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Deletion of tumor-suppressor genes as well as other genomic rearrangements pervade cancer genomes across numerous
types of solid tumor and hematologic malignancies. However, even for a specific rearrangement, the breakpoints may
vary between individuals, such as the recurrent CDKN2A deletion. Characterizing the exact breakpoints for structural
variants (SVs) is useful for designating patient-specific tumor biomarkers. We propose AmBre (Amplification of Break-
points), a method to target SV breakpoints occurring in samples composed of heterogeneous tumor and germline DNA.
Additionally, AmBre validates SVs called by whole-exome/genome sequencing and hybridization arrays. AmBre involves
a PCR-based approach to amplify the DNA segment containing an SV’s breakpoint and then confirms breakpoints using
sequencing by Pacific Biosciences RS. To amplify breakpoints with PCR, primers tiling specified target regions are carefully
selected with a simulated annealing algorithm to minimize off-target amplification and maximize efficiency at capturing all
possible breakpoints within the target regions. To confirm correct amplification and obtain breakpoints, PCR amplicons
are combined without barcoding and simultaneously long-read sequenced using a single SMRT cell. Our algorithm effi-
ciently separates reads based on breakpoints. Each read group supporting the same breakpoint corresponds with an
amplicon and a consensus amplicon sequence is called. AmBre was used to discover CDKN2A deletion breakpoints in cancer
cell lines: A549, CEM, Detroit562, MOLT4, MCF7, and T98G. Also, we successfully assayed RUNX1–RUNX1T1 reciprocal
translocations by finding both breakpoints in the Kasumi-1 cell line. AmBre successfully targets SVs where DNA harboring
the breakpoints are present in 1:1000 mixtures.

[Supplemental material is available for this article.]

Cancer develops through a series of genetic mutations, with tumor

cells acquiring pernicious mutations that eventually lead to met-

astatic disease. The DNA mutations contributing to oncogenesis

are not limited to point mutations, but include large chromosomal

rearrangements, duplications, and deletions. It has been suggested

that recurring mutations are the likely drivers for cancer and might

be viable biomarkers for disease detection and prognosis. For in-

stance, a translocation occurs between chromosomes 21 and 8 that

fuses RUNX1 and RUNX1T1 genes in 12% of acute myeloid leu-

kemia (AML) cases (Xiao et al. 2001). The fusion results in a chi-

meric oncoprotein. The chimeric protein contributes to initial

leukemia cell growth mostly through transcriptional repression of

wild-type RUNX1 targets (Downing 1999). Alternatively, the loss of

DNA may also contribute to cancer progression. For example,

many human cancers frequently delete the chromosome 9p21-22

locus containing MTAP, CDKN2A, and CDKN2B genes. The locus

encodes INK4 proteins (p15INK4B, p16INK4A) that inhibit cyclin-

dependent kinases, CDK4 and CDK6, and p14ARF, which inacti-

vates MDM2, thereby regulating TP53. Thus, expression of these

proteins is responsible for G1 cell cycle arrest and independently

signaling apoptosis (Wessely 2010; Kim et al. 2012). Homozygous

deletions frequent the 9p21-22 locus, in particular, CDKN2A,

which encodes both p16INK4A and p14ARF, as the single event di-

minishes expression of multiple proteins—each with unique tu-

mor-suppressor activity.

In a clinical setting, driver DNA lesions can be used to (1)

detect tumor DNA in individuals and (2) monitor tumor burden

during or after treatment. Michor et al. (2005) and Bartley et al.

(2010) demonstrated how identification of the BCR–ABL1 gene

fusion at the DNA level in leukemia patients leads to a more sen-

sitive test for measuring tumor burden than current BCR–ABL1

mRNA tests. Measuring changes in tumor burden during thera-

peutic treatment is critical for checking therapy effectiveness and

deciding to continue treatment. Their approach focuses on the

frequent translocation of BCR–ABL1 in leukemia and has not been

applied to solid tumors. In a more recent study, circulatory bio-

markers were assessed in their ability to monitor metastatic breast

cancer (Dawson et al. 2013). The researchers applied a variety of

sequencing methods to identify point mutations in PIK3CA and

TP53 and other somatic structural variations for use as circulatory

tumor DNA markers. They found that circulatory tumor DNA had

the highest correlation with tumor burden and greater dynamic

range than current standard of care CA 15-3 biomarker and cir-

culatory tumor cell counting.

These studies all focused on tumor burden monitoring after

the specific lesion had been fully characterized. While monitoring

is easy for point mutations and structural variants with known
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breakpoints, it is very difficult when the breakpoint of the struc-

tural variation is not known. At the same time, large variants are

potentially much more specific for tumor detection and moni-

toring, and a test that could identify them reliably would have

higher sensitivity for monitoring tumor burden. Reliable and

sensitive identification of breakpoints in tumor DNA could also

serve as a diagnostic for early detection.

Whole-genome sequencing experiments (analyzed with ap-

propriate tools like BreakDancer [Chen et al. 2009], Pindel [Ye et al.

2009], and SVDetect [Zeitouni et al. 2010]) have the potential to

identify point mutations and structural variations in individual

samples. However, clinical tumor samples are a mixture of tumor

cells and normal cells and require ultradeep sequencing to analyze

tumor DNA.

Therefore, current approaches apply ultradeep sequencing

after targeted amplification of select genes (Harismendy et al.

2011). Unfortunately, these methods are unable to reliably identify

structural variation with uncertain breakpoints. Alternatively,

DNA hybridization microarrays (SNP arrays), which are still widely

used in clinics, are capable of calling copy number variation, from

which deletions and gene amplifications can be inferred. However,

the technology is only reliable with homogeneous samples and

only reports low-resolution boundary estimates (Greenman et al.

2010), insufficient for performing tumor burden monitoring

assays. Thus, a challenge remains: how to detect DNA markers,

specifically, somatic structural variations, in a complex patient

sample containing a mixture of tumor DNA and germline DNA.

This is particularly challenging when the exact breakpoints are

needed for quantitative DNA assays.

To identify unknown DNA breakpoints associated with

known translocations and deletions, we describe a pipeline, AmBre

(Amplification of Breakpoints), which builds on the PAMP approach

(Liu and Carson 2007). PAMP is a PCR assay, developed to selec-

tively amplify the tumor DNA sequence containing a structural

variation. To illustrate how PAMP works, consider a deletion on

chr9 (CDKN2A locus) with unknown breakpoints located around

the CDKN2A gene. Illustrated in Figure 1, a tiling of evenly spaced

forward (blue arrows) primers and reverse primers (red arrows) is

selected around the CDKN2A gene. The spacing between primers is

;1 kb apart. The innermost forward and reverse primers are dis-

tantly spaced such that they will not amplify sequence from

germline DNA.

