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Abstract

Beta diversity describes changes in species composition among sites in a region and has
particular relevance for explaining ecological patterns in fragmented habitats. However, it is
difficult to reveal the mechanisms if broad sense beta-diversity indices (i.e. yielding identical
values under nestedness and species replacement) are used. Partitioning beta diversity
into turnover (caused by species replacement from site to site) and nestedness-resultant
components (caused by nested species losses) could provide a unique way to understand
the variation of species composition in fragmented habitats. Here, we collected occupancy
data of breeding birds and lizards on land-bridge islands in an inundated lake in eastern
China. We decomposed beta diversity of breeding bird and lizard communities into spatial
turnover and nestedness-resultant components to assess their relative contributions and re-
spective relationships to differences in island area, isolation, and habitat richness. Our re-
sults showed that spatial turnover contributed more to beta diversity than the nestedness-
resultant component. The degree of isolation had no significant effect on overall beta diver-
sity or its components, neither for breeding birds nor for lizards. In turn, in both groups the
nestedness-resultant component increased with larger differences in island area and habi-
tat richness, respectively, while turnover component decreased with them. The major differ-
ence among birds and lizards was a higher relevance of nestedness-resultant dissimilarity
in lizards, suggesting that they are more prone to local extinctions derived from habitat frag-
mentation. The dominance of the spatial turnover component of beta diversity suggests that
all islands have potential conservation value for breeding bird and lizard communities.

Introduction

Beta diversity, or the amount of change in species composition among sites in a region [1], has
particular relevance for explaining ecological patterns in regional biodiversity [2-4]. Numerous
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dissimilarity indices have been proposed in the literature [5-7] to quantify the variation in spe-
cies composition among sites. All these indices aim to infer the mechanisms behind variation
in species composition [8]. However, it has been shown that broad sense dissimilarity indices
yield identical results under different patterns deriving from different ecological processes [9-
11]. In particular, two antithetic processes both contribute to beta diversity [2, 12]: species re-
placement (spatial turnover) and species richness differences, which may be between nested or
not nested assemblages [9, 13-15]. It is thus critical the need to partition beta diversity into
separate components accounting for these patterns, because confusing two antithetic phenom-
ena as being a single pattern could prevent understanding the ecological processes behind the
observed patterns [9, 16]. As a consequence, partitioning beta diversity will provide a unique
way to understand the variation of species composition among sites, with interest for basic bio-
geography and ecological applications [17-19].

Recently, Baselga [9] proposed that Serensen dissimilarity [20], a monotonic transforma-
tion of strict sense beta diversity (i.e. gamma/alpha), could be decomposed into two additive
components accounting for spatial turnover and nestedness-resultant dissimilarities, respec-
tively. Spatial turnover is caused by the replacement of species from one site to another, which
may be the result of niche and dispersal processes, either contemporary or historical [11, 16,
21, 22]. Contrary to turnover, the nestedness-resultant component is determined by species
loss or gain in nested subsets, which may be due to contemporary or historical processes as se-
lective extinction, selective colonization, habitat nestedness [4, 16, 23-25]. Thus, separating
both components of dissimilarity can help to unveil the ecological processes [26, 27]. For exam-
ple, Baselga et al. [28] found no clear latitudinal gradient in large-scale beta-diversity patterns
of world amphibians. However, when both components were separated, clear latitudinal gradi-
ents were observed, with spatial turnover dominating low latitudes and nestedness-resultant
dissimilarity being more relevant at high latitudes, pointing to marked differences in the pro-
cesses driving beta diversity at low and high latitudes (see also [24]). Besides its interest for
basic biogeographical and ecological questions, quantifying the proportion of each component
of beta diversity is also crucial for planning conservation strategies [22]. If nestedness contrib-
utes more than turnover into overall beta diversity among sites, it might suggest that sites with
richer in species should be prioritized for protection. On the other hand, if the spatial turnover
component is the dominant phenomenon, all sites should be potential targets for conservation
[11]. As a result, many studies applied methods for partitioning beta diversity to delineate con-
servation strategies for various taxonomic groups [4, 29, 30].

