values were however mostly lower than what has been detected in food

crops such as beans, chickpeas, cassava and wheat [33,39–41] possibly signifying inherently

low PIC values associated these markers in trees.

The average observed heterozygosity Ho for the markers was low but was in range of what

has been reported in other tropical forest trees the same region [42,43] which could be due to

anthropogenic disturbances in most natural vegetation that potentially erode the genetic diver-

sity. However, contrary to these studies [42,43] that indicated Ho <He, which is normally

indicative of inbreeding, our study showed Ho >He, for both SNP and silicoDArT markers.

This suggests presence of an isolate-breaking effect (the mixing of two previously isolated pop-

ulations or presence of hybrids) [44], consistent with the negative inbreeding coefficient that

was observed for both markers, which points to presence of excessive heterozygotes. However,

other hypotheses for presence of negative breeding coefficients have been highlighted [45];

including a lack of selfed progeny in small populations of outcrossing species, negative assorta-

tive mating when reproduction occurs between individuals bearing phenotypes more dissimi-

lar than by chance and selection during the life cycle of the most heterozygous individuals.
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These observations are also in line with the clustering observed with both silicoDArT and SNP

markers, where T. orientalis is moderately differentiated and formed 2 distinct clusters. The

SNP data clustered the groups more tightly, with less overlap and explained more variation in

the samples possibly because SNPs are abundant in plant genomes. This clustering was sup-

ported by results of the genetic differentiation metric (Fst = 0.20–0.53) between pairs of clus-

ters. Ideally, Fst values below 0.05 indicate low genetic differentiation, while values between

0.05–0.15, 0.15–0.25, and above 0.25 indicate moderate, high, and very high genetic differenti-

ation respectively [46]. The total gene diversity (Ht = 0.06–0.40) across markers was lower

than what has been established for forest trees in the wild [43,47]. Although the mating system

(unisexual flowers) of T. orientalis [22] should reduce self-fertilization, the excessive heterozy-

gosity may be associated with restricted pollen and seed dispersal possibly resulting from frag-

mented landscapes [24]. The degradation may also reduce population sizes, especially the

actively reproducing trees such that few trees contribute to the seedling recruitment, hence

most of the trees that were sampled seemed related. Studies on the population structure and

recruitment of this species in the wild are encouraged. The constraints on gene flow were also

unexpected since T. orientalis disperses its seed by birds [22] and pollinated by bees which are

expected to span over a large geographical area aiding the gene flow.

Conclusion

Trema orientalis exhibits low genetic diversity and a potentially threatened genetic integrity.

The strong population structure suggests that collection of germplasm should be done in dif-

ferent populations to maximise genetic variation in the collections. Characterisation of other

populations is also recommended as well as studies on the population structure and recruit-

ment of this species. The statistical analysis of DArT data sets showed high consistency with

the results based on SNPs highlighting the suitability of DArT platforms for genomic dissec-

tion of T. orientalis.
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