All tiling primers are used in a single multiplex PCR. Any

CDKN2A deletion in the tumor DNA will lead to a forward and

reverse primer being proximally located (<2 kb) on the tumor DNA,

resulting in a targeted DNA amplification of the tumor DNA har-

boring the deletion, but not germline DNA. This strategy takes

advantage of polymerases having a limited amplifying length and

genomic rearrangements within tumor DNA resulting in novel

adjacencies of germline DNA sequences for selective and sensitive

amplification of tumor DNA over germline DNA.

Although it has potential, PAMP has challenges. In the mul-

tiplexed reaction, all primers must be evenly spaced so as to am-

plify any deletion in the region, and primer pairs cannot dimerize.

In a large (say, 100 kb) region, this implies that we need to find

a design of 100 applicable primers from a large candidate set of

more than 5000 potential primers. An exhaustive search of all

candidate primer combinations is infeasible (5000 candidate

primers and 50–100 primers desired would result in searching

+50 # i # 100

5000
i

� �
»10211 combinations). Bashir et al. (2007) for-

mulated PAMP primer tiling as a computational problem and de-

fined a cost associated with each subset of candidate primers.

Furthermore, the investigators showed that simulated annealing

(Kirkpatrick 1984) could efficiently find low-cost PAMP primer

designs for contiguous breakpoint regions. Even with these im-

provements, PAMP is limited to recurrent structural variations

where breakpoints appear in short breakpoint regions (<40 kb), as

a large number of primers in a single reaction inevitably leads to

loss of sensitivity with off-target DNA synthesis and increased

spurious primer–primer interactions. Finally, PAMP detects the

amplified product and identifies breakpoints via DNA hybridiza-

tion arrays (Bashir et al. 2010), which had the additional challenge

of designing probes that match the primer designs.

Results

Overview of AmBre

AmBre resolves these issues with a three-phase approach (Fig. 2).

The first (AmBre-design) involves a revised computational approach

to designing multiplex primers on discontiguous DNA regions,

ignoring regions known to not contain breakpoints. This requires

some changes to the optimization function and results in a more

flexible design with better performance on sparse regions. The

output of this phase is a collection of primers that can be mixed in

a single multiple primer reaction.

In the second, experimental phase (AmBre-amplify), long-range

PCR amplifies target amplicons, which reduces the number of

primers required in a single reaction. For example, PAMP, using their

Figure 1. PAMP tiling design for capture of CDKN2A deletions. CDKN2A upstream and downstream breakpoint regions are defined on a germline
genome, blue and red lines, respectively. Tiled forward primers (blue arrows) and reverse primers (red arrows) are spaced »1 kb apart (width of hashed
boxes; not to scale with reference). Overlap of blue box and red box on tumor DNA indicates that a forward and reverse primer pair is <2 kb apart and will
lead to amplification of tumor DNA harboring CDKN2A deletion breakpoints.
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proposed traditional PCR, would require 600 primers to cover a

600-kb region, with more than 180,000 putative interactions. In

contrast, to cover the same region, AmBre would need less than 100

primers with only 5000 possible interactions, which improves reli-

able amplification from proposed designs. In AmBre, the amplified

products are sequenced using the Pacific Biosciences RS (PacBio)

platform (English et al. 2012). Our analysis allows us to mix the

amplicons prior to sequencing, with computational separation of

breakpoints in the third phase.

The final, computational phase (AmBre-analyze) involves a

customized analysis of sequenced reads to identify DNA break-

points for each tumor genome. The analysis involves clustering of

split mapped reads followed by error correction, and sequence re-

construction around the breakpoint regions. We demonstrated

that AmBre can successfully detect targeted structural variations

(potential tumor DNA biomarkers) by identifying CDKN2A de-

letion breakpoints in the cancer cell lines A549, CEM, Detroit562,

MCF7, MOLT4, and T98G. AmBre resolved breakpoints for MCF7

and T98G, which had not been previously discovered by other

studies. Furthermore, AmBre easily extends to identify trans-

locations and inversions, which is demonstrated here with RUNX1–

RUNX1T1 translocation in the cancer cell line Kasumi-1.

Designing primers

The input to AmBre-design is a collection of genomic intervals for

the forward region, denoted by F, a collection of genomic intervals

for the reverse region (R), and parameter d. The output is a collec-

tion of forward primers in F and reverse primers located in R spaced

apart by approximately d. AmBre-design has the following steps:

• Candidate primer generation from target breakpoint regions,

where oligonucleotides are selected according to thermody-

namic properties. Primers with significant self-dimerization are

eliminated. Primer pairs that are likely to dimerize or cause off-

target amplifications are marked as incompatible (Methods).

• The list of candidate primers and incompatible primer pairs is

used to design an optimal set of primers based on the consider-

ations outlined below.

Denote a primer design P as a subset of candidate primers

numbered according to the order of genomic start locations l1, l2,

l3, . . ., ln. Set E to denote incompatible primer pairs. We associate

a cost C(P) with each design and seek to find designs with mini-

mum cost. Our formulation of cost differs from Bashir et al. (2007) to

accommodate sparser primer designs and targeting discontiguous

regions (see Supplemental Fig. S1). The parameter d is set to be half

the maximum feasible PCR amplicon size. Thus, for the long-range

polymerases used here, we use d = 6500, corresponding to a desir-

able amplicon size #13 kb. The cost of the design is a sum of in-

compatibility costs for each pair and coverage costs.

For the coverage, let Di(P) = li+1 � li denote the gap between

adjacent pairs. If Di(P) > d, we run the risk of the product being

too long to be amplified. On the other hand, if Di(P) ! d, we have

a design with extra primers that greatly decrease the efficiency of

the reaction. Let parameter r, with 0 < r # 1, describe a target

density 1 + r of primers every d bp, corresponding to a primer every
d

1 + r
’ 1� rð Þd bp. Ideally, the distance between adjacent primers is

bounded by (1 � r)d # Di(P) # d. A design is penalized if the dis-

tances violate these constraints. Formally,

C Pð Þ= +
i;jð Þ2E

wp + +
i

max Di Pð Þ � d;0; 1� rð Þd � Di Pð Þf g: ð1Þ

Experiments revealed that even a single incompatible pair severely

diminishes the multiple primer reaction (Bashir et al. 2007).

