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Abstract: Inhalation of silica particles is an environmental and occupational cause of silicosis, a
type of pneumoconiosis. Development of the lung silicosis is a unique process in which the vicious
cycle of ingestion of inhaled silica particles by alveolar macrophages and their release triggers
inflammation, generation of nodular lesions, and irreversible fibrosis. The pathophysiology of silicosis
is complex, and interactions between the pathomechanisms have not been completely understood.
However, elucidation of silica-induced inflammation cascades and inflammation-fibrosis relations has
uncovered several novel possibilities of therapeutic targeting. This article reviews new information
on the pathophysiology of silicosis and points out several promising treatment approaches targeting
silicosis-related pathways.
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1. Silica and Silicosis

Silica (silicon dioxide, SiO2, or quartz) naturally occurs in the earth´s crust and
can be released in mining, sandblasting, quarrying, or fabrication of artificial stone [1,2].
Silica exists in several crystalline and amorphous forms with diverse physio-chemical
properties. Among them, crystalline silica with its polymerized tetrahedral framework
has the highest pathogenicity [2,3]. Professional exposure to crystalline silica may lead
to: (1) chronic silicosis as a result of more than 10 years of low-moderate exposure dose;
(2) accelerated silicosis, which occurs within 10 years of moderate-high exposure dose;
or (3) acute silicosis (or silicoproteinosis), which develops within 5 years of very high
exposure dose [1,2]. Chronic silicosis is recognized in two forms. Simple (or nodular)
chronic silicosis is characterized by a development of small (<1 cm in size) and hard
nodules in the upper lung lobes. These patients may be asymptomatic or may have
dry cough or exertional dyspnoea [4]. The situation may become complicated when the
silicotic nodules fuse to form conglomerate masses (>1 cm in size), which is characteristic
of the second form of chronic silicosis, progressive massive fibrosis. Clinical signs may
be identical to simple silicosis or may be more serious, with the development of central
cavitation increasing the risk of mycobacterial infection, enlarged hilar or mediastinal
lymphadenopathy, pleural thickening, higher risk of spontaneous pneumothorax, and
weight loss [5]. Accelerated silicosis may initially have a similar pattern to simple chronic
silicosis, but later the development of nodules and masses intensifies [6]. Acute silicosis
may occur within several weeks or less than 5 years of high-intensity silica exposure, which
causes dyspnoea and a cough and rapidly progresses to respiratory failure. Acute silicosis
is associated with hypertrophy of alveolar cells type II and production of excessive amounts
of proteinaceous material, including surfactant proteins [3].

2. Pathomechanisms of Lung Silicosis

The background of pathological changes in silica-injured lungs is complex and not
completely understood. Silica-induced lung injury presumably results from the combined
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action of several interacting pathomechanisms, such as the direct cytotoxic effect of silica on
macrophages, activation of macrophage surface receptors, lysosomal rupture, production
of reactive oxygen species (ROS), activation of inflammasome, production of cytokines and
chemokines, cell apoptosis/pyroptosis, and lung fibrosis [1,7–9] (Figure 1).
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2.1. Recognition of Silica by Macrophage Scavenger Receptors

Silica particles are recognized by receptors localized on the surface of alveolar macrophages.
Among all classes of scavenger receptors (SR), transmembrane proteins SR-AI, SR-AII and
macrophage receptors with a collagenous structure (MARCO) are most associated with sil-
ica binding [10]. SR may play a role in initiation of apoptosis of alveolar macrophages [11].
However, other pattern recognition receptors, e.g., the toll-like receptor (TLR)4 or type 3
complement receptor, may also participate in silica binding [7].

2.2. Direct Cytotoxic Effect of Silica Particles on Macrophages

Respirable silica particles (<10 µm), which pass through a mucociliary defence mecha-
nism, may reach distal lung compartments where they initiate a cascade of actions, leading
to the development of lung silicosis [12]. In the terminal airways and alveoli, the inhaled
silica is engulfed by alveolar macrophages, which are primarily responsible for clearing
the lung from debris [7]. However, silica is extremely toxic for macrophages. If alveolar
macrophages survive contact with silica, they can migrate out of the lung, or they can
move to the lung interstitium, where they change into activated interstitial macrophages,
important for progression of silica-induced lung injury [13,14]. As discussed in a review
by Hamilton et al. [7], the cytotoxicity of silica particles may be explained by several
hypotheses. Crystalline silica (quartz, cristoballite, and some forms of tridymite) are in-
herently piezoelectric, i.e., they generate opposite electric charges on opposite sides of
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the physical structure during the application of pressure. These piezoelectric properties
of the crystals, particularly of those freshly fractured, trigger the generation of ROS. In
addition, silanol (SiOH) groups present on the surface of silica, although not free radicals,
may form hydrogen bonds with oxygen and nitrogen groups in the cell membranes. Thus,
the initial toxicity to macrophages and silica-induced production of ROS seem to be the
critical mechanisms of initiation and progression of inflammation and fibrosis [3,15,16].

Before inhaled silica is engulfed by alveolar macrophages, the surface of the silica is
coated by components of pulmonary surfactant, likely to protect from silica-induced lung
injury. It is presumed that alveolar macrophages in response to silica stimulation enhance
type II cells to produce more surfactant [7,17]. However, although surfactant is increasingly
produced after silica inhalation, its effect is only temporary because of early destruction
by enzymes [18,19]. On the other hand, high production of surfactant may complicate
the situation as surfactant phospholipids and proteins undergo oxidative modifications
in contact with crystalline silica, and uncontrolled surfactant overproduction may lead to
acute silicoproteinosis [7,20].

2.3. Production of Reactive Oxygen and Nitrogen Species

There are several sources of ROS and reactive nitrogen species (RNS) associated with
interaction of silica with macrophages. In vitro and in vivo studies confirmed that freshly
fractured silica particles are more toxic than aged ones [21,22], while even more cytotoxic is
the silica contaminated with iron producing more hydroxyl radicals [23]. Particle-derived
production of ROS results from a homolytic cleavage of silicon-oxygen bonds to Si• and
SiO•, or from a heterolytic cleavage generating Si+ and SiO+ [24]. These by-products
may react with oxygen, and the freshly cut silica may also react with carbon dioxide or
water to form several other ROS [7]. Additional free radicals including superoxide anion,
hydroxyl radicals, and hydrogen peroxide are generated, and nitric oxide synthase (NOS)
is increased in activated phagocytic cells in response to silica [25]. Silica exposure can
also stimulate the activities of antioxidants, as demonstrated in the rat lung where silica
inhalation increased manganese-containing superoxide dismutase (MnSOD) mRNA and
glutathione peroxidase (GPx) mRNA levels [26].