Habitat fragmentation caused by human activities compromises the conservation of bio-
logical communities. Biodiversity falls rapidly under habitat fragmentation because species
are prone to local extinction due to habitat loss, and thus animal communities in small habi-
tats have higher extinction vulnerability [31, 32]. In consequence, small habitat patches are
generally considered of low conservation priority and they are given little protection [33-35].
Meanwhile, fragmentation increases beta diversity by creating patchiness in species distribu-
tions because of differential local extinction of species among fragments [36]. Therefore, frag-
mentation represents a challenge for conservation, because the remaining small fragments
may not be sufficient to support viable populations, but still make a substantial contribution
to regional diversity [3, 37]. In this way, small remnants of fragment habitats may have poten-
tial conservation value that should not be overlooked [37]. It is thus relevant to know whether
compositional differences between fragments (i.e. beta diversity) are related to replacement
and/or nested patterns. Although numerous studies have addressed the effects of fragmenta-
tion on species communities (e.g. [38-41]), few studies have used beta-diversity partitioning
for species communities in fragmented habitats, especially comparing data on multiple taxo-
nomic groups [42, 43].
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Here, we study beta-diversity patterns of breeding bird and lizard communities on islands
in an inundated lake in eastern China by partitioning overall dissimilarity among islands into
turnover and nestedness-resultant components. We collected occupancy data on 37 islands for
birds (from 2007 to 2012) and for lizards (from 2007 to 2008). We used these data to assess the
spatial patterns of beta diversity and its components, and address the following questions: (1)
Are beta diversity and its components different between breeding bird and lizard communities?
(2) Which component, turnover or nestedness-resultant dissimilarity, contribute more to over-
all beta diversity of both groups? (3) What are the relationships between beta diversity compo-
nents and differences in island attributes? (4) Based on the relative contributions of turnover
and nestedness-resultant components, what are the potential conservation strategies for biodi-
versity management on land-bridge islands, such as the systems inundated recently? Our initial
expectations were that birds generally have lower overall beta diversity, especially the nested-
ness-resultant component, and thus a lower contribution of nestedness-resultant component
into overall beta diversity because of its higher vagility [4, 24, 44].

Materials and Methods
Ethics Statement

Our research on breeding bird and lizard communities in the Thousand Island Lake was ap-
proved by the Chinese Wildlife Management Authority and conducted under Law of the Peoples
Republic of China on the Protection of Wildlife (August 28, 2004). Chun’an Forestry Bureau and
the Thousand Island Lake National Forest Park granted the permits to conduct the researches.

Study Area

Thousand Island Lake lies at 29°22” t0 29°50" N, 118°34" to 119°15" E and is a large artificial
reservoir in western Zhejiang Province, eastern China (Fig 1). The lake was created in 1959 by
the construction of the Xin’anjiang Dam for hydroelectricity. Flooding approximately 580 km?,
it formed 1078 islands with areas > 0.25 ha when the water reached its highest level (108 m).
The dominant vegetation on the islands is natural secondary forest, mainly of Pinus massoni-
ana, with many broad-leaved trees and shrub species, such as Castanopsis sclerophylla, Liquid-
ambar formosana, Rhododendron farrerae, and Loropetalum chinense. The region has a typical
subtropical monsoon zone, with marked seasonality. The average annual temperature is 17.0°C.
Daily temperature ranges from—7.6°C in January to 41.8°C in July. The annual precipitation of
the region is 1430 mm, mainly concentrated in rainy season between April and June [43].
Land-bridge islands created by construction of dams, such as the islands of the Thousand Is-
land Lake, can be viewed as natural experiments for assessing the effects of fragmentation on com-
munity composition variation [45]. Our study system is particularly well suited for two reasons.
First, the islands were created essentially simultaneously as a result of dam construction and the
quick subsequent inundation, so that all islands have the same ecological background and clear
geological boundaries [46, 47]. Moreover, given the short history of the lake (55 years), all the is-
lands still share an ancestral pool of species [48], and the effects of long-term historical processes
(e.g. glacial cycles and speciation) can be excluded [16, 24, 25]. Second, the islands are relatively
small and accessible, so we were able to survey the animal communities on islands thoroughly sev-
eral times in each year, providing a relatively complete animal inventory in our research system.

Sampling Protocols

Island Attributes. We selected 37 islands (numbered from largest to smallest according to
island area in Fig 1) to encompass as much variation in area and isolation as possible. These
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Fig 1. The 37 study islands in the Thousand Island Lake in Zhejiang Province, China. Study islands
were numbered in order of decreasing area.

doi:10.1371/journal.pone.0127692.g001

islands range from 0.57 ha to approximately 1300 ha, and from about 20 m separation from
the nearest shore of the mainland to over 3.71 km. We characterized islands in terms of area,
isolation and habitat richness, as these variables are recognized as the key determinants of the
probabilities of colonization and extinction [49, 50], thus being potentially relevant factors be-
hind beta diversity and its components [51].