Therefore, we set wp = N for our designs. We empirically choose r =

0.2. Similar to Bashir et al. (2007), simulated annealing is used to

find low-cost primer designs by applying our cost function (Fig. 3;

Methods). The algorithm explores the large space of all primer

designs by initiating a random primer subset and improving the

primer subset with iterative addition or removals of primers. Since

the algorithm involves randomization and has parameters gov-

erning convergence to low-cost designs, simulated annealing is

repeated multiple times under different rates of convergence. The

lowest-cost primer design from all simulated annealing runs is used

as the final primer tiling design (Fig. 3).

Design results

To test AmBre-design, we analyzed cell-line copy number data to

identify a large clustering of deletions in the CDKN2A region

(Greenman et al. 2010). We identified a 380-kb region surrounding

the CDKN2A gene, 230 kb upstream and 150 kb region down-

stream of CDKN2A that captures breakpoints in 55 of the 109

CDKN2A deletion cell lines considered. We chose d = 6500, as

13-kb products can be reliably amplified with LongAmp Taq DNA

polymerase (New England Biolabs, NEB).

The candidate primer generation and primer filtering stages

resulted in 5181 candidate primers. As shown in Figure 3A, the

Figure 2. AmBre pipeline with primer designing and PacBio long fragment sequence analysis.
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candidate primers are uniformly spread across breakpoint regions,

suggesting that good tiling primer designs may exist. The simu-

lated annealing algorithm is repeated for 12 different rates of

convergence, with the fastest convergence rate having a 10-min

average runtime and slowest convergence rate having an 864-min

average runtime (Supplemental Fig. S2). When d = 6500, the

lowest-cost solution (AMBRE-68) requires only 68 primers with

99.99% in silico capture of simple CDKN2A deletions that may

occur in the 380-kb breakpoint region (Fig. 3B).

Sequencing amplified sequences harboring SVs

Sequencing the AmBre-amplify DNA confirms capture of CDKN2A

deletions. We used PacBio RS technology due to its long reads, ideal

for structural variation calling, and throughput, appropriate for

medium sized experiments. Using computation, we correct for the

high inherent error in PacBio sequencing.

Furthermore, if different samples do not share breakpoints (for

example, all amplicons are of different sizes and amplify from dif-

ferent primer pairs within the design), the samples can be mixed and

sequenced on a single run without additional barcoding. We em-

ployed this strategy with CDKN2A deleted samples on a single SMRT

cell and relying on computation to deconvolute the breakpoints.

Define a breakpoint as a pair of disjoint coordinates a and b on

a reference, and a nontemplate sequence s (of length ‘ ) such that

the sample sequence brings a and b together, separated only by the

insertion of s. The objective of AmBre-analyze is to take as input

a collection of PacBio sample sequences aligned to the reference

genome and output a collection of breakpoints along with

the sequence around each breakpoint. The code for this tool is

stand-alone and can be used in the analysis of PacBio reads for

SV detection. AmBre-analyze works by (1) alignment trimming

(defined below), (2) breakpoint clustering of fragments, and (3)

consensus sequence generation around each breakpoint (Fig. 2;

see Methods).

Alignment trimming

Denote a local alignment (Chaisson and Tesler 2012) as a pair of

intervals from the fragment and reference that can be aligned with

a small number of edits. A split mapped fragment F supports

a breakpoint (a, b, s) with two local alignments [denoted as (Fa, Ga),

(Fb, Gb)]. In the ideal case, Ga ends at a and Gb begins at b, while the

fragment segment between Fa and Fb is exactly the inserted se-

quence s (Methods). However, in real data, a fragment can span

multiple breakpoints, sequence errors can result in spurious in-

correct alignments, and the alignments output by standard tools

like BLASR will have inaccurate boundaries. Specifically, inaccurate

boundaries might result in overlapping consecutive segments Fa,

Fb. AmBre-analyze resolves these errors by choosing the optimal

alignment segments covering the fragment F. For a fragment F, the

input is a chain of local alignments F = (Fa, Ga), (Fb, Gb), . . .. The

output is a subsetF 9 = F9
a;G

9
a

� �
; . . . ofF , with alignment boundaries

trimmed so (1) none of the fragment segments F9
a; F

9
b; . . . overlap,

(2) the number of distinct alignments is minimized, and (3) most

of fragment F is covered. The second and third objectives reinforce

the notion that a typical fragment covers a small number of

breakpoints and is mostly well aligned except for nontemplate

insertion sequence. The first objective helps to narrow down the

breakpoint coordinates. To clarify, consider a trimmed reference

interval G9
a that ends at x and a consecutive interval G9

b beginning

at y, while the gap between corresponding fragment segments is L.

Then, we expect that a > x, b < y, and

L ’ ‘ + a� xð Þ+ y � bð Þ:

Thus, the fragment constrains the location of the breakpoint (a, b)

to lie in a small region between x, y. In the next section, we use

information from multiple fragments to further narrow the

breakpoint location. Given these three distinct objectives, the

alignment trimming algorithm works by combining them into

a single objective function and uses a dynamic programming ap-

proach to identify the optimal trimming (Methods).

Fragment clustering

Consider a two-dimensional (2D) representation of the genomic

space with F and R being the vertical and horizontal axes, re-

spectively. In this representation, a true breakpoint (a, b) is repre-

Figure 3. Designing AMBRE-68. (A) Candidate primers are uniformly distributed in CDKN2A locus, suggesting that good primer designs are possible.
AmBre-design is tasked to capture CDKN2A deletion upstream and downstream breakpoints in regions chr9: 21,730,000–21,965,000 and chr9:
21,975,000–22,129,000 (GRCh37 coordinates), respectively. (B) Final low-cost 68-primer design to capture CDKN2A deletions in 380-kb breakpoint
region. The solution has a 97.6% and a 99.7% coverage of breakpoint regions. The fraction of break pairs captured by the design (resulting in amplicon
length <13 kb) is 99.99%.
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sented by a point, and each split-mapped read (x, y, L) is repre-

sented by a triangle of possible breakpoints (a, b) that satisfy (a � x)

+ (y � b) # L (Methods). Multiple reads supporting the same

breakpoint represent multiple triangles whose intersection reduces

the uncertainty in breakpoint determination. Furthermore, if reads

from multiple AmBre-amplify experiments are combined, the

split-mapped reads will cluster according to overlap, revealing

breakpoints for each experiment sample. We develop a fast, cus-

tomized method to recover the aggregated read clusters for each

breakpoint (Methods). The method took 2.5 min on a single

desktop core to analyze all local alignments from 52,000 reads

from a single PacBio SMRT cell experiment.