Besides direct cytotoxicity, free radicals act as important initiators of a wide cascade of
cellular responses, including mitogen-activated protein kinase (MAPK) phosphorylation,
activation of transcription factors nuclear factor (NF)-κB and activator protein (AP)-1, and
activation of inflammasome [8].

2.4. Rupture of Lysosomes

After recognition of silica by alveolar macrophages, they engulf the silica particles.
The internalized silica is entrapped by lysosomes, where a low pH-activated variety of
enzymes (phosphatases, proteases, nucleases, and enzymes hydrolyzing polysaccharides
or lipids) is prepared to digest the particle. Enzymes also despoil the protective surfactant
coating on the surface of silica particles [27]. However, the silica particle cannot be broken
down by the enzymes, which results in the loss of lysosomal membrane integrity and
the release of lysosomal enzymes, including protease cathepsin B. Cathepsin B activates
caspase-1 and cell apoptosis as well as inflammasome [28,29]. Freed silica particles can be
bound and internalized by other macrophages, creating a vitious cycle of the toxic effects
of silica on alveolar macrophages [7]. ROS generated in phagocytosis and cell contents
released due to cell apoptosis act as potent activators of various processes including the
activation of inflammasome [8].

2.5. Activation of Inflammasome

As recently reviewed in several excellent articles [8,9,27,30,31], silica-induced activa-
tion of inflammasome is a fundamental pathway leading to lung injury. Here, we present
only a short overview of inflammasome-mediated processes, which is essential for un-
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derstanding the potential therapeutical targets provided in the following subsections of
this article.

Besides surface membrane-bound receptors such as TLRs, which survey the extracel-
lular environment, the innate immune system also contains a special system of intracellular
receptors, e.g., the nucleotide-binding and oligomerization domain (NOD)-like receptors
(NLRs) [32]. In silica-induced lung inflammation and injury, NLRP3 inflammasome is
of fundamental importance. NLRP3 inflammasome is an intracellular complex structure
that contains a C-terminal leucine-rich repeat (LRR) for ligand recognition, a central NBD
(NACHT) domain for an oligomerization, and a N-terminal pyrin domain (PYD) for a sig-
nal transduction [9]. This NLRP3 protein binds to an adaptor protein (apoptosis-associated
speck protein) with a caspase activation and recruitment domain (ASC), and the caspase-
1. NLRP3 protein serves as a protein complex platform, while ASC bridges NLRP3 to
caspase-1, allowing for its activation [30]. When caspase-1 is activated, it cleaves imma-
ture, pro-forms of interleukins (IL)-1β, IL-18, and IL-33 to mature, active forms. IL-1β,
IL-18, IL-33, high mobility group box 1 protein (HMGB1), and some heat-shock proteins
facilitate various inflammation processes, including fever, promoting T-cell survival, B-cell
proliferation, mediation of leukocyte transmigration, etc. [33]. In addition, caspase-1 in-
duces a pyroptosis, a special, highly inflammatory type of cell death characterized by both
apoptotic and necrotic features. In this process, deoxyribonucleic acid (DNA) cleavage,
nuclear condensation, and rupture of the plasma membrane are accompanied by a release
of pro-inflammatory mediators including IL-1α, IL-1β, IL-18, and HMGB1 [34].

Under normal conditions, the NLRP3 complex is auto-repressed owing to an internal
interaction between the NACHT domain and LRR. However, the presence of any pathogen-
associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs)
removes this auto-regression, and NLRP3 inflammasome is activated. NLRP3 acts as a
general sensor of cellular stress, and several factors have been recognized as activators of
NLRP3 inflammasome [31].

Crystalline silica may be also engulfed by airway epithelial cells [35] leading to activation
of NLRP3 inflammasome with a subsequent release of IL-1β [36]. These findings suggest that
the mechanism of NLRP3 activation is not restricted only to classical phagocytes.

Activation of NLRP3 inflammasome may be stimulated by changes in the cytosolic
levels of some cations, particularly K+, Ca2+, and H+, while normal composition of the in-
tracellular environment prevents the activation of NLRP3 [37–39]. Changes in intracellular
K+ concentrations are strongly associated with adenosine triphosphate (ATP), while the
ATP-gated ion channel triggers a rapid efflux of K+ from the cell. The resulting decrease
in the intracellular concentration of K+ activates NLRP3 inflammasome and triggers ROS
production [31]. Extracellular ATP released at cell death serves as an indicator of cellular
damage or necrosis and thereby acts as DAMP and an activator of NLRP3. However, silica
crystals may also trigger an extracellular delivery endogenous ATP [29]. Extracellular
ATP [29] and ROS [40] activate a purinergic receptor, signaling via a P2X7 receptor, which
mediates K+ efflux, maturation of IL-1, and production of additional ROS [29,41]. More-
over, P2X7 receptor allows for the influx of Na+ and Ca2+, resulting in changes to the ionic
homeostasis of the cell and alteration of the second messenger signaling [42]. P2X7 also
triggers a formation of pannexin 1 channels, which may carry ions and signaling molecules
between the cytoplasm and the extracellular space, and thereby enables direct activation of
NLRP3 by extracellular activators [43,44].

The other possibility of how the inflammasome may be activated in large particulate
activators such as silica is its activation by a lysosome rupture. Release of lysosomal cysteine
protease cathepsin B into the cytoplasm likely activates inflammasome directly or indirectly.
Hornung et al. found that NLRP3 activation by silica crystals requires phagocytosis and
that phagocytosed crystals induce lysosomal swelling and damage. NLRP3 activation was
dependent on lysosomal acidification and involved cathepsin B, suggesting that crystal-
induced NLRP3 inflammasome activation is more dependent on lysosomal perturbation
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than the crystal structure itself [45]. Nevertheless, silica surface reactivity may be also
important, as the coating of quartz particles may attenuate inflammasome activation [46].

In addition, NLRP3 inflammasome is directly activated by ROS [8,31]. Whereas ROS
are also generated in the previously mentioned ways of NLRP3 activation (K+ efflux, ATP,
lysosyme rupture, silica surface) [37,47], activation by ROS seems to be a fundamental way
of NLRP3 activation. However, the role of ROS in influencing the NLRP3 inflammasome
might be even more complicated. Although excessive accumulation of ROS can cause
cellular damage and death, generation of ROS is essential for cell signaling and several
fundamental physiological responses [48]. Similarly, ROS may have contradictory roles in
the activation of inflammasome [8,49].