For each island, we measured area in hectares (A). For isolation measures, we used a buffer-
based measure to estimate the isolation, which is generally considered better than distance-
based measures [52]. We estimated isolation (I) as the fraction of buffer area that is water with-
in a 2-km buffer region around a focal island [48]. Between April and November in 2007, we
intensively surveyed study islands, and classified the habitats on each island into seven catego-
ries: coniferous forest, broad-leaved forest, mixed coniferous broad-leaf forests, bamboo
groves, shrubs, grasses and farmland [43]. We then defined habitat richness (Hr) as the number
of habitat types on each island (Table 1).

Bird Sampling. We surveyed bird communities on 37 islands during the breeding season
(April-June) annually from 2007 to 2012. The sampling effort of each island was roughly pro-
portional to the logarithm of area [53]. As a result, eight transect trails were sampled on Island
1 (the largest study island, area > 1000 ha), four on Islands 2 and 3 (island area > 100 ha), two
on four islands (10 ha < island area < 100 ha), and one on each of the remaining small islands
(island area ~ 1 ha for most islands) (Table 1). We used a global positioning system (GPS) to
record the total length of transects on each island.

Transects were generally placed along ridge-lines, and we cleared narrow census trails
(about 20 cm wide) to facilitate surveys [54]. Where islands had more than one habitat type, a
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Table 1. Characteristics of the 37 study islands in the Thousand Island Lake, China.

Island Latitude Longitude Island Isolation Species Species Habitat Number of Total length of
code area (ha) richness of richness of richness (n) transects (n) transects (m)
birds (n) lizards (n)

1 29°31 118°52 1289.23 0.78 43 5) 7 8 3200
11.44”"N  '25.87"E

2 29°30 118°49 143.19 0.88 34 4 6 4 1600
‘30.15°N  '09.31"E

3 29°31 118°55 109.03 0.73 35 4 6 4 1600
‘09.85"N  "15.92"E

4 29°31 118°56 55.08 0.79 32 4 5 2 800
51.52”°N 2447 E

5 29°29 118°53 46.37 0.68 31 3 5 2 800
‘40.04”"N  "39.07"E

6 29°30 118°50 35.64 0.63 27 4 5 2 800
52.90°N  '57.48"E

7 29°32 118°56 32.29 0.88 30 3 5 2 800
‘06.77°N  "13.82"E

8 29°29 118°55 5.69 0.57 30 2 3 1 375
‘45.04"N 4222 °E

9 29°37 118°58 3.42 0.69 24 0 4 1 300
‘07.60°N  '03.22"E

10 29°30 118°53 2.90 0.67 20 1 3 1 275
‘01.91”"N  '08.99"E

11 29°29 118°54 2.83 0.77 25 2 4 1 150
54.89”°N  "13.92"E

12 29°29 118°54 2.29 0.77 26 3 4 1 300
‘45.77°N 2248 E

13 29°32 118°54 2.23 0.98 23 0 3 1 400
'58.32”°N  37.70"E

14 29°34 118°53 2.00 0.74 23 2 3 1 300
‘08.33°N  "42.12"E

15 29°36 118°57 1.93 0.73 24 1 4 1 250
‘45.05°N  '00.39"E

16 29°30 118°53 1.74 0.66 20 2 3 1 300
12.53”°N  '31.07"E

17 29°29 118°54 1.54 0.76 25 1 3 1 375
‘43.37°N  '3345°E

18 29°30 118°49 1.52 0.71 24 1 8 1 250
28.07°N  24.48"E

19 29°31 118°49 1.40 0.68 23 1 3 1 375
14.60°N  '38.74"E

20 29°28 118°54 1.26 0.42 25 1 3 1 200
55.79”°N  '55.49"E

21 29°29 118°54 1.20 0.67 22 1 8 1 225
24.45°N  '01.52"E

22 29°30 118°53 1.20 0.67 23 2 3 1 225
11.27°N  '25.38"E

23 29°30 118°53 1.17 0.63 20 2 3 1 250
19.16”"N  '38.69"E

24 29°34 118°54 1.15 0.67 23 0 3 1 275
‘47.56”°N  "43.16"E

25 29°34 118°55 1.03 0.80 18 1 3 1 250
'36.77°N  "3849"E

26 29°31 118°55 1.01 0.72 24 1 3 1 250

‘45.45”°N 21.56 E
(Continued)
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Table 1. (Continued)

Island
code

27

28

29

30

31

32

33

34

35

36

37

Latitude

29°33

‘06.81”

29°36

51.217

29°31

48117

29°30

'54.55”

29°36

48.30”

29°31

47127

29°33

'58.20"

29°34

'38.59”

29°34

40.16”

29°29

‘42,717

29°32

52.20”