Consensus sequence determination

Predicted amplicon sequences are generated from the breakpoint

estimates. In turn, these templates are supplied as reference se-

quences into PacBio’s SMRT Analysis Resequencing protocol. The

analysis protocol calls consensus amplicon sequences by correct-

ing the predicted templates.

Identifying CDKN2A deletion given DNA break clustering

AmBre exploits the fact that variable breakpoints aggregate along

fragile regions of the chromosome by designing primers around

the fragile regions. We used this idea to produce a single design for

five cancer cell lines: A549, CEM, Detroit562, MCF7, and T98G.

Breakpoints were estimated by copy number changes for four

cancer cell lines (A549, CEM, MCF7, and T98G) from SNP-array

data (Supplemental Fig. S3; Table 1; Greenman et al. 2010), and the

breakpoint was given for a fifth cell line (Detroit562) from prior

studies. The error in breakpoint estimation for SNP-array data is

roughly 10 kb. Thus, to generate cluster target regions, each

breakpoint estimate was expanded to be a 10-kb interval, and

overlapping intervals were merged. This created four regions (F )

upstream of CDKN2A and three downstream regions (R), and the

target regions were used as input for AmBre-design (d = 6500 bp).

AmBre-design outputs a high-quality 16-primer design (AMBRE-

16) with primers spaced apart by ;6 kb to cover the 100-kb input

region. The design was used by AmBre-amplify on DNA samples

from each cell line. The experiment successfully amplified DNA

from each cell line (Supplemental Fig. S4), where each line pro-

duced a unique-sized amplicon even though each reaction uses the

same set of 16 primers.

PCR products were mixed together for simultaneous prepa-

ration and sequencing on a single SMRT cell. The sequence data

were the input to AmBre-analyze. The tool BLASR (Chaisson and

Tesler 2012) identified 52k alignable fragments. After clustering in

AmBre-analyze, we retrieved deep coverage of every breakpoint

(although with six clusters instead of five; see below), with A549

having the lowest coverage of 400 fragments and CEM having the

highest coverage of 18,000 fragments (Fig. 4). The difference in

coverage is due to different amplicon sizes, where shorter ampli-

cons are easier to load onto a PacBio SMRT cell than longer

amplicons. Newer PacBio instrumentation is expected to normal-

ize for this sequencing bias (Mason and Elemento 2012).

AmBre-analyze generated consensus sequence for each cell

line. A549, CEM, and Detroit562 breakpoints (Supplemental Figs.

S5, S6) are concordant with previous studies (Kitagawa et al. 2002;

Sasaki et al. 2003; Bashir et al. 2010). The A549 harbors a complex

structural variation where in addition to a large DNA segmental

loss including CDKN2A, there is a 325-bp internal inversion oc-

curring at the deletion breakpoint junction. AmBre-analyze re-

solved the complex event as two separate breakpoints. The A549

amplicon template was created by ordering the reference segments

corresponding to the two breakpoints. After template refinement,

the A549 amplicon sequence matched the sequence found by

Bashir et al. (2010).

To our knowledge, the nucleotide sequence for MCF7 and

T98G had not been previously characterized in spite of previous

efforts, including whole-genome sequencing of the MCF7 cell

line. The ease of the discovery in our experiment attests to the

value of a targeted approach to SV detection. Both MCF7 and

T98G sequences were confirmed using Sanger sequencing. In-

terestingly, the SNP-array estimate for the MCF7 breakpoint is

15 kb away from the AmBre-detected breakpoint. The difference

may be due to SINE and LINE repeats that mark the region of the

upstream MCF7 breakpoint, a fact confirmed by the Sanger reads

(Supplemental Fig. S5). Repetitive sequences are known to con-

found structural variation analysis and possibly explain why

previous genome sequencing studies of MCF7 have not anno-

tated the CDKN2A deletion breakpoints (Hampton et al. 2009,

2011).

We analyzed the physical properties of DNA around the

breakpoints of CDKN2A deletions using the BreakSeq pipeline

(Lam et al. 2009). All five deletion events were predicted to result

from nonhomologous end joining (NHEJ). According to Lam et al.

(2009), a characteristic of NHEJ is lower DNA duplex stability near

the breakpoints of a structural variation. They assessed DNA du-

plex stability based on predictions of helix stability (average dis-

sociation free energy of overlapping dinucleotides) and DNA

flexibility (average twist angle of overlapping dinucleotides). We

found no strong association to lower DNA duplex stability in

CDKN2A deletion breakpoints, albeit we are analyzing much

fewer structural variations (Supplemental Fig. S7). Alternatively,

Kitagawa et al. (2002) suggested that the CDKN2A deletion in

CEM is due to illegitimate V(D)J recombination, which is evi-

Table 1. Five cell lines with CDKN2A deletion breakpoints in GRCh37

Cell line Type Estimated breaks Our breaks
Estimated

deletion size
True deletion

size
Difference
in breaks

A549 Lung adenocarcinoma 21,833,542–22,121,634 21,832,459–22,123,318 288,092 290,859 1083–1684
CEM Lymphoblastic leukemia 21,828,110–21,992,808 21,828,685–21,996,997 168,887 164,123 575–4189
Detroit562 Pharynx carcinoma 21,970,804–21,985,229 14,425
MCF7 Breast carcinoma 21,834,611–21,989,073 21,819,532–21,989,621 154,462 170,089 15,079–548
T98G Glioblastoma 21,868,909–21,991,923 21,865,639–21,992,514 123,014 126,875 3270–591

Estimated breakpoints are according to CGP (Greenman et al. 2010). CGP coordinates were converted from NCBI36 to GRCh37 using UCSC liftOver
(Hinrichs et al. 2006). The break coordinates for Detroit562 were identical to Bashir et al. (2009) and the cell line was not examined by CGP. Differences
between estimated breaks and our breaks >5kb are shown in bold.
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denced by V(D)J recombination motifs discovered near the de-

letion breakpoints.

Characterizing CDKN2A deletion assuming no DNA break clustering

Also, AmBre applies to contiguous break regions. We developed

a 68-primer design to capture CDKN2A deletions with breaks in

a 380-kb region (AMBRE-68) (Fig. 3).

