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ABSTRACT Mycobacterium tuberculosis is the leading cause of morbidity and death
resulting from infectious disease worldwide. The incredible disease burden, com-
bined with the long course of drug treatment and an increasing incidence of antimi-
crobial resistance among M. tuberculosis isolates, necessitates novel drugs and drug
targets for treatment of this deadly pathogen. Recent work has produced several
promising clinical candidates targeting components of the electron transport chain
(ETC) of M. tuberculosis, highlighting this pathway’s potential as a drug target.
Menaquinone is an essential component of the M. tuberculosis ETC, as it functions to
shuttle electrons through the ETC to produce the electrochemical gradient required
for ATP production for the cell. We show that inhibitors of MenA, a component of
the menaquinone biosynthetic pathway, are highly active against M. tuberculosis.
MenA inhibitors are bactericidal against M. tuberculosis under both replicating and
nonreplicating conditions, with 10-fold higher bactericidal activity against nutrient-
starved bacteria than against replicating cultures. MenA inhibitors have enhanced
activity in combination with bedaquiline, clofazimine, and inhibitors of QcrB, a com-
ponent of the cytochrome bc1 oxidase. Together, these data support MenA as a via-
ble target for drug treatment against M. tuberculosis. MenA inhibitors not only kill M.
tuberculosis in a variety of physiological states but also show enhanced activity in
combination with ETC inhibitors in various stages of clinical trial testing.
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Mycobacterium tuberculosis, the causative agent of tuberculosis, is a major burden
on global public health systems, infecting �2 billion people, with more than 10

million new cases of active disease in 2017 (1, 2). While most of these cases are
characterized as “latent” infections, it is estimated that up to 10% of patients progress
to active disease during their lifetimes. The long course of drug treatment, lack of public
health infrastructure, and increases in antibiotic resistance have led to M. tuberculosis
becoming the leading cause of death from infectious disease in the world, with 1.3
million attributable deaths in 2017 (1). These numbers, combined with the increasing
rates of multidrug-resistant and extensively drug-resistant strains, have led to renewed
efforts to find both novel compounds active against M. tuberculosis and novel targets
to attack as part of a multidrug regimen that can escape bacterial resistance.

The mycobacterial electron transport chain (ETC) has garnered significant interest as
a drug target. M. tuberculosis is an obligate aerobe that uses oxidative phosphorylation
for ATP production to fuel cellular processes (3, 4). During oxidative phosphorylation,
electrons flow through the ETC from membrane dehydrogenases through a quinone
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intermediate to terminal oxidases. Electron flow is coupled to the establishment of a
proton gradient, which is used by the F1F0 ATPase to synthesize ATP (3, 4). ATP
production is critical for the viability of M. tuberculosis during active disease and also for
the maintenance of basal metabolic activity during latent infection (5, 6).

New drugs that target components of the ETC and ATP production have been
discovered. Bedaquiline (BDQ), which directly targets the F1F0 ATPase, is the first
tuberculosis drug approved by the FDA for limited use in 40 years (7–9). BDQ works as
an uncoupler, allowing proton flow through the ATPase without the benefit of ATP
production, thereby depleting cells of ATP (8). Clofazimine (CLO) acts partly by target-
ing NADH dehydrogenase and kills M. tuberculosis cells through the production of
reactive oxygen species (10, 11). In addition, a number of compounds that target QcrB,
a component of the cytochrome bc1-aa3 terminal oxidase, have been identified (12–17).
Among these, the imidazopyridine Q203 is the most advanced in phase II clinical trials.
QcrB inhibition has several effects on M. tuberculosis, including depletion of intracellular
ATP and disruption of pH homeostasis (12, 14–16). The success of these compounds
highlights the viability of targeting the ETC as a way to treat M. tuberculosis during any
state of infection.

In M. tuberculosis, menaquinone is a central and critical component of the ETC; it is
the predominant quinone found in mycobacteria, serving as an electron shuttle to the
terminal reductases (18). Menaquinone is synthesized from chorismate by a series of
eight enzymes (MenF, MenD, MenH, MenC, MenE, MenB, MenA, and MenG), most of
which are considered essential for growth (4, 19, 20). Because humans acquire
menaquinone through their diet, these enzymes are not present in human cells and
therefore are attractive as selective drug targets. To date, chemical inhibitors of MenA
(20), MenB (21), MenG (22), and MenE (23) have proven efficacious in inhibiting M.
tuberculosis growth, validating the essentiality of this pathway. In this study, we
characterize the activity of MenA inhibitors against M. tuberculosis. MenA inhibitors not
only prevent M. tuberculosis growth but also are bactericidal and have synergistic
activity in combination with compounds targeting other components of the ETC. This
work validates MenA as a viable target in the treatment of M. tuberculosis and highlights
its potential for use in a novel drug regimen targeting the ETC.