N

N

Longitude

118°54
26.16'E

118°57
43.00"E
118°55
"18.05"E

118°49
21.12"E
118°57
12.92"E
118°55
28.34"E
118°53
‘43.87"E
118°54
'57.84"E
118°54
'34.20"E
118°54
18.86"'E
118°54
‘42.82"E

Island Isolation Species Species Habitat Number of Total length of
area (ha) richness of richness of richness (n) transects (n) transects (m)
birds (n) lizards (n)

0.96 0.98 19 0 3 1 250

0.91 0.74 23 0 4 1 275

0.86 0.70 22 1 3 1 225

0.83 0.74 22 1 3 1 275

0.83 0.75 20 0 4 1 250

0.80 0.74 25 1 2 1 300

0.73 0.80 23 2 3 1 300

0.67 0.75 18 1 3 1 325

0.59 0.68 25 0 3 1 225

0.59 0.78 21 1 3 1 250

0.57 0.95 19 0 3 1 200

Each island is numbered as in Fig 1. Isolation was estimated as the fraction of buffer area that is water within a 2-km buffer region around a focal island.
See more details for these island attributes in the Materials and Methods.

doi:10.1371/journal.pone.0127692.1001

stratified random placement was used to capture all the types. We collected bird occupancy
data along these transects [55] during breeding seasons from 2007 to 2012. In each survey, ob-
servers walked each transect at a constant speed (c. 2.0 km x h™"). We recorded all the birds
seen or heard on the survey island, but excluded high-flying species passing over the islands
during surveys. We surveyed each transect on these islands 78 times over the course of the en-
tire study [48]. Surveys ran from after half an hour after dawn to 11:00 h in the mornings and
from 15:00 to half an hour before sunset in the afternoons. We did not conduct bird surveys if
there was heavy rain, high wind, or high temperature. We alternated the direction observer
walked on each transect randomly to eliminate the potential survey bias [43, 48, 56].

We assessed the completeness of our survey for the largest, and proportionally least sampled
island (Island 1; see Fig 1) by creating species accumulation curves for each of the six years. We
found all curves clearly leveled off before the completion of the surveys, indicating sampling ef-
forts were sufficient on this and smaller islands to capture the full breeding bird communities
[48]. In our study, we only considered terrestrial breeding birds, excluding diving birds, ducks,
gulls, shorebirds, herons and kingfishers whose habitats extensively relies on water. During the
course of breeding seasons from 2007 to 2012, we recorded data total of 60 terrestrial breeding
birds (S1 Dataset).

Lizard Sampling. We used the line-transect method [57] to survey the lizard communities
along transects on 37 islands that are the same as bird surveys during two breeding seasons in
2007 and 2008. Observers walked each transect at a constant speed (c. 10 m x min ') to search
the ground and tree boles with binoculars [43]. We only included the confident identifications
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recorded on the survey island into our analyses [58]. Surveys ran from between 1 h after sunrise
until 5 h after sunrise in good weather condition. The direction observers walked on each tran-
sect and the surveyed islands were also randomly alternated.

In Zhejiang Province, there are only six lizard species [59] that are very common and easy
to identify with confidence. We found all the species on the survey islands except Takydromus
sexlineatus, whose distribution on the nearby mainland is still controversial [43]. Based on the
high survey frequencies (20 times per each transect), we consider that the species lists in our
dataset are complete and reliable (S2 Dataset).

Partitioning Beta Diversity

We partitioned beta diversity into two separate components of species turnover and nested-
ness-resultant dissimilarities [9]. Specifically, this method partitions the pairwise Serensen dis-
similarity between two communities (Bso,) (Eq 1) into two additive components accounting for
species spatial turnover (Bg,) (Eq 2) and nestedness-resultant dissimilarities (Bsye) (Eq 3). The
Simpson dissimilarity index (Bs;n,) describes species turnover without the influence of richness
gradients [5, 30, 60]. Since By, and By, are equal in the absence of nestedness, their difference
is a net measure of the nestedness-resultant component of beta diversity, so that Bse = Bsor —

Bsim [9]. The pairwise dissimilarity indices are formulated as:

b+c
- - 1
ﬂsof’ 2a + b + C ( )
min(b, ¢)
B a + min(b, ¢) )
[b— ¢ a

ﬁsne - Bsor - ﬁsim -

X 3
2a+b+c a-+min(b,c) 3)
where a is the number of species present at both sites, b is the number of species present at the
first site but not at the second, and c is the number of species present at the second site but not

at the first. The first fraction of Eq 3, ;- is similar as By index, Srxd-2min (005131 hoth

? 2a+b+c > 2a+max (b,c)+min (b,c)
of them estimate species richness differences. The second fraction of By,

T s the Simp-
son similarity, 1 — B, which is a measure of nestedness [61]. As a result, By, measures the
fraction of dissimilarity caused by richness differences between nested subsets [9, 15, 19].