In AmBre-amplify experimentation, we observed that the

high amount of multiplexing, and larger amplicon lengths (>4 kb)

reduce amplification efficiency. Using all AMBRE-68 primers in

a single reaction resulted in amplification of only the 2.2-kb A549

CDKN2A deletion loss (data not shown). To mitigate this effect,

subsampling of primers from a design and performing multiple

reactions per sample using different primer sets improved ampli-

fication results. To test whether the AMBRE-68 primers selected

were viable at some level of subsampling, we sampled the nearest

forward and reverse primer in AMBRE-68 to each CDKN2A break

in cell lines: A549, CEM, Detroit562, MCF7, MOLT4, T98G. This

resulted in a nine-primer subset, which again captures the

CDKN2A deletion in each cell line. Of these cell lines, five lines

resulted in amplicons ranging in lengths from 2.2 kb to 7.5 kb

(Fig. 5). The Detroit562 breakpoints did not fall within the target

breakpoint region given to AmBre-design, and the expected

amplicon size using the closest AMBRE-68 primers is 16 kb. Thus,

Detroit562 did not amplify with the nine-primer subset. For each

remaining cell line, the observed amplicon length matched the

spacing between CDKN2A breakpoints and nearest primers in

AMBRE-68 design. Thus, a universal primer design divided into

multiple primer subset experiments can be used to identify SVs.

Characterizing RUNX1–RUNX1T1 translocations

AmBre also captures more complex rearrangements like inter-

chromosomal translocations. This was demonstrated with an

experiment characterizing RUNX1–RUNX1T1 gene fusion, the

result of a translocation between chr21 and chr8. In the tumor

genome, breakpoint ends lie within a 30-kb region chr21:

36,205,000–36,235,000 in the RUNX1 intron, and a 55-kb region

chr8: 93,030,000–93,085,000 in RUNX1T1, and the derivative

chromosome 8 (Der8) encodes a fusion oncoprotein. In some

cases, the translocation is balanced and also generates a fusion of

RUNX1T1–RUNX1 on a derivative chromosome 21 (Der21). To

capture the translocation producing Der8, we used AmBre to de-

sign 10 reverse primers in the RUNX1 region and 18 forward

primers in the RUNX1T1 region with ;3-kb primer spacing. Sim-

ilarly, to capture Der21 breakpoints, 10 forward and 19 reverse

primers were designed in the RUNX1 and RUNX1T1 regions, re-

spectively. Recall, an ;3-kb primer spacing supposes the maxi-

mum product size is ;6 kb. The primer designs were tested on

Figure 4. Aggregates of breakpoints from each PacBio fragments after sweep line clustering. Target amplicons are strongly supported by fragments
and breakpoints are well separated. Only breakpoints with L < 1 kb are displayed for inset boxes. The height of each cluster corresponds with number of
fragments supporting the breakpoint (depth of breakpoint coverage).

Figure 5. Subsampling of nine primers from the complete AMBRE-68
tiling design results in clean amplification of CDKN2A loss DNA fragments
in six cell lines. (From left to right) Lanes contain 1 kb of Plus GeneRuler
DNA ladder, PCR products from samples A549 (2.2 kb), CEM (5.8 kb),
MCF7 (3.6 kb), MOLT4 (6.8 kb), T98G (7.5 kb), HEK, and water. The
expected lengths of each amplicon according to AMBRE-68 design are
listed in parentheses. HEK cells (no CDKN2A deletion) and H2O are neg-
ative controls.

Identifying recurrent somatic structural variation

Genome Research 323
www.genome.org



Kasumi-1, which carries the balanced translocation with both

Der8 and Der21 breakpoints characterized (Xiao et al. 2001).

AmBre spaced the primers in the two regions unaware of the true

Kasumi-1 breakpoints, and we assayed the Der8 and Der21 chro-

mosomes in two independent reactions using the respective 28

and 29 primers. The primers closest to the breakpoints produce

a 3.5-kb and 2.7-kb amplicon from Der8 and Der21, respectively

(Fig. 6). Both reactions resulted in a strong signal and virtually no

background noise, despite there being close to 30 primers in

each reaction.

Furthermore, we investigated subsampling of primers and

efficacy in generating longer amplicons. For each primer design,

we divided the forward and reverse primers based on index parity

when sorted by chromosome position. Thus, there are four primer

sets: forward odd (FO), forward even (FE), reverse odd (RO), and

reverse even (RE), with primers spaced by ;6 kb. The forward and

reverse primer sets make four combinations: FO [ RO, FO [ RE, FE

[ RO, and FE [ RE, primers for capturing target breakpoints. These

combinations can be treated as four new primer designs, each with

a maximum product size of 12 kb, but half as many primers. This

gives us the opportunity to assess amplification efficiency across

different amplicon lengths and primer density per reaction using

the same DNA template. In the original 28-primer design, the

Kasumi-1 breakpoints for Der8 were generated by the sixth forward

and ninth reverse primer. Thus, trying the 14 primer designs FE [
RO, FO [ RO, and FO [ RE produces 3.5-kb, 6.8-kb, and 10.1-kb

amplicons (Fig. 6). Similarly, the 29-primer design for Der21 was

subsampled into three reactions. Each reaction resulted in a strong

signal band at the expected amplicon size, and all six amplicons were

confirmed to span the Der8 and Der21 breakpoints via Sanger se-

quencing (Supplemental Fig. S8). From each reaction, a general trend

of better amplification for shorter amplicon lengths is observed.

However, there was no significant difference in amplification effi-

ciency between using all primers and half the primers to generate the

shortest amplicons. Longer amplicons had a strong signal, but

weaker false products were visible. This effect is not seen with the

shorter amplicons, and false products may be more prevalent in re-

actions with a greater number of primers and longer amplicons.

Dealing with tumor heterogeneity

The AmBre assay, unlike other methods, can target DNA with an SV

in the context of high background of germline DNA. This feature is

important for sensitive detection of tumor DNA and establishing

a patient-specific tumor DNA marker for monitoring tumor bur-

den. We successfully amplified a 2.2-kb CDKN2A deletion se-

quence from A549 and a 3.6-kb deletion sequence from MCF7

starting with A549 and MCF7 genomic DNA mixed with HEK ge-

nomic DNA (Supplemental Fig. S9). Each reaction starts with

a heterogeneous mixture of ;400 ng with tumor to wild-type

gDNA mixture ratios of 1:1, 1:10, 1:100, and 1:1000. In a realistic

application for AmBre, each reaction contains numerous primers

where only two primers are responsible for amplification. In the

experiment, each reaction contains 16 primers sampled from

AMBRE-68 around CDKN2A deletion breakpoints for each cell line.