Another way in which ROS activates the NLRP3 inflammasome is the interaction of
NLRP3 with thioredoxin-interacting protein (TXNIP). In its unstimulated state, TXNIP
is bound to oxidoreductase thioredoxin (TRX). Increase in intracellular ROS concentra-
tions makes a dissociation of this complex, and TXNIP binds to NLRP3, leading to its
activation [31,50]. However, it is not completely clear which primary sources of ROS are
activating the inflammasome. ROS may be generated by NADPH oxidases. This way of
ROS production is of high importance in silica inhalation, where ineffective clearance of
phagocyted material results in chronic activation of nicotinamide adenine dinucleotide
phosphate (NADPH) oxidases and excessive ROS production [47]. ROS may be also gener-
ated by the activity of other enzymes, particularly xanthine oxidase, cyclooxygenase, and
lipoxygenase [48]. Another source of ROS is mitochondria, where ROS are produced in
different stress conditions such as hypoxia, membrane damage, or increased metabolic
rates [51]. The response of mitochondria to cellular stress is mediated through depolariza-
tion of the mitochondrial membrane, ROS release, decrease in ATP, and reversible opening
of the mitochondrial permeability transition pores [52]. A subsequent increase in perme-
ability of the mitochondria membrane may result in a release of mitochondrial contents
and in eventual cell death [53]. Permeabilization of the mitochondrial membrane may be
inhibited by K+, scavenging mitochondrial ROS, or NLRP3 deficiency, but no effect was
demonstrated for cathepsin B or caspase-1 inhibitors. Contrary to this, IL-1β secretion may
be suppressed by K+, scavenging mitochondrial ROS, and both cathepsin B and caspase-1
inhibition [52]. Mitochondrial DNA (mtDNA) released from mitochondria can activate
the NLRP3 inflammasome and may thereby induce apoptosis [54]. In an attempt to avoid
cellular damage, ROS-generating mitochondria are constantly removed by mitophagy, a
special type of autophagy [55]. Autophagy is a cytoprotective process by which the cell
isolates damaged structures and molecules such as organelles, proteins, or pathogens in a
double-membrane compartment named autophagosome; targets the material for degrada-
tion in the lysosome; and reutilizes the components [56]. Inhibition of mitophagy enhances
an accumulation of dysfunctional mitochondria in the cells and their breakdown, leading
to an increase of mtDNA in the cytosol [57].

There is a complex interplay between ROS, inflammasome activation, and autophagy.
Autophagy suppresses ROS generation [58,59] and removes intracellular mitochondrial-
derived DAMPs, inflammasome components or cytokine, and may thereby inhibit inflam-
masome activity [60,61]. Autophagy may also negatively regulate pyroptosis [62]. Vice
versa, ROS may upregulate autophagy [63], representing negative feedback to control ROS-
modulated caspase-1 activation while simultaneously removing ROS-damaged organelles
and proteins [60], and inflammasome negatively regulates autophagy [64]. Thus, inflam-
masome and autophagy may modulate each other by common inhibitory mechanisms,
creating balance between both processes to maintain cell homeostasis [65].

Activation of NLRP3 inflammasome may be influenced by other bioactive agents too.
NLRP3 may be activated by vimentin [66], a type III intermediate filament which is critical
for stabilizing intracellular architecture [67]. On the other hand, NLRP3 inflammasome
is negatively regulated by tripartite-motif protein TRIM30 via the suppression of ROS
production [68]. NLRP3 activity may be also controlled by microRNA (miRNA). While
miRNA-133a-1 suppresses the activation of NLRP3 and production of IL-1β by inhibiting
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expression of mitochondrial uncoupling protein 2 (UCP2) [69], myeloid-specific miRNA-
223 suppresses NLRP3 expression via a conserved binding site within the 3’ untranslated
region of NLRP3, translating into decreased NLRP3 inflammasome activity [70]. Some
anti-apoptotic proteins, e.g., Bcl-2, may also inhibit inflammasome [54].

Additional tissue injury results from activation of other inflammatory pathways. A
variety of DAMPs released from apoptotic or damaged cells can bind to various receptors,
including TLR on macrophages, and trigger the production of cytokines and chemokines,
which recruit neutrophils into the tissue [27,71]. Activation of transcriptional factors NF-κB
and AP-1, leading to the production of pro-inflammatory cytokines, is also triggered by
ROS [8,72].

2.6. Association of Persistent Silica-Induced Inflammation with Fibrosis and Autoimmune Reactions

Although the molecular mechanisms of silica-induced inflammation, fibrosis, and
the related autoimmune responses have not been completely understood yet, there has
been a generally accepted concept supporting the contribution of inflammation in the
development of fibrosis and autoimmune responses due to silica inhalation [2,9,73,74].

Activation of the inflammatory pathways, including inflammasome and NF-κB, due
to exposure to silica particles leads to increased production of pro-inflammatory cytokines.
Among them, elevated levels of IL-1β, IL-18, and tumor necrosis factor (TNF)α are strongly
associated with the development of lung fibrosis [75,76] as they stimulate the recruitment
of fibroblasts and the proliferation of fibroblasts and mesenchymal cells to form fibroblastic
foci, as well as releasing high amounts of components of the extracellular matrix, including
collagen, fibronectin, hyaluronic acid, and proteoglycans [9]. IL-1β enhances the production
of transforming growth factor (TGF)β, the most potent profibrotic substance, which triggers
the activation, proliferation, and transdifferentiation of epithelial cells and fibroblasts into
myofibroblasts generating collagen [77,78]. In addition, IL-1β stimulates the secretion of
neutrophil-attracting CXC chemokines, provoking an influx of neutrophils and sparking
damage to the epithelial cells, and the platelet-derived growth factor (PDGF), which
promotes growth, chemotaxis, and fibrosis [79]. TGFβ, IL-1β, TNFα and ROS increase
the expression of the plasminogen activator inhibitor (PAI)-1, which decreases neutrophil
apoptosis and degradation of the extracellular matrix, prompts recruitment of additional
inflammatory cells, and suppresses the release of anti-fibrogenic growth factors [80,81].
High production of profibrotic substances and recruitment of collagen- and fibronectin-
producing cells, then, leads to the formation of silicotic nodules, scaring of the tissue, and
reduction of areas for gas exchange. Due to the defect in an apoptotic cell clearance (or
efferocytosis), a key process in the resolution of inflammation, silica-induced cellular death
is a source of autoantigenic material, leading to the generation of autoantibodies and an
autoimmune response [1,73,82].