To estimate the overall beta diversity of breeding bird communities among all islands, we
used the multiple-site dissimilarity [62]. Overall multiple-site dissimilarity was measured using
multiple-site Serensen dissimilarity (Bsor; Eq 4), which was decomposed into spatial turnover

(Bsivis Eq 5) and nestedness-resultant components (Bsng; Eq 6) [9]:

[ E - min(by, b;) E max i 0ir)]
S Z AR B ()
2[ iSi - ST] + [ i<jmln ij? ]1 maX ij? ]l

[ min(b,, b;)]

ij» Zji

BSOR =

[ S =S+ min(b,, b))

ij) Yji
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ﬂSNE = ﬁSOR - BSIM

E max i» i) E mm b;, b;)
2[ E S —S;] E mm by, b;) E max i» D)

X : (6)
[ S, — S+ | min(b,, b))

ij> Vi

where §; is the species richness of island i, St is the species richness on all study islands (y diver-
sity), and b;; and b;; are the species richness exclusive to island i and j, respectively. The frac-
tions [X;.j min (b;;,b;;)] and [Z;.j max (b;;,b;;)] of the multiple-site dissimilarity are analogous
to the components b and ¢ of pairwise dissimilarity, respectively. The fraction [Z; S; — Sr] anal-
ogous to the component a of pairwise dissimilarity (i.e. the species shared between both sites).
We also calculated the Jaccard pairwise dissimilarity indices proposed by Baselga [19] and
Carvalho et al. [14] for comparison to assess the robustness of our results. We found overall
beta diversity and its components had almost identical results for all three partitioning meth-
ods. A comprehensive review of these methods is out of the scope of this paper, but see [15, 63].

Data Analyses

Nestedness Analysis. We estimated nestedness of breeding bird and lizard communities
using a nestedness metric: NODF (Nestedness metric based on Overlap and Decreasing Filling)
[64]. NODF is generally considered to have better statistical properties, compared to matrix
temperature [65] or discrepancy metric [66]. For example, NODF avoids overestimating nest-
edness (type I errors), and allows deconstructing total nestedness (NODF) into the indepen-
dent contributions of columns (NODFc) and rows (NODFr) (i.e. sites and species) to the
nested patterns [64, 67, 68]. We calculated the NODF indices with the program NODEF version
2.0, and generated null communities using 1000 random simulated matrices based on propor-
tional-row and proportional-column (PP) algorithms [64, 69, 70]. PP algorithm is considered
as the preferred model when research systems contain relatively small islands and the scale of
analysis is small (e.g. Thousand Island Lake) [68, 69].

In our study, we aimed to investigate whether sites with poorer in species are subsets of sites
with richer in species, so we reported the indices of NODF for sites in our study. In addition,
we found no lizard species on eight islands after intensive survey, and thus excluded these is-
lands’ communities from our analyses (Table 1).

Species Richness Modelling. We tested the relationships among island variables using
pairwise Pearson correlation coefficients (r). Species richness on islands was regressed against
island area, isolation, and habitat richness for breeding birds and lizards using linear regres-
sion. We used backward stepwise regression to choose the best-fitted model with variable selec-
tion and model evaluation based on the Akaike information criteria (AIC) [71]. All island
variables were log-transformed to normalize model residuals.

Beta Diversity Patterns. To make comparable dissimilarities computed for breeding bird
and lizard communities with different numbers of islands (bird 37 islands vs. lizard 29 islands),
we computed dissimilarity values for breeding bird communities using a resampling procedure,
taking 100 random samples of 29 inventories and computing the average dissimilarity values
[19]. We then obtained the proportion of nestedness-resultant component to overall multiple-
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site dissimilarity to represent the relative contribution of overall beta diversity: Bari0 = Bsng/
Bsor. Thus, Brao < 0.5 indicates that beta diversity is determined dominantly by species turn-
over, and B, > 0.5 indicates nestedness is the dominant component [24].