In the heterogeneity experiment of A549, strong amplification is

observed for each mixture ratio, whereas for MCF7 there is clearly

a reduction of amplification efficiency as the fraction of starting

cancer cell line gDNA decreases (Supplemental Fig. S9). Amplifi-

cation of longer amplicons with AmBre in the complex gDNA

sample is also possible, however, with reduced sensitivity (Sup-

plemental Fig. S10). The sensitivity for the AmBre assay is largely

dependent on expected amplicon length. CDKN2A deletion

breakpoints corresponding to a smaller amplicon in a particular

AmBre primer design are more easily amplified.

Discussion
AmBre addresses the challenge of highly sensitive SV targeting in

complex DNA mixtures. This is accomplished with a careful design

of tiling primers that enables amplification of DNA harboring the

SV if present in the mixture and a specialized PacBio analysis

pipeline to confirm SV breakpoints. AmBre was used to discover

breakpoints associated with CDKN2A deletion in cancer cell lines

MCF7 and T98G. In addition, we demonstrated that amplification

occurs even in a complex DNA mixture where one in every 1000

DNA molecules contains the CDKN2A deletion. These features

of AmBre are clinically important. An SV breakpoint specific to

Figure 6. Characterizing RUNX1–RUNX1T1 balanced translocation in Kasumi-1. Lanes 1, 2, 4, 6, and 8 contain 1 kb of Plus GeneRuler DNA ladder, PCR
products from Kasumi-1 Der8 with all 28 primers (3.5 kb), 14 primer FE [ RO (3.5 kb), 14 primer FO [ RO (6.8 kb), and 14 primer FO [ RE (10.1 kb). Lanes
3, 5, 7, and 9 contain matching water controls, which show no contamination. Lanes 10, 12, 14, and 16 contain PCR products from Kasumi-1 Der21 with
all 29 primers (2.7 kb), 15 primer FO [ RO (2.7 kb), 15 primer FE[ RO (6.1 kb), and 14 FE [ RE (8.1 kb). The gel was loaded with 2 mL for lanes 2–5 and 10–
13, and 4 mL for remaining volumes. Reactions with shorter amplicons amplified extremely well, and lesser volumes were used for visualization on the gel.
The expected amplicon lengths according to the Der8 and Der21 design are listed in parentheses.
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a cancer patient could serve as a personalized biomarker, where

a quantitative PCR assay could accurately measure the patient’s

tumor burden (Michor et al. 2005; Bartley et al. 2010). With ad-

vancements in microfluidics and droplet PCR, quantifying one to

three copies of tumor DNA in a complex sample is possible (Hatch

et al. 2011).

If the problem is to simply observe an SV, there are numerous

high-throughput methods: SNP hybridization arrays (SNP-array),

whole-exome sequencing (WES), and whole-genome sequencing

(WGS). However, these methods are not ideal for a clinical appli-

cation in tumorburden monitoring. SNP arrays and WES give copy

number readouts of DNA, which hint at the presence of SVs and

a low-resolution estimate of corresponding breakpoints. Without

a high-accuracy breakpoint estimate, a quantitative PCR assay

specific to tumor DNA cannot be designed. WGS is capable of

breakpoint calling but would require an exorbitant amount of deep

sequencing to capture SVs occurring in a low fraction of DNA.

Harismendy et al. (2011) reported the extent of this sequencing

challenge, where more than 15003 coverage of cancer mutational

hotspots (71.1-kb region) was necessary to capture single nucleo-

tide variants (SNVs) occurring with prevalence >5% in the sample.

Therefore, a targeted approach for mutation detection is

preferred to a high-throughput untargeted mutation discovery for

clinical practice. A high-throughput method captures numerous

SVs and SNVs where follow-up functional analysis is required for

each mutation to determine its potential as a cancer driver or

passenger mutation. Alternatively, there are numerous targetable

SVs known to drive cancer progression, and they are being used in

clinical laboratories to confirm cancer diagnosis and guide therapy.

The most notable example, CML patients with the BCR–ABL1

translocation, are treated with tyrosine kinase inhibitors. The pa-

tient’s response to therapy can be reliably tracked by measuring

tumor DNA containing BCR–ABL1 gene fusion from blood samples

(Michor et al. 2005; Bartley et al. 2010). Unfortunately, such suc-

cess in tumor burden monitoring has not been observed for pa-

tients with solid tumors.

In this study, we present AmBre’s application to capture

RUNX1–RUNX1T1 translocations in AML cases and CDKN2A de-

letions, which are prevalent in many types of cancer. Using the

accompanying software, this approach can be easily extended to

target other SVs, like BCR–ABL1 in chronic myeloid leukemia,

EML4–ALK in lung cancer, and TMPRSS2–ERG in prostate cancer.

For EML4–ALK and TM-PRSS2–ERG, DNA breaks within introns

and rearrangement of the chromosome fuse the genes together,

similar to RUNX1–RUNX1T1 gene fusion. The remaining challenge

for AmBre is a limited targetable breakpoint region. We presented

a design capturing breakpoints falling within 100 kb and proposed

a multiple primer subset strategy for encompassing a 380-kb

breakpoint region. Further development is necessary to capture

SVs with breakpoints appearing in a >1-Mb range. AmBre is a first

step to a sensitive tumor DNA monitoring test for solid tumors.

Extending the approach with improvements of applying multiple

primer designs to target the same SV or the use of microfluidic

devices may lead to an ultrasensitive assay capable of minimally

invasive early cancer detection.

Methods

AmBre: Primer generation and filtering
Primer3 2.3.0 (Rozen and Skaletsky 2000) was used with long-
range PCR-specific parameters to identify 31-bp candidate AmBre
primers that were capable of amplification under the same ther-
mocycling conditions. To minimize the chance of off-target am-
plification, candidate primers were aligned to the reference human
assembly (GRCh37) using BLAT (Kent 2002). Define an end-align-
ing match as an exact match of length >18 between the 39 end of
a primer and an off-target location. Primers with >10 end-align-
ments were removed as having a high chance for off-target am-
plification. Second, pairs of primers that have compatible end-
alignments within a 2d-long off-target region were marked as in-
compatible. Finally, each pair (including a self-pair) was tested for
dimerization using MultiPlx (Kaplinski et al. 2005). Primers with
self-dimerization (maximum binding energy DG < �8.0 kcal/mol
for any region) were removed, and pairs with high binding affinity
(maximum binding energy DG < �4.0 kcal/mol for primer–primer
39-end binding or �8.0 kcal/mol for any region of primers) were
marked as incompatible. The remaining candidate primers and
incompatibilities formed the input to AmBre primer selection.