However, there are several recent articles indicating that inhalation of micro- and
nanoparticles is linked to immunosuppression [74,83]. This hypothesis is based on a finding
of increased levels of TGFβ and IL-10, which have both profibrotic and immunosuppressive
effects [84,85]. It is assumed that immunosuppression is initially established to limit early
inflammation but later contributes to chronic fibrosis [83]. On the course of silica-mediated
changes, all three types of inflammation contribute [74]. Initial reactions to inhaled silica be-
long to type 1 inflammation with active phagocytosis by M1 macrophages and recruitment
of neutrophils, both of which are charged by Th1 lymphocytes and innate lymphoid cells
(ILC) group 1, secreting interferon (IFN)-γ, IL-2, and lymphotoxin-α. Acute inflammation is
followed by resolution and tissue repair mediated via specialized pro-resolving mediators
and type 2 cytokines (IL-4, IL-5, IL-9, IL-10, and IL-13) and cells (M2 macrophages, ILC2
cells and Th2 lymphocytes) [74]. These cytokines recruit and activate type 2 effector cells
including eosinophils, basophils, mast cells, and myofibroblasts. As silica particles cannot
be digested by phagocytes, the resolution is extended and incomplete and type 2 inflam-
mation becomes magnified, which leads to interstitial fibrosis, granuloma formation, and
tumorigenesis [74]. Type 3 immune response is mediated by Th17 lymphocytes, which rep-
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resent a subtype of pro-inflammatory helper CD4+ T-lymphocytes producing IL-17, IL-21,
and IL-22 which recruit neutrophils and induce epithelial antimicrobial responses but also
mediate autoimmune diseases. However, polarization of Th17 cells and overproduction of
Th17 cytokines was also found in response to inhaled particles. In addition, inhalation of
silica was associated with elevated regulatory T cell (Treg)-mediated immunosuppressive
response, which downregulates induction and proliferation of effector T cells [86]. Thus,
the silica-induced proliferation of fibroblasts and synthesis of the extracellular matrix, lead-
ing to lung fibrosis, is presumably the result of complex interactions between inflammation
and immunosuppression, which need to be further elucidated [83].

3. Novel Treatment Possibilities

Therapeutic interventions for lung fibrotic diseases including lung silicosis are quite
limited. However, recent studies have suggested the therapeutical potential of several
approaches (Table 1).

3.1. Anti-Fibrotic Drugs

For idiopathic pulmonary fibrosis, two drugs (pirfenidone and nintedanib) have been
recently approved by the U.S. Food and Drug Administration (FDA), but no disease-
modifying drug has been approved for silicosis yet [87]. However, some improvement
for pirfenidone and nintedanib might also be found in silicosis. In in vitro measurement,
pirfenidone added to human bronchial epithelial cells suppressed silica-induced epithelial-
mesenchymal transition (EMT) and activation of NLRP3 inflammasome [88]. In rats,
pirfenidone reduced silica-induced inflammation and alveolar damage; decreased levels
of TNFα, IL-1β and IL-6 in the lung tissue; decreased the expression of collagen I and
vimentin; and suppressed the expression of TGFβ1, Smad2/3 and EMT [89]. Adminis-
tration of tyrosine kinase inhibitor nintedanib in silica- and bleomycin-induced murine
models of lung fibrosis inhibited PDGF receptor activation, fibroblast proliferation, and
fibroblast-to-myofibroblast transformation; reduced lymphocytes and neutrophils in the
bronchoalveolar lavage fluid (BALF); and decreased levels of IL-1β, keratinocyte chemoat-
tractant (KC), tissue inhibitor of metalloproteinase-1 (TIMP-1), and collagen. Histological
investigation showed diminished lung inflammation, granuloma formation, and fibrosis.
The therapeutic effect was dependent on treatment onset and duration [90]. Although
nintedanib is standardly given orally, inhalation was also tested in silica-exposed animals
to promote the local effect of the drug. The authors have demonstrated that small-dose
inhalation might be comparable with oral treatment [91].

3.2. Anti-Cytokine Therapy

There have been several promising approaches that might be efficient in silicosis,
e.g., monoclonal antibodies against pro-inflammatory cytokines or antagonists of cytokine
receptors. Due to the importance of IL-1β-driven inflammation in the development of lung
silicosis, treatment with an IL-1 receptor antagonist (IL-1ra), e.g., anakinra, may reduce the
proportion of damaged and fibrotic lungs. In silica- and bleomycin-instilled murine models
of fibrosis, IL-1ra prevented collagen deposition, decreased the proportion of damaged
lungs and silica-induced formation of nodules but had little or no influence on the number
of cells in BALF [92]. In another study, anakinra and the anti-IL-17 antibody have been
tested in silica-instilled mice. The monoclonal IL-17 antibody attenuated lung inflammation
and accumulation of inflammatory cells, while anakinra decreased silica-induced lung
inflammation and the Th17 response, indicating that IL-1β promotes inflammation by
initiating a Th17 response via an IL-1β/IL-1RI-dependent mechanism [93]. The role of
IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis was
confirmed by Chen et al., who found that IL-17A neutralization by the IL-17A antibody
delayed neutrophil accumulation and suppressed Th17 cell development by decreasing IL-
6 and/or IL-1β, increased Treg cells in an early phase of silica-induced inflammation, and
delayed silica-induced Th1/Th2 immune and autoimmune responses [94]. Nevertheless,
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only one clinical report of anakinra use on a patient with silicosis has been published.
Anakinra, given to the 37-year-old man in a dose of 100 mg/day subcutaneously for 6
months, improved his respiratory functions, oxygen saturation, and inflammatory markers
(C-reactive protein, erythrocyte sedimentation rate) [95].

Table 1. Treatment possibilities tested in animal models of silicosis or fibrosis.

Treatment References

Anti-fibrotic drugs

Pirfenidone [89,96]

Nintedanib [90,91]

Anti-cytokine therapy

Anakinra (IL-1ra) [92,93]

Anti-IL-17 antibody [93,94]

Anti-IL-9 antibody [97,98]

IL-13 immunotoxin [99]

Recombinant soluble TNF receptor [100]

Infliximab [101,102]

Anti CD-11 antibodies [103]

Agents influencing autophagy-lysosomal system

Imipramine [104]

Dioscin [105]

Rapamycin/cAMP [106]

Atractylenolide III [107]

Trehalose [108]

Antioxidants

N-acetylcysteine [109–111]

Corticosteroids

Dexamethasone [112–115]

Flunisolide [116]

Endogenous glucocorticoids

Annexin A1 [117]

Agents increasing cAMP

Roflumilast [118]

Tadalafil [119]

Sildenafil [115]

Agents influencing TGFβ

Emodin [120,121]

Ponatinib [122]
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Table 1. Cont.