We tested whether differences in island attributes (area, isolation and habitat richness) had
significant relationships with bird and lizard beta diversity and their components. The pairwise
dissimilarities between islands are not independent because the species composition of one is-
land affects the dissimilarity of this island with all other islands. We thus used multiple regres-
sion models for distance matrices (MRM) to examine the relationships between the matrices of
overall beta diversity, turnover and nestedness-resultant dissimilarities and the Euclidean dis-
tance matrices of environmental variables [22, 72, 73]. We then obtained the regression slopes
(a) and intercepts (b) by MRM. Because non-independent observations of pairwise distances
will inflate the significance of statistical tests, and our analyses could be affected by spatial auto-
correlation, we used partial Mantel tests (9999 permutations) including spatial distance be-
tween islands as a covariate to estimate the p-values and the Pearson correlation coefficients (r)
[72]. In our study, the regression slopes (a) and intercepts (b) of B, equated the summations
of Bsim and Pype, respectively because of the property of the additive partitioning method.

We performed statistical analyses in R [74] using packages ape [75], betapart [76], ecodist
[77] and vegan [78], and NODF program (version 2.0) [70].

Results
Nestedness Structure

The observed NODEF for sites of breeding birds (N,p,s = 81.66) was significantly lower than ex-
pected from the null model (N, = 85.38, Z-value = —2.49, p = 0.01), whereas the observed
NODF for sites of lizards (Nops = 62.73) was not significantly different (N, = 61.70, Z-

value = 0.39, p = 0.35) (Table 2). It indicated breeding bird communities were significantly
anti-nested (i.e. observed community less nested than expected by null matrices), and lizard
communities were not significantly more nested than random patterns. S1 and S2 Figs showed
the maximally packed matrix for breeding birds and lizards, respectively.

Patterns of Species Richness

Island area was significantly correlated with habitat richness (r = 0.89, p < 0.05), indicating
that larger islands generally support more habitat types. There were no significant correlations
between isolation and island area or habitat richness.

Species richness patterns of breeding birds and lizards are similar as shown by the linear re-
gression models and stepwise analyses: only island area was retained in the best-fitted models
and was positively related to species richness of both groups (Table 3).

Table 2. Results of nestedness analysis using NODF program for species by site matrix of breeding bird and lizard communities on 37 study is-
lands in the Thousand Island Lake, China.

Speicies Number of species Number of island Nobs Nexp (SD) Filling Z-value P
Breeding birds 60 37 81.66 85.38 (1.49) 41.0% —2.49 0.01
Lizards 5 29 62.73 61.70 (2.66) 40.0% 0.39 0.35

Islands with no lizard species (N = 8) were excluded from the analysis. Null model was based on proportional-row and proportional-column constrains with
1000 randomizations. Abbreviations: observed NODF for sites, Nqys; €xpected NODF for sites with standard deviation, Ne,,, (SD); Z-value; Monte Carlo-
derived probabilities, p.

doi:10.1371/journal.pone.0127692.1002

PLOS ONE | DOI:10.1371/journal.pone.0127692 May 18,2015 9/19



@’PLOS ‘ ONE

Vertebrate Dissimilarities on Land-Bridge Islands

Table 3. Linear regression models and stepwise regressions of species richness on island attributes (island area, isolation, and habitat richness)
for breeding birds and lizards on 37 study islands in the Thousand Island Lake, China.

Species richness Variables

Breeding birds Intercept
Area

Lizards Intercept
Area

Estimate Standard Error R? p

1.34 0.01 <0.05
0.09 0.01 0.75 <0.05
0.09 0.03 <0.05
0.24 0.03 0.70 <0.05

Only island variables in the best-fitted model were shown.

doi:10.1371/journal.pone.0127692.t003

Multiple-Site Dissimilarities

Multiple-site Serensen dissimilarity among all study islands was relatively lower for breeding
birds than for lizards (0.77 vs. 0.87, respectively). The spatial turnover component was the larg-
est fraction of overall dissimilarity, and reached similar values in birds and lizards (0.62 vs.
0.64). Therefore, the difference in overall beta diversity of breeding bird and lizard communi-
ties was caused by variation in the nestedness-resultant component (0.15 vs. 0.23) (Fig 2). Be-
cause of the larger turnover values, the ratio of nestedness-resultant component to beta
diversity was < 0.5 in both groups, and lower in birds (Batio = 0.19) than in lizards (B,atio =
0.26). The low B, Values indicated that variation of community compositions of breeding
birds and lizards were predominantly related to spatial turnover.

Pairwise Dissimilarities

No significant relationships existed between difference in isolation and pairwise dissimilarities
of breeding bird communities (Fig 3b, 3e and 3h). The turnover component decreased signifi-
cantly with difference in area (r = —0.38, p < 0.05; Fig 3d), and difference in habitat richness (r
=-0.55, p < 0.05; Fig 3f), respectively. The nestedness-resultant component increased signifi-
cantly with difference in area (r = 0.60, p < 0.05; Fig 3g), and difference in habitat richness
(r=0.72, p < 0.05; Fig 3i), respectively. Overall dissimilarity increased significantly with differ-
ence in area (r = 0.38, p < 0.05; Fig 3a), and difference in habitat richness (r = 0.33, p < 0.05;
Fig 3c), respectively.