AmBre: Primer selection with simulated annealing

A final AmBre primer design was selected from a filtered list of
candidate primers (PU) and primer–primer compatibilities. To
compute an optimal primer design, a low-cost P according to C(P),
we applied a simulated annealing (Kirkpatrick 1984) procedure.
We computed an initial design P using a random subset of six
primers. Define the neighboring design of P, N(P), as either the
removal of a single primer from P or the addition of a single primer
p ; P to P followed by removal of all primers p9 2 P s.t. (p, p9) 2 E.
The simulated annealing procedure described in Algorithm 1 was
used to compute low-cost designs.

The temperature schedule, T1, T2, T3, . . ., linearly decreases
depending on intercept and slope parameters m and b. Parameters
tested for T were combinations of m = 1, 0.1, 0.01, 0.001 and b =

104, 105, 106. The maximum number of iterations run was de-
termined by the temperature schedule, 2b + b

m, and constrained to
be at least 106 and at most 108 iterations. Each parameter set was

Algorithm 1. Simulated annealing algorithm

1: procedure SIMULATEDANNEALING (PU, C )
2: P ) Random(PU, 6) 8 Initialize random primer set P with size 6
3: for t = T1, T2, T3, . . .do 8 Iterate until design is stable
4: l ) Random(PU, 1)
5: if C(Nl (P)) < C(P) or Random 0;1½ �< e�

C Nl Pð Þð Þ�C Pð Þ
t then

8 Move to neighboring design if improves or with probability proportional to extra cost and iteration
6: P ) Nl(P)
7: end if
8: end for
9: return P
10: end procedure
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repeated three times. The lowest-cost primer design of all runs was
used as the final design. Supplemental Figure S2 demonstrates
convergence to design minima under different parameters of T for
a target CDKN2A breakpoint region of length 380 kb.

AmBre-analyze: PacBio sequence analysis

Alignment trimming

BLASR-computed local alignments between the PacBio reads and
human reference assembly were provided as input to alignment
trimming. An alignment pair (Fa, Ga), (Fb, Gb) with a ! b between
a fragment F and reference G implies a breakpoint. The goal of
alignment trimming is to trim the ends of each alignment for each
fragment F, so that (1) each segment of F participates in a single
alignment and (2) F is maximally covered.

We first remove local alignments encompassed by other
alignments (e.g., 4 in Fig. 7). We sort the remaining alignments by
their location on the fragment, so that alignment i starts before
alignment j if and only if i < j. Let bs(i) and be(i) denote the fragment
breaks before the beginning and after the end of alignment i.

We represent alignments on a grid with alignments as rows
and fragment positions as columns (Fig. 7). An alignment is a series
of breaks on the fragment [i.e., (1, b1) to (1, b5) in Fig. 7]. Align-
ments are chained together to cover a portion of F exactly once. To
chain adjacent alignments, for each alignment j with an alignment
i that terminates before j starts, add a jump from (i, be(i)) to (j, bs(j))
[for instance (1, be(1)) to (3, bs(3))]. Also, for each alignment

j overlapping an earlier alignment i on the fragment, add a jump
from (i, bs(j)) to (j, be(i)) [for instance (2, be(3)) to (3, bs(2))] if i spans
bs(j) and j spans be(i). By this process, any alignment chain covers
positions exactly once.

w i;uð Þ; j; vð Þ½ �

=

Aln i; u; v½ � if i = j

1

2
Aln i;u; v½ � + Aln j;u; v½ �ð Þ + J u; vð Þ if i 6¼ j and

i; j overlap from u to v

J u; vð Þ Otherwise:

8>>>>><
>>>>>:

An alignment chain is scored by summing local alignment
scores (Aln[i, u, v] for alignment i for fragment coordinates u to v)
and penalizing for jumps between alignments [J(u, v) for align-
ment u to v]. A high-scoring alignment chain corresponds to
trimmed alignments that align well and cover most of the
fragment. The score of a chain is computed using dynamic
programming. Let S(j, v) denote the score of the best chain
ending at (j, v). Then,

S j; vð Þ = max
i;uð Þ

S i;uð Þ + w i;uð Þ; j; vð Þ½ �f g: ð2Þ

In the recursion, (i, u) is the start of alignment j, start of a jump to
(j, v) [i.e., if (j, v) = (3, be(2)) then (i, u) could be (2, bs(3))], or previous
position on alignment j where a jump ends [i.e., if (j, v) = (2, be(2))
then (i, u) = (2, be(1))]. By not computing the score for each
alignment and fragment position on the grid, the optimal trimmed
alignment chain is quickly found.

Along the maximum scoring chain, each jump, F9
a;G

9
a

� �
;

F9
b;G

9
b

� �
, represents a breakpoint estimate a; b; F9

j � F9
i

� �
. For ex-

ample, the jump from 1 to 3 corresponds with breakpoint estimate
(x1, y2, 6).

In this formulation, two alignments that overlap may con-
tribute to a high score since the overlap segment is scored as the
average of both alignment scores. Above, for a breakpoint estimate
from overlapping alignments, we use boundaries around the
overlap and do not resolve a tighter breakpoint within the overlap
segment. Finding a tighter breakpoint estimate would require
computing S for all breaks within overlap intervals, which is in-
efficient for thousands of fragments. In any case, the conservative
breakpoint estimates are improved with downstream clustering
and refinement steps.

Breakpoint clustering

Breakpoint estimates from all fragments supporting the same
breakpoint are aggregated into groups using a sweep line algo-
rithm. Sindi et al. (2009) applied a similar geometric approach to
efficiently identify structural variations using discordant paired-
end reads.

For a breakpoint estimate (x, y, L), the true breakpoint junc-
tions (a, b) in reference G lies between x . . . x + L and y � L . . . y,
respectively, subject to a � x + y � b < L. Here, we assume that L,
a spacing length on F, is a reasonable estimate for breakpoint un-
certainty on G and the effect of sequencing deletion errors at the
breakpoint junction is minimal. On a G 3 G plane, each break-
point estimate x, y, and L with the above constraints defines a tri-
angle that contains the true breakpoint (a, b) (Figs. 4, 7).

A line sweeps the plane and tracks when breakpoint triangles
overlap along the sweep line. Here, a cluster is a collection of tri-
angles where each triangle overlaps one or more triangles in the
cluster. The consensus breakpoint (a, b) for the cluster is the mode
of (x, y) estimates (see Fig. 4).