Treatment References

Other agents

Rupatadine [96]

Piroxicam [115]

Nicorandil [123,124]

Hesperetin [125]

MicroRNA [126–132]

Mesenchymal cells [133–136]

Extracellular vesicles [137,138]

The blockade of IL-9, a cytokine which belongs to Th2 cytokines, might also be
of benefit. In silica-challenged mice, treatment with an anti-IL-9-neutralizing antibody
inhibited lung fibrosis, as assessed by lung hydroxyproline level, and suppressed the levels
of cytokines and chemokines IL-1β, IL-6, IL-12, CCL2, CXCL1, and TNFα in BALF [97,98].

Participation of IL-13 in fibrogenic processes as a part of the remodeling process
suggests the role of IL-13 in pulmonary fibrosis and consequently of its antagonists in
treatment [139]. Delivery of a recombinant immunotoxin, comprised of human IL-13
and a mutated form of Pseudomonas exotoxin (IL-13-PE), to silica-injured mice inhibited
silica-induced granuloma and fibrotic responses, while silica-induced upregulation of
TNFα, TGFβ, and chemokines increased collagen deposition and airway hyperreactivity
to methacholine and responded to IL-13-PE. In addition, IL-13-PE suppressed both IL-13-
induced proliferation of cultured lung fibroblasts from silicotic mice and silica-induced
IL-8 generation from A549 cells [99].

TNFα could be the other important target for silicosis treatment. In silica- and
bleomycin-induced mice models of pulmonary fibrosis, infusion of a human recombinant
soluble TNF receptor (rsTNFR-β), which acts as a TNFα antagonist, decreased biochemical
markers of lung fibrosis (contents of hydroxyproline and collagen), reduced the proportion
of areas in the damaged lung and, in the silicosis model, diminished the formation of
nodules with rich collagen contents [100]. Administration of infliximab, a monoclonal
immunoglobin G neutralizing TNFα biological activity, to rats with silica-induced acute
lung injury significantly improved lung pathological changes, decreased the count of
inflammatory cells and collagen deposition, declined TNFα in serum and BALF, and sup-
pressed NF-κB signaling and expression of inducible NOS [102]. Similarly, pretreatment
with infliximab in bleomycin-instilled rats effectively prevented them from inflammation,
oxidative stress, and lung fibrosis [101]. Etanercept, a recombinant soluble human TNF
receptor, which binds to TNF and neutralizes its activity, was subcutaneously administered
to 88 patients with idiopathic pulmonary fibrosis (IPF) at a dose of 25 mg twice weekly
as a sole treatment of IPF (clinical trial No. NCT 00063869). Although etanercept was
well tolerated, at 48 weeks no significant differences in efficacy endpoints were observed
between the groups, and a nonsignificant reduction in disease progression was seen in
several physiologic, functional, and quality-of-life endpoints [140].

In silica- and bleomycin-induced experimental models of pulmonary fibrosis, treat-
ment with monoclonal antibodies specific for the leukocytic integrins CD-11a or CD-11b
prevented collagen deposition, even when given in established pulmonary fibrosis. Anti-
CD-11 antibodies mitigated fibrosing alveolitis and decreased lymphoid infiltration and
platelet microthrombi associated with both types of alveolitis but had little to no effect on
the cellularity of BALF [103].

Due to their significant role in the progression of silica-induced fibrosis, blockade of
IL-10 or intervention with IL-10 signaling pathways could be also valuable [85,141,142].
However, there has been no study published yet on the use of an IL-10 blocker in animal
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or clinical studies of silicosis. Additional studies are necessary to determine whether this
therapeutic option might be useful for patients affected by particle-associated disorders [83].

3.3. Blockers of Inflammasome Activation

As demonstrated in an excellent review by Zahid et al. [143], inflammasome activity
may be suppressed by a number of inhibitors acting at various levels. Primarily, inflamma-
some activation may be prevented by suppression of the factors leading to its activation,
i.e., blocking NF-κB expression, mitochondrial stress, lysosomal damage, extracellular
ATP, K+ efflux, etc. Oxidized ATP as an antagonist of ATP declined inflammasome activa-
tion, caspase-1-mediated cleavage of IL-1β, and K+ efflux in hyperoxia-exposed alveolar
macrophages [144]. Suppression of activation of NLRP3 inflammasome with a subsequent
reduction in IL-1β responses was observed after inhibition of phagocytosis, phagoso-
mal acidification or cathepsin B activity [45,145], or via inhibition of K+ efflux by high
extracellular K+ concentration [37,146].

In addition, there is a variety of small-molecule agents acting as indirect or direct
inhibitors of inflammasome activation, inhibitors of constituents of NLRP3 inflammasome,
direct inhibitors of NLRP3 protein, or caspase-1 inhibitors [143,145,147,148]. Many of these
inhibitors of NLRP3 inflammasome have remarkable therapeutic potential. However, none
of them has been approved by FDA, and therefore the evolution of potential inflammasome
inhibitors with high specificity, stability, and low toxicity still continues [143,148].

3.4. Agents Enhancing an Autophagy-Lysosomal System

Crystalline silica-induced destruction of lysosomes impairs autophagic substrate
degradation in alveolar macrophages. As accumulation of autophagosomes causes damage
to macrophages, restoring the function of the autophagy-lysosomal system and enhancing
the autophagic flux could alleviate silica-induced persistent inflammation and fibrosis [108].

Various inhibitors of lysosomal processing, which, e.g., increase lysosomal pH (lysoso-
motropic weak base ammonium chloride), inhibit cathepsin D (pepstatin A) or acidic sph-
ingomyelinase (despiramine), or blunt the surface-active sites of silica crystals (aluminium
lactate), may reduce activation of caspase and cell apoptosis [28]. Phagolysosome mem-
brane permeabilization may be also blocked by imipramine, which is an FDA-approved
tricyclic antidepressant drug with lysosomotropic characteristics. Imipramine decreased
silica-induced cytotoxicity and release of mature IL-1β from alveolar macrophages in vitro,
as well as reducing silica-induced inflammation in a short-term murine model and silica-
induced lung injury and fibrosis in a long-term in vivo model [104].