In general, lizard communities showed similar relationships between dissimilarities and dif-
ferences in island attributes. There were no significant relationships between difference in iso-
lation and pairwise dissimilarities (Fig 4b, 4e and 4h). The turnover component also decreased
significantly with difference in area (r = -0.17, p < 0.05; Fig 4d), and difference in habitat rich-
ness (r = —0.33, p < 0.05; Fig 4f), respectively. The nestedness-resultant component also in-
creased significantly with difference in area (r = 0.32, p < 0.05; Fig 4g), and difference in
habitat richness (r = 0.68, p < 0.05; Fig 4i), respectively. In contrast with breeding bird commu-
nities, however, overall pairwise dissimilarity of lizard communities had no significant relation-
ship with differences in area, isolation and habitat richness, respectively.

Discussion
Multiple-Site Dissimilarities

As shown by NODF results (Table 2), breeding bird communities were significantly anti-nested,
whereas lizard communities were not significantly more nested than random patterns—neither
of them was significantly nested. We also found that the value of nestedness (NODF for sites)
of lizards (62.73) was smaller than breeding birds (81.66), whereas the nestedness-resultant
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Fig 2. The multiple-site Serensen dissimilarity (8sor) and its components of turnover (Bs;y) and
nestedness-resultant (Bsne) of breeding bird and lizard communities on 37 study islands in the
Thousand Island Lake, China. B,,;, indicates the ratio of Bsne to Bsor-

doi:10.1371/journal.pone.0127692.g002

component of lizards (0.23) was larger than breeding birds (0.15). It should be noted that Bsng
index is not a measure of nestedness itself, but a measure of how different are sites because of
nestedness [9]. Therefore, Bsng depends both on the nestedness (i.e. NODF) and species rich-
ness differences. In our study, the richness differences in lizards (coefficient of variation of spe-
cies richness, CV = 0.61) were much larger than in birds (CV = 0.21). Thus, although
nestedness of breeding bird communities was higher than that of lizard communities, because
of the much larger richness differences in lizards, the dissimilarity due to nestedness (Bsng) was
larger in lizards than in breeding birds.

The B,ati0 indices of breeding birds and lizards were both low in our system (0.19 for birds,
and 0.26 for lizards), indicating that turnover was the dominant contributor to beta diversity.
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Fig 3. The relationship of overall beta diversity (Bsor) and its components of turnover (Bsim) and nestedness (Bsne), With differences in island area,
isolation and habitat richness of breeding bird communities on 37 study islands surveyed from 2007 to 2012 in the Thousand Island Lake, China.
Abbreviations: slope of multiple regression model, a; intercept of multiple regression model, b; Pearson correlation coefficient, r; p-value of Mantel

permutation test, p.

doi:10.1371/journal.pone.0127692.g003

In our study system, the vast majority of islands are relatively small (= 1 ha) [48] (see also Fig
1), and some bird species on these small islands were exclusive to them compared with other
small islands with similar areas. It indicates that composition changes among islands mostly
because of species replacement (moderate species turnover), and less importantly because of
differences in richness (small nestedness-resultant component). Another possible explanation
might be the non-nestedness patterns in our research system, especially the anti-nestedness
structures of breeding bird communities. Anti-nestedness might hypothetically relate to
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Fig 4. The relationship of overall beta diversity (Bsor) and its components of turnover (Bs;m) and nestedness (Bsne), With differences in island area,
isolation and habitat richness of lizard communities on 37 study islands surveyed from 2007 to 2008 in the Thousand Island Lake, China.
Abbreviations: slope of multiple regression model, a; intercept of multiple regression model, b; Pearson correlation coefficient, r; p-value of Mantel

permutation test, p.

doi:10.1371/journal.pone.0127692.g004

assembly rules mediated through competitive interactions that may generate differences in

community composition from island to island, and thus potentially reduce nestedness in our

land-bridge island system [68, 79, 80].

The lower Byatio index of breeding birds is in accordance with our prediction that species
with stronger dispersal ability will be less affected by barriers, and will be able to occupy most
of the appropriate habitats in a region [81, 82]. Moreover, the higher multiple-site nestedness-
resultant dissimilarity of lizards suggests a higher probability of local extinction derived from
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habitat fragmentation. The rationale behind this inference is that, because pairwise nestedness-
resultant dissimilarity is positively associated to differences in area, small islands have suffered
more species losses [11, 31]. Given that the multiple-site nestedness-resultant dissimilarity is
higher in lizards, this suggests that sequential local extinctions linked to nested patterns have
more relevance in lizards than in birds. An alternative interpretation of the lower B4, of
breeding birds is that such species loss on small islands may be systematic (deterministic), rath-
er than stochastic, which may dependent on some species traits, e.g. the degree of generalism
and migration capacity of the species [83-86]. These in turn will need studies with detailed re-
source and migration information to test these hypotheses.