Figure 7. (A) Fragment-segmentation example for local alignments 1,
2, 3, and 4 along a PacBio fragment. (B) Triangle representation of adja-
cent alignments 1, 2, and 3 on G 3 G plane.
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Accounting for reverse orientation alignments

With a slight modification, we can account for alignments in the
reverse complement orientation to capture structural variations
with inversions and bidirectional PacBio reads. PacBio reads DNA
amplicons in both directions, in particular, a read in the forward
direction produces an alignment chain (Fx, Gx), (Fy, Gy) and in the
reverse direction [Hy, RC(Gy)], [Hx, RC(Gx)], where RC reverse-
complements the sequence G. This is resolved by relabeling reverse
complement alignments by a �, such that H supports the break-
point (�y, �x).

The relabeling applies naturally to the sequence analysis
pipeline. Alignment trimming relies only on projections on se-
quenced fragments and therefore does not change. Each DNA
amplicon containing a breakpoint is associated with two break-
point estimates (x, y) generated from forward reading and (�y, �x)
from reverse reading.

In addition, the constraints of �y, �x, L in relation to �a,
�b remain the same; therefore, both forward and reverse direction
breakpoint estimates have the same triangle orientation on the
G 3 G plane. All forward and reverse breakpoints are simulta-
neously recovered with the sweep line algorithm.

Using reverse complement alignments, breakpoints associ-
ated with inversions, like A549, are captured. In this case, a break-
point corresponds with (�x, y) and (�y, x) or (x, �y) and (y, �x).

Breakpoint reconstruction

In the final step, predicted amplicon templates for each cluster are
created by joining reference sequence G(6500 � a, a) and G(b, b +
6500). The PacBio SMRT Analysis 1.4 pipeline for Resequencing is
performed to refine the amplicon template predictions using all
fragments generated from the SMRT cell (Supplemental Fig. S6).
The Resequencing protocol involves running BLASR for mapping
followed by Quiver for consensus sequence calling. The protocol
accurately recovered the sequence around breakpoints; the con-
sensus amplicon sequence starting at aligned 25� a and ending at
b + 25 matched either sequencing from previous studies or in-
dependent Sanger sequencing chromatogram (Fig. 5). For clusters
with L > 0, adding L ‘‘N’’ nucleotides at the breakpoint junction of
the predicted amplicon template had no effect on the PacBio
Resequencing protocol. In both cases, the correct amplicon break-
point junction sequence was found.

A549, CEM, Detroit562, and T98G cells were thawed from
Moore’s Cancer Biorepository. MCF7, HeLa, and HEK (293T) cells
were collected from the Rosenfeld laboratory. Standard DNAzol
protocol was used for DNA extraction and DNA was quantified
with NanoDrop 2000 spectrophotometer. DNA products are visu-
alized on 1% agarose gels with EtBr. Gel images are either color
value inverted or color curve adjusted uniformly across the image
for visual enhancement. All PCRs were performed on a Bio-Rad
iCycler instrument.

All PCR experiments used the following thermocycling con-
ditions: initial denaturation for 3 min at 95°C, 10 cycles for 20 sec
at 94°C, 30 sec at 64°C, 15 min at 66°C, 28 cycles for 5 sec at 94°C,
30 sec at 64°C, 15 min + 20 sec for each cycle at 66°C, final ex-
tension for 45 min at 64°C, and 4°C hold.

AMBRE-16 experiment

See the Supplemental Material for primer sequences. The standard
protocol for NEB Crimson LongAmp Taq is used for 50-mL PCR
reactions with the following changes. The same mix of 16 primers
was used in each reaction where each primer is present with a final
concentration of 0.2 mM. The starting genomic DNA for each cell
line reaction is 10 ng. The QIAquick PCR purification kit (Qiagen)

was used to clean up PCR samples. Samples were quantified, and 2
mg of the A549 reaction sample was mixed with 1 mg of each
remaining cell line reaction sample and submitted for PacBio se-
quencing at the UCSD BioGem Core facility. Loading of DNA
samples onto a PacBio SMRT cell is biased toward sequencing
smaller amplicons, and increasing the amount of A549 reaction
sample containing an 11-kb DNA fragment was necessary to suf-
ficiently sequence the A549 DNA fragment.

AMBRE-68 experiment

See the Supplemental Material for primer sequences. The standard
protocol for NEB Crimson LongAmp Taq is used for 50-mL PCR
reactions with the following changes. The same mix of nine
primers was used in each reaction, where each primer is present
with a final concentration of 0.4 mM. The starting genomic DNA
for each cell line reaction is 20 ng.

RUNX1–RUNX1T1 experiment

See the Supplemental Material for primer sequences. The standard
protocol for NEB Crimson LongAmp Taq is used for 25-mL PCR
reactions with the following changes. All primers at 0.4 mM PCR
experiments were under the following conditions: initial de-
naturation for 1 min at 95°C, 10 cycles for 20 sec at 94°C, 30 sec at
63°C, 2 min at 68°C, 28 cycles for 5 sec at 94°C, 30 sec at 61°C, for
2 min + 5 sec for each cycle at 66°C, final extension for 30 min at
64°C, and 4°C hold. Subsampling experiments used the same
primer concentration and thermocycling conditions except ex-
tension time for the first phase is 7 min and the second phase is
7 min with 10 sec increase per cycle.

Tumor:wild-type genomic DNA heterogeneity experiment

See the Supplemental Material for primer sequences. The standard
protocol for NEB Crimson LongAmp Taq is used for 50-mL PCR
reactions with the following changes. Each primer has a final
concentration of 0.4 mM. Each reaction contains »400 ng of gDNA,
with the following tumor-to-normal DNA ratios: 200 ng:200 ng,
40 ng:400 ng, 4 ng:400 ng, and 0.4 ng:400 ng. Normal DNA is
derived from HEK cells.

MCF7 and T98G PCR validation

Primer pair sequences were generated using Primer3 2.3.0 given
a short genomic sequence around the MCF7 and T98G breakpoints
as determined by PacBio sequencing and analysis. See the Sup-
plemental Material for primer sequences. The standard protocol
for NEB Standard Taq is used for 50-mL PCR reactions starting with
250 ng of genomic DNA.

Data access
The sequencing data have been deposited at the NCBI Sequence
Read Archive (SRA; http://www.ncbi.nlm.nih.gov/sra) under ac-
cession number SRX353044. The AmBre software is available at
http://bix.ucsd.edu/AmBre.
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