As previously mentioned, autophagy is an intracellular process regulating the cycle
of synthesis and degradation of cellular components. Engulfment of silica results in a
lysosomal rupture, which may cause an accumulation of autophagosomes in the alveolar
macrophages. The abundant accumulation of autophagosomes may lead to apoptosis in
alveolar macrophages. Thus, autophagy may alleviate silica-induced pulmonary fibrosis
by decreasing apoptosis of macrophages, and, vice versa, the blockade of autophagy may
aggravate the apoptosis of alveolar macrophages [149,150].

Several possibilities of how to influence the autophagy activity have been recently
reviewed [150,151]. For instance, the autophagy activity in fibroblasts may be increased by
upregulated expression of miR326 [126], and alveolar macrophage-specific autophagy is
stimulated by dioscin [103]. Enhancement of autophagy by rapamycin and cAMP protected
alveolar epithelial cells from apoptosis and attenuated silica-induced pulmonary fibrosis
in mice [106]. Autophagy in macrophages can be also promoted by dioscin, a component
of traditional Chinese medicine, which stimulates the process of autophagic degradation,
further protecting alveolar macrophages from mitochondria-dependent apoptosis [103]. Ac-
celerated activity of autophagy and decreased apoptosis of alveolar macrophages were also
observed for another natural extract, a component of Atractylodes rhizome atractylenolide
III (ATL-III) [107].
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Another substance influencing autophagy is trehalose, a non-reducing disaccharide,
which acts as a regulator of transcription factor EB (TFEB), a master gene for lysosomal
biogenesis driving expression of autophagy and lysosomal genes [152]. In silica-exposed
mice, silica increased TFEB nuclear localization and expression in macrophages, while
TFEB overexpression or treatment with trehalose acting as a TFEB activator alleviated
lysosomal dysfunction, enhanced autophagic flux, and reduced apoptosis, inflammatory
cytokine levels, and fibrosis [108]. Similarly, in alveolar macrophages collected from
workers professionally exposed to silica, the addition of trehalose restored autophagy-
lysosomal function, accelerated the process of autophagic degradation, and decreased
levels of cleaved caspase-3 [149].

Autophagy may also be influenced by administration of mesenchymal cells (MSCs).
However, as recently reviewed by Ceccariglia et al., the relation of autophagy and MSCs is
complex, and the mechanisms through which MSCs can modulate the autophagy of target
cells and how autophagy can affect MSCs’ therapeutic properties have been under research.
Modulation of autophagy in MSCs may affect their properties and change their therapeutic
potential. On the other hand, MSCs can affect autophagy in the immune cells involved
in injury-induced inflammation, reducing their survival, proliferation, and function and
favoring the resolution of inflammation [153]. One of the studies where the relation of
autophagy and effects of MSCs were tested is the study by Zhu et al. Bone-marrow-derived
MSCs decreased expressions of autophagy-associated proteins, microtubule-associated
protein light chain 3 (LC-3) and autophagy-related gene Beclin-1 in alveolar macrophages
and attenuated immune and autophagic activity, which may inhibit the progress of silicosis
caused by damage of alveolar macrophages and promote a fibrotic lung recovery in a rat
model of silicosis [133].

3.5. Antioxidants

Several NADPH oxidases associated with phagocytosis of silica have a common
P22PHOX subunit. Blocking it may impair NLRP3 activation and thereby may be used as
a therapeutic target [47]. Another promising target may be NAD-dependent deacetylase
sirtuin (SIRT)-1, which stimulates the expression of antioxidants through the FoxO pathway
and suppresses NF-κB signaling and NLRP3 activity. Vice versa, high concentrations of ROS
can inhibit the activity of the SIRT-1 enzyme, e.g., by evoking oxidative modifications on
its cysteine residues, which enhances NF-κB signaling and inflammatory responses [154].

In a rat model of silica-induced lung injury, treatment with N-acetylcysteine (NAC) re-
duced the fibrotic score, decreased hydroxyproline and malondialdehyde (MDA) concentra-
tions in the lung, and prevented silica-induced increases in TNFα, IL-8 and high-sensitivity
C-reactive protein in BALF and serum, as well as reducing the mitochondrial apoptosis
pathway [109,110]. Similarly in silica-damaged mice, NAC ameliorated silica-induced
pulmonary inflammation, lung injury, as demonstrated by down-regulation of oxidising
enzymes and lower levels of MDA, enhanced antioxidant activity, increased expression of
E-cadherin, and decreased expressions of vimentin and cytochrome C [111].

In recent clinical studies carried out on patients with silicosis, NAC was combined
with a calcium channel blocker tetrandrine, which can also alleviate pulmonary fibrosis
and inflammation by reducing the level of type I and III collagen mRNA and collagen
deposition in the lung. This treatment combination improved the pulmonary function
and exercise tolerance of patients and inhibited levels of IL-6, TNFα, TGFβ1, and matrix
metalloproteinase (MMP)-7 [155,156].

3.6. Corticosteroids

Similarly, for acute lung injury [157], opinions on the use of corticosteroids in silicosis
are contradictory. Several studies showed that corticosteroids may effectively mitigate
acute silica-induced pulmonary inflammation. For instance, in silica-instilled rats, pretreat-
ment with dexamethasone significantly reduced markers of inflammation and oxidative
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stress [112], reduced NF-κB expression, and decreased the count of total cells and neu-
trophils in BALF [113].

However, the efficacy of corticosteroids in the mitigation of lung fibrotic changes was
largely non-homogenous and depended on the animal species or type of corticosteroid used.
Barbarin et al. found that dexamethasone treatment reduced the lung fibrotic reaction in
silica-injured rats, while no effect on fibrosis was found in mice [114]. Similarly, in another
study on mice, dexamethasone treatment diminished lung injury, cellular inflammation
and pro-inflammatory cytokine expression (TNFα, IL-1β, and KC) but had no effect on
silica-induced lung fibrosis and expression of the fibrogenic and suppressive cytokines
TGFβ and IL-10 [115]. In contrast, intranasal corticosteroid flunisolide inhibited granuloma
and fibrotic responses, observed 28 days after the silica challenge in mice. Flunisolide
suppressed the silica-induced upregulation of macrophage inflammatory proteins (MIP)-
1α/CCL-3 and MIP-2/CXCL-2, decreased TNFα and TGFβ, and reduced deposition of
collagen and airway hyperreactivity to methacholine. In addition, flunisolide effectively
repressed the responses of proliferation and MCP-1/CCL-2 production in IL-13-stimulated
lung fibroblasts from silica- or saline-challenged mice [116].