RESULTS

Previous work identified novel inhibitors of MenA that were active against numerous
bacteria, including nontuberculous mycobacteria (24) (Fig. 1). On-target activity of
these compounds is suggested by growth inhibition of Staphylococcus aureus being
rescued by supplementation with menaquinone (MK-4) and by the compounds directly
inhibiting M. tuberculosis MenA enzyme activity (24, 25), although the possibility that
whole-cell activity results from inhibition of additional targets cannot be excluded.
Given the need for novel antibacterials to treat M. tuberculosis and the essentiality of

FIG 1 Structures of MenA inhibitors used in this study.
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menaquinone to the bacterium’s survival, we tested the MenA inhibitors against
whole-cell M. tuberculosis H37Rv-LP. MenA-targeting compounds inhibited the growth
of M. tuberculosis, and NM-4 was the most potent, with a MIC of 4.5 �M (Table 1).

Many ETC inhibitors suffer from redundancies in the respiratory pathway encoded in
the genome of M. tuberculosis. When challenged with select ETC inhibitors, M. tuber-
culosis is capable of respiratory flexibility that decreases the effectiveness of the
compounds. One major route of respiratory flexibility involves upregulation of the
alternative terminal electron acceptor cytochrome bd, which provides resistance to
numerous inhibitors of the ETC (26–32). Importantly, knockout of the cytochrome bd
oxidase in M. tuberculosis did not increase susceptibility to the MenA inhibitors (Table
1), indicating that this prominent escape route does not provide resistance to NM1-4.

Because NM-4 was the most potent compound, we tested its ability to kill
M. tuberculosis. Under aerobic growth conditions, NM-4 was bactericidal in a
concentration-dependent manner (Fig. 2A and C); all concentrations above the MIC
killed M. tuberculosis within 21 days. At 20 �M (�5� MIC), NM-4 sterilized the culture
rapidly, within 7 days (Fig. 2A). We next tested its ability to kill M. tuberculosis under
nutrient starvation conditions, a physiological state that is likely to be highly relevant
in vivo and in which M. tuberculosis is recalcitrant to many antibiotics (33). Surprisingly,

TABLE 1 Activity of MenA inhibitors against M. tuberculosis

Compound

MIC (�M)a

H37RvLP H37RvMA H37RvMA �cydC::aph

NM-1 41 � 2 55 � 4 38 � 3
NM-2 42 � 2 49 � 2 43 � 4
NM-3 14 � 0.2 15 � 0.2 15 � 2
NM-4 4.5 � 0.7 5.5 � 1.7 3.8 � 0.2
aMenA inhibitors were tested against M. tuberculosis. MICs were calculated as the minimum concentrations
required to inhibit the growth of M. tuberculosis by 90%, as determined by Levenberg-Marquardt least-
squares plots. Data are the mean � standard deviation of two independent experiments.

FIG 2 MenA inhibitors are bactericidal against M. tuberculosis. M. tuberculosis H37RvLP was cultured in the presence of the indicated concentration
of NM-4 under aerobic (individual replicates in A and C) or starvation (individual replicates in B and D) conditions. Samples were taken at the
indicated times. The dotted lines represent the upper and lower limits of detection.
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NM-4 was even more active under nutrient-starved nonreplicating conditions than
during aerobic growth. Concentrations as low as 0.32 �M sterilized the culture within
21 days (Fig. 2B and D), which represented a 10-fold increase in potency, compared to
bactericidal concentrations under aerobic conditions.

Because treatment of M. tuberculosis requires a multidrug regimen, we tested NM-4
in combination with several other inhibitors of the ETC under aerobic conditions. In
order to see potential synergy of selected combinations, we used concentrations of
inhibitors that were low enough to inhibit the growth of M. tuberculosis without
causing substantial killing on their own. A low concentration of NM-4 caused synergistic
killing in combination with subbactericidal concentrations of BDQ, CLO, and an imida-
zopyridine (IMP) compound (ND-10885 [34]) (Fig. 3). All combinations of drugs sterilized
M. tuberculosis cultures within 21 days. The NM-4-IMP combination was the most
potent, causing nearly complete sterilization of the culture within only 7 days, similar to
a concentration of 20 �M NM-4 on its own (Fig. 2A), i.e., a 5-fold enhancement of
potency.

DISCUSSION

Our data provide strong evidence supporting menaquinone synthesis as a viable
and attractive drug target. Compounds targeting MenA not only inhibit the growth of
M. tuberculosis but also have potent bactericidal activity, particularly under nutrient
starvation conditions. As M. tuberculosis infection progresses in vivo, bacteria reside
within granulomas characterized by nutrient-poor and/or oxygen-poor conditions (35).
In these nonreplicating states, the flow of electrons through the ETC is critical for M.
tuberculosis to maintain both membrane potential and the low-level ATP production
required to keep basal cellular processes active (6, 36). The ability of NM-4 to kill M.
tuberculosis 10-fold more effectively under nutrient starvation conditions suggests that
menaquinone biosynthesis inhibitors could be highly efficient in killing both replicating
and “latent” bacteria. The ability to target both populations is particularly attractive in
a drug candidate. Many of the current frontline drugs are active only against replicating
bacteria; therefore, a drug targeting both populations is predicted to significantly
shorten treatment time (37).