Pairwise Dissimilarities

In our study, we found that neither turnover nor nestedness-resultant components had signifi-
cant relationships with difference in isolation for breeding bird and lizard communities. In
turn, nestedness-resultant components of both breeding birds and lizards increased significant-
ly with differences in area and habitat richness, and spatial turnover had the opposite trend. As
a result, the patterns that overall pairwise dissimilarity of breeding birds and lizards increases
with differences in area and habitat richness were driven by the nestedness-resultant compo-
nent, and not by spatial turnover components.

Regarding island isolation, geological barriers mainly affect animals with poorer dispersal
ability, e.g. the open water surface in our system. Compared with oceanic islands, the relative
small scale of our research system associated with the high mobility of birds diluted the biologi-
cal importance of isolation [2, 48, 87]. Furthermore, the water surface between nearby islands
in the lake does neither seem to be a barrier for lizards, because we did not detect the effects of
dispersal limitation on dissimilarities (Fig 4e—4h). It also means selective colonization may also
play no role in breeding bird and lizard distributions on the islands [43].

As for island area, the main mechanism influencing community composition is selective ex-
tinction. Because all previous mountaintops in the lake region were continuous, the water level
increased rapidly when the dam constructed, and isolated the mountaintops that became the is-
lands. Animals that were sensitive to habitat loss were locally extinct on small islands, but their
populations persisted in long term on larger islands. Because of species loss, assemblages on
smaller islands tend to be a subset of assemblages on larger islands, resulting in nested patterns
[43, 88, 89]. Our results showed that nestedness-resultant dissimilarity increased, and turnover
decreased respectively when difference in area increased (Figs 3g, 3d, 4g and 4d). In other
words, higher nestedness-resultant dissimilarity existed on islands with large difference in area
(also as shown by species richness modeling; Table 3). However, higher turnover existed on is-
lands with similar areas and, as a result, species replacement contributed mostly to overall beta
diversity. This result is consistent with the hypothesis of selective extinction, in accordance
with previous studies in the same system [43].

Finally, regarding habitat richness, turnover and nestedness-resultant components of beta
diversity of breeding birds and lizards followed the same patterns as difference in area: turnover
decreased, and nestedness increased with increasing difference in habitat richness, respectively.
This can be interpreted as turnover being higher on islands with similar number of habitats
(Figs 3f and 4f), while islands with larger difference in habitat richness were prone to have
higher nestedness-resultant components (Figs 3i and 4i). In our study system, island area is
positively correlated with habitat richness, and the effect of habitat richness may still more im-
portant than area both for breeding birds and for lizards, as indicated by the largest correlation
coefficient between the nestedness-resultant component and difference in habitat richness
(r = 0.72 for birds vs. 0.68 for lizards).
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Conclusion

Partitioning beta diversity of breeding bird and lizard communities into turnover and nested-
ness-resultant components in the Thousand Island Lake, China, revealed that overall beta diver-
sity of lizard communities in our system was relatively higher than breeding bird communities,
and spatial turnover contributed dominantly to beta diversity in both groups. Pairwise dissimi-
larities of breeding birds and lizards both increased significantly with differences in area and
habitat richness. Neither turnover nor nestedness-resultant components of breeding birds and
lizards had relationships with difference in isolation, whereas spatial turnover component de-
creased, and nestedness-resultant component increased with differences in area and habitat
richness, respectively. The dominance of the spatial turnover component suggests that all is-
lands have potential conservation value. If a subset of islands is to be prioritized, we then recom-
mend selecting the large islands plus a subset of small islands with high levels of spatial
turnover to represent all species. However, it should be stressed that we identified communities
on islands as conservation unities, so we considered the conservation value of all islands from
the perspective of assemblages, without weighting particular species based on their specific con-
servation status. In addition, multiple-site dissimilarity values in our analyses cannot be inter-
preted in absolute terms, as they are dependent the number of sites. In fact, based on pairwise
dissimilarity values, assemblage heterogeneity seems low to moderate in both birds and lizards.
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(N = 8) were excluded from the analysis. Rows: species (N = 5); columns: island (N = 29, island
codes as in Fig 1); shaded cells: species present; unshaded cells: species absent.
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