Contrary to the non-convincing effect of exogenous corticosteroids, positive results
were found for endogenous glucocorticoids, i.e., for endogenous glucocorticoid-regulated
protein annexin A1. Treatment with N-terminal ANXA1-derived peptide annexin 1-(2-26)
in silica-instilled mice reduced concentrations of fibrotic and chemotactic cytokines, which
resulted in inhibition of leukocyte migration, generation of pro-inflammatory cytokines, col-
lagen deposition, and granuloma formation in the lung parenchyma, while these variables
were only partially inhibited by dexamethasone [117].

3.7. Other Agents Reducing Inflammation and Fibrosis

There is a wide number of agents belonging to various pharmacological groups that
may effectively suppress inflammation and fibrosis. For instance, rupatadine, a dual
antagonist of histamine and platelet-activation factor (PAF), enhanced the resolution of
inflammation and fibrosis in a dose-dependent manner in both bleomycin- and silica-
induced pulmonary fibrosis models. Rupatadine reduced the inflammation score, collagen
deposition and EMT, and infiltration or expression of inflammatory cells or cytokines in the
lung tissue improved lung function and decreased animal death, while providing superior
therapeutic efficacy compared with pirfenidone [96]. Nonsteroidal anti-inflammatory
drug (NSAID) cyclooxygenase inhibitor piroxicam reduced lung inflammation but had
no effect on the content of collagen or levels of TGFβ or IL-10 in the lungs of mice with
silicosis [115]. Nicorandil, an antianginal and K+ channel opener agent, exerted potent
antioxidant, anti-inflammatory and antifibrotic properties, which decreased cell counts,
lactate dehydrogenase (LDH), TNFα, TGFβ and total protein levels and upregulated
nuclear factor erythroid 2-related factor 2 (Nrf-2) and heme oxygenase-1 levels in BALF, as
well as decreasing markers of inflammation (NF-κB, inducible NOS, and myeloperoxidase)
in the lung, mitigating oxidative and nitrosative stress, reducing pulmonary edema and
collagen deposition, and alleviating histopathological signs of pulmonary fibrosis in a
rat model of silicosis [123]. Similarly, favorable results for nicorandil have been also
demonstrated in rats with a bleomycin-induced model of lung fibrosis [124].

Other promising group of agents positively influencing inflammation and fibrosis are
phytomedicines [158]. There is a number of natural compounds that have been success-
fully tested in the experimental silicosis. For instance, steroidal saponin dioscin reduced
infiltration of macrophages, as well as B- and T- lymphocytes, into the lung, caused a secre-
tion of pro-inflammatory and profibrotic cytokines, and inhibited TGFβ/Smad3 signaling
and fibroblast activation in crystalline silica-induced pulmonary fibrosis in mice [159].
Dioscin can also promote autophagy in macrophages, as demonstrated in silica-injured
mice, where it reduced mitochondria-dependent apoptosis and cytokine production in alve-
olar macrophages [105]. The natural flavonoid compound hesperetin (HSP) decreased the
extent of alveolitis and pulmonary fibrosis; reduced levels of MDA; increased the activities



Int. J. Mol. Sci. 2021, 22, 4162 13 of 22

of antioxidant enzymes and total antioxidant capacity; inhibited the synthesis and secretion
of TGFβ1; reduced pro-inflammatory cytokines IL-1β, IL-4, and TNFα; and increased the
levels of anti-inflammatory factors IFN-γ and IL-10 in rats exposed to silica [125]. Similar
effects of hesperetin, probably mediated via inhibition of NF-κB, were also observed in a
rat model of ventilator-induced acute lung injury [160].

3.8. Agents Increasing cAMP and cGMP

Other promising approaches include increasing concentrations of cyclic adenosine
monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP). For instance,
concentrations of cAMP might be elevated by forskolin, a natural extract from Coleus
forskohlii (Plectranthus barbatus), via activation of adenylyl cyclase [161]. cAMP then
binds to the NLRP3 protein and targets it for degradation, thus interrupting the ac-
tion of inflammasome and production of IL-1β in human macrophages [162]. However,
forskolin may also down-regulate the protein levels of IL-1β and TNFα by influencing the
TLR4/MyD88/NF-κB signal pathway [163].

A similar effect on cAMP and/or cGMP may be reached by phosphodiesterase (PDE)
inhibitors [164]. Both nonselective and selective PDE inhibitors [118,165–167] may suppress
tissue remodeling and lung fibrosis, and their positive effect may also be observed in silica-
induced lung injury and fibrosis. For example, administration of tadalafil, a selective PDE-5
inhibitor, significantly reduced markers of inflammation (number of inflammatory cells in
BALF, TNFα), lung injury (total lung protein, serum LDH activity), and oxidative stress
(MDA, nitrite/nitrate), as well as increasing lung antioxidant activity (lung SOD activity
and glutathione content) but decreasing TGFβ1 and collagen contents, which correlated
with a decline in thickness of the blood vessel walls, restoration of normal respiratory
functions and reduction in airway hyperactivity [119]. In a murine model of silicosis,
another PDE-5 inhibitor sildenafil also mitigates lung inflammation without modifying
collagen, TGFβ or IL-10 lung content [115].

3.9. Agents Influencing TGFβ-Signaling

TGFβ1 plays a key role in fibrotic tissue responses, including lung fibrosis, and the
intervention of TGFβ1 expression. Its signaling appears to be highly promising thera-
peutic target for intervention in fibroproliferative diseases [78,168]. A variety of agents
have been developed to block expression of TGFβ1, its receptor or signaling molecules at
different levels of TGFβ activation and signaling, such as integrins, MMP, semaphorin 7a,
phosphatase and tensin homolog agonist, prostaglandin E2, microRNA, lysyl oxidase-like
2, soluble TGFβ type II receptor (TβRII) fragments, TGFβ-neutralizing antibodies and
TGFβ type I receptor (TβRI) kinase inhibitors 2, etc. [168,169]. Some of these possibili-
ties have been successfully tested in bleomycin-induced animal models of fibrosis. For
instance, transfection of the sTGFRII gene attenuated apoptosis, injury, and fibrosis [170],
as well as anthraquinone emodin obtained from Rheum palmatum L., which is known for
its anti-inflammatory, immunosuppressive, and pro-apoptotic effects, suppressed TGFβ-
induced EMT and fibroblast activation [120,121]. Similarly, ponatinib, a multi-targeted
tyrosine-kinase inhibitor, reversed EMT, inhibited apoptosis of alveolar type I cells, and
prevented a pulmonary fibrosis by suppressing the TGFβ1/Smad3 pathway [122]. Another
promising target may be caveolin 1, the main protein present in small invaginations of
the plasma membrane of some cells (caveolae). Caveolin 1 interacts with many receptors
and molecules and participates in the internalization, trafficking and degradation of TGFβ
receptors [171,172]. However, because of the important function of TGFβ1 in immune
and cellular homeostasis, direct or complete blocking of TGFβ1 or its signaling would not
be tolerable; therefore, alternative ways of selective inhibition of the pathologic effect of
TGFβ1, preserving other necessary biological functions, should be tested [168].
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3.10. MicroRNA