FIG 3 NM-4 causes synergistic killing with inhibitors of the ETC. Killing kinetics of NM-4 at approximately 1� MIC in combination with BDQ (A),
CLO (B), or IMP (C) at subbactericidal concentrations were assessed under replicating conditions. Combinations were tested against H37RvLP. Data
are the mean � standard deviation of two independent experiments. The dotted lines represent the upper and lower limits of detection.
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With the recent successes of BDQ, CLO, and Q203, the ETC has received significant
attention in the development of novel drug regimens to treat M. tuberculosis infections.
These three compounds have all proven efficacious in vitro and in vivo, particularly in
combination treatments (7, 16, 27–29). Despite this, there is still a great deal of
skepticism regarding the utility of targeting the ETC. Many components of the M.
tuberculosis ETC have redundancies that allow for escape from chemical or genetic
inhibition. The clearest example is the ability of M. tuberculosis to reroute electron flow
to the alternative terminal oxidase cytochrome bd upon chemical or genetic inhibition
of QcrB and the cytochrome bc1 complex (26–28, 38). The ability of M. tuberculosis to
reroute electron flow through alternative components of the ETC could limit the use of
some drugs as the sole component targeting the ETC in a new drug regimen.

However, the redundancy across different complexes of the ETC extends only so far.
Genes encoding the F1F0 ATPase and the enzymes responsible for menaquinone
biosynthesis are present in only a single copy, with no known functional homologues
(4, 36). Despite this advantage, there is always the possibility of undiscovered alterna-
tive pathways for routing electrons through the ETC. In fact, an alternative polyketide
quinone was recently discovered to be utilized under low-oxygen conditions (39).
However, much of this work was done in Mycobacterium smegmatis, and it is still
unclear how these findings translate to M. tuberculosis.

In order to combat potential rerouting of the ETC as well as the evolution of resistant
mutants, menaquinone inhibitors should be given as part of a multidrug regimen. Our
data highlight a major advantage of targeting the menaquinone pathway, i.e., MenA
inhibitors synergize with all tested ETC inhibitors. Low doses of NM-4 acted synergis-
tically with subbactericidal concentrations of BDQ, CLO, and an IMP, causing enhanced
and efficient killing of M. tuberculosis. We hypothesize that NM-4 synergizes with other
ETC inhibitors by decreasing the pool of menaquinone in the cell, thus limiting electron
flow to complex III/IV and complex V of the ETC. Any further insult to complex III/IV
(with QcrB inhibitors) or complex V (with BDQ) would severely disrupt production of
ATP and render the bacterium unviable, although this needs to be shown experimen-
tally. Whatever the mechanism, the synergistic activity of NM-4 with a range of ETC
inhibitors opens the window to a number of different combination opportunities,
which can be tailored based on the drug sensitivities of individual strains or different
safety profiles.

Taken together, our data support the development of menaquinone inhibitors as
the centerpiece of a novel drug regimen to treat M. tuberculosis. MenA inhibitors have
good biological profiles, as described above, and should provide a good safety window,
given that the enzyme is absent from humans. Pharmacokinetic and pharmacodynamic
studies need to be carried out to provide a proof of concept for menaquinone
inhibition in an animal model of disease.

MATERIALS AND METHODS
Bacterial strains and growth conditions. The bacterial strains used in these studies were M.

tuberculosis H37RvLP (ATCC 25618), H37RvMA (ATCC 27294), and H37RvMA Δcyd (26) (provided by
Helena Boshoff). All strains were grown under aerobic conditions in Middlebrook 7H9 medium contain-
ing 10% (vol/vol) oleic acid-albumin-dextrose-catalase (OADC) (Becton, Dickinson) and 0.05% (wt/vol)
Tween 80 (7H9-Tw-OADC). When indicated, strains were nutrient starved by incubation for 2 weeks in
phosphate-buffered saline (PBS) with 0.05% (wt/vol) tyloxapol.

Determination of MICs. MICs were determined as described previously (40); briefly, M. tuberculosis
was grown under aerobic conditions in 96-well plates in 7H9-Tw-OADC. After 5 days of incubation at
37°C, bacterial growth was measured as the optical density at 590 nm (OD590). The MIC was defined as
the concentration of compound required to inhibit the growth of M. tuberculosis by 90%, and values were
determined using Levenberg-Marquardt least-squares plots.

Determination of compound killing kinetics. M. tuberculosis was inoculated at �2 � 105 CFU/ml
into 7H9-Tw-OADC containing compound (final dimethyl sulfoxide [DMSO] concentration of 2%). Stand-
ing cultures were incubated for 3 weeks at 37°C, and CFU were determined by plating serial dilutions. For
starvation, M. tuberculosis was nutrient starved for 2 weeks prior to compound addition.
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