Noncoding microRNAs modulate the expression of a number of protein-coding genes
at a postranscriptional level, which may be associated with the development of pulmonary
fibrosis [173]. As previously mentioned, several microRNA (miR-133a-1 and miR-223) sup-
press NLRP3 inflammasome [69,70] and therefore may be useful in the treatment of silicosis.
Recently, several miRNA have been successfully used in in vitro or in vivo silica studies.
For example, miR-326 inhibited inflammation and promoted autophagy activity [126],
miR-449a reduced lung fibrotic lesions and upregulated autophagic activity [127], miR-326
inhibited TGFβ1 expression and attenuated the lung fibrotic response [128], miR-29b and
miR-34a suppressed silica-induced EMT [129,130], miR-503 mitigated the TGFβ1-induced
effects in fibroblasts [131], and miR-542-5p reduced the proliferation of fibroblasts and
inhibited silica-induced pulmonary fibrosis [132].

3.11. Mesenchymal Stem Cells

Mesenchymal stem cells (MSCs) are multipotent cells obtained from bone marrow,
adipose tissue, the umbilical cord, etc., which serve as progenitors for connective tissue
cells and stimulate the growth, repair, and survival of other cells and tissues [174]. Due
to their beneficial immunomodulatory and regenerative capacity, MSCs are a potential
therapy for several acute and chronic lung diseases, including pulmonary fibrosis [175,176].
Within the last decade, there have been several clinical studies on the use of MSCs in
IPF [177–179], showing a good safety profile.

However, less is known about the possible advantages of stem cell therapy in silicosis.
In several experimental studies, this kind of therapy exerted valuable effects on inflam-
mation and lung fibrosis. For instance, the use of adipose-derived MSCs in silica-induced
lung injury in rats suppressed the inflammatory response and expression of caspase-3
protein and increased the Bcl-2/Bax ratio, suggesting anti-fibrotic effects [134]. Treatment
with bone marrow mesenchymal stem/stromal cells enhanced the expression of epithelial
marker proteins and decreased the expression of fibrosis marker proteins, while attenuating
the Wnt/β-catenin signaling pathway, which is abnormally activated in silica-induced
pulmonary fibrosis [135]. Similarly, injection of bone marrow MSCs-conditioned medium
attenuated silica-induced pulmonary fibrosis; decreased the collagen deposition and num-
ber of nodules; and suppressed collagen I, collagen III, and fibronectin mRNA, as well as
the content of TGFβ1 and hydroxyproline, while alveolar epithelial markers were upregu-
lated [136]. As mentioned before, transplantation of mesenchymal cells may also influence
the autophagic activity of alveolar macrophages [133].

Treatment with autologous bone marrow MSCs was used in four patients with pul-
monary silicosis who had developed lung fibrosis (clinical trial No. NCT01977131). The pa-
tients were given autologous bone marrow MSCs previously transfected by a vector contain-
ing human hepatocyte growth factor (HGF) cDNA (MSCs/HGF), which were intravenously
administered weekly for three consecutive weeks at a dose of 2 × 106 cells/kg [180]. The
treatment was safe, and the respiratory symptoms (cough and chest distress) ameliorated
within six months post-therapy, accompanied by an improvement in pulmonary func-
tion. The ratios of peripheral CD4- and CD8-positive cell concentrations elevated, serum
IgG levels returned to their normal value, and a computer tomography investigation
showed partial absorption of the nodular and reticulonodular lesions in the lung during
following twelve months [180]. Another small prospective, non-randomized, single-center
longitudinal study was carried out on five patients with silicosis. Bone marrow-derived
mononuclear cells (BMDMCs) were administered via bronchoscopy (2 × 107 cells) into both
lung lobes. Similar to the previously mentioned study, no adverse events were observed
during or after BMDMC administration. Lung function, quality of life, and radiologic
features remained stable throughout the follow-up, while an early increase in perfusion
in the lung base was observed and sustained after BMDMC administration (clinical trial
No. NCT01239862) [181].



Int. J. Mol. Sci. 2021, 22, 4162 15 of 22

Although either infusion or instillation of mesenchymal stem stromal or progenitor
cells have been well tolerated almost without serious adverse events causally related to
cell treatment [182], there have been some safety concerns raised about the risk of the
undesirable differentiation of transplanted MSCs resulting in possible malignant transfor-
mation and vascular occlusion [174,183]. For these reasons, several studies have evaluated
the properties of soluble factors and extracellular vesicles of MSCs secretome, which can
be a safer alternative to MSCs since they are cell-free and have a better immunogenicity,
tumorigenicity, and embolism formation side effect profile than MSCs. In addition, they
can mimic many of the desired clinical effects of MSCs [184–186]. Extracellular vesicles can
be classified into three groups according to size, i.e., exosomes, microvesicles/ectosomes,
and apoptotic bodies [174]. Administration of various extracellular vesicles was success-
fully tested in animal models of silicosis that decreased the influx of inflammatory cells,
collagen deposition, enhanced mitochondria bioenergetics, and suppressed macrophage
activation [137,138].

4. Conclusions

Development of silica-induced inflammation and fibrosis is a result of complex in-
teractions between several pro-inflammatory and profibrotic factors. Elucidation of the
key role of NLRP3 inflammasome; NLRP3 inflammasome-associated changes, particularly
cleavage of IL-1β and activation of caspase-1; and identification of factors contributing to
NLRP3 activation have revealed several potential targets for the therapy. Many of these
approaches have been successfully tested in experimental models of silicosis, and some
of them have been used in small clinical studies. In conclusion, better understanding
of pathophysiology has opened up new perspectives for targeted treatment of silicosis;
however, further evaluation in randomized clinical studies is needed.
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