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Abstract: Broad-spectrum beta-lactamase (BSBL)-producing Enterobacteriaceae impose public health
threats. With increased popularity of zoos, exotic animals are brought in close proximity of humans,
making them important BSBL reservoirs. However, not much is known on the presence of BSBLs
in zoos in Western Europe. Fecal carriage of BSBL-producing Enterobacteriaceae was investigated in
38 zoo mammals from two Belgian zoos. Presence of bla-genes was investigated using PCR, followed
by whole-genome sequencing and Fourier-transform infrared spectroscopy to cluster acquired
resistance encoding genes and clonality of BSBL-producing isolates. Thirty-five putatively ceftiofur-
resistant isolates were obtained from 52.6% of the zoo mammals. Most isolates were identified
as E. coli (25/35), of which 64.0% showed multidrug resistance (MDR). Most frequently detected
bla-genes were CTX-M-1 (17/25) and TEM-1 (4/25). Phylogenetic trees confirmed clustering of almost
all E. coli isolates obtained from the same animal species. Clustering of five isolates from an Amur
tiger, an Amur leopard, and a spectacled bear was observed in Zoo 1, as well as for five isolates from
a spotted hyena and an African lion in Zoo 2. This might indicate clonal expansion of an E. coli strain
in both zoos. In conclusion, MDR BSBL-producing bacteria were shown to be present in the fecal
microbiota of zoo mammals in two zoos in Belgium. Further research is necessary to investigate if
these bacteria pose zoonotic and health risks.

Keywords: Escherichia coli; zoo animals; antimicrobial resistance; zoonotic; BSBLs

1. Introduction

The extensive use of β-lactams in human and veterinary medicine has favored global
spread of broad-spectrum beta-lactamase (BSBL)-producing bacteria, especially in commen-
sal Enterobacteriaceae [1]. These enzymes hydrolyze the amide bond of the β-lactam ring,
rendering the antimicrobial ineffective [2]. The most widely used classification scheme for
β-lactamases is the Ambler system, which divides β-lactamases into four classes based on
their amino acid sequences (A to D). Class A (TEM, SHV and CTX-M enzymes), C (AmpC
enzymes) and D (OXA enzymes) function by the serine ester hydrolysis mechanism, while
class B (metallo-β-lactamase (MBL) enzymes) use a zinc ion to attack the β-lactam ring. All
CTX-M-enzymes, most TEM- and SHV-enzymes and some OXA enzymes (i.e., OXA-10 and
OXA-13 to OXA-19) are extended-spectrum β-lactamases (ESBLs). ESBLs hydrolyze most
β-lactam substrates, except for cephamycins and carbapenems, and are inactivated by β-
lactamase inhibitors. As TEM-1, TEM-2 and TEM-13 are only able to hydrolyze penicillins,
and most OXA-type β-lactamases do not hydrolyze extended-spectrum cephalosporins,
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they are not considered ESBLs. On the other hand, AmpC hydrolyze all β-lactam substrates,
except for cefepime and carbapenems, and are not inhibited by β-lactamase inhibitors,
while MBLs are able to hydrolyze all clinical β-lactam substrates, with the exception of
aztreonam [2]. Most BSBL-producing Enterobacteriaceae are also resistant to other commonly
used antimicrobials, such as fluoroquinolones, aminoglycosides, and potentiated sulfon-
amides. In general, multidrug resistance (MDR) is defined as simultaneous resistance to
antimicrobials of at least three different classes. Infections with these MDR bacteria impose
serious public health threats, as they are associated with therapy failure and increased
mortality rates in humans and animals [3].

Genes encoding BSBLs (bla-genes) have been found on chromosomes and mobile genetic
elements, such as plasmids, transposons, and insertion sequences. As they allow intra- and
inter-bacterial DNA mobility, mobile genetic elements have favored the dissemination of BS-
BLs in microbiomes of humans, animals and the environment worldwide [2,3]. Homologous
BSBL genes and plasmid types have been identified in Enterobacteriaceae isolates from humans,
animals, food, and the environment, suggesting BSBL transfer between different eco-systems.
Direct contact with carrier animals, as well as handling and consumption of contaminated
meat have been described as risk factors for BSBL transfer to humans [4].

Few studies, however, have investigated the potential role of zoo animals as reservoirs
of BSBLs. Due to the popularity of zoos and their ability to bring exotic animals in close
proximity to humans, zoos might act as BSBL reservoirs for humans [5]. Fecal carriage
of ESBL- and AmpC-producing Enterobacteriaceae has already been shown in zoo animals
from Japan, China, and the Czech Republic, with prevalence rates varying from 11% up to
32% [5–8]. In the report of Bender and Shulman, zoonotic disease outbreaks in humans, for
example with E. coli O157, were associated with animal contact in petting zoos, farms and
zoological parks [9]. Apart from transfer to humans, zoos may also facilitate transfer of
resistant bacteria and/or resistance genes to other animals and environment, as animals
are often exchanged during breeding programs and due to reintroduction of zoo animals
and/or their offspring into the wild [10]. Furthermore, the increased popularity of free
ranging animal exhibits in zoos may further facilitate interaction between other animals,
humans and the environment [11].

Identification of BSBL reservoirs and risk factors associated with BSBL inter-sectorial
transfer will be important to control further selection and dissemination of BSBL-producing
bacteria. However, not much is known on the presence of BSBLs in zoos in Western Europe.
In this study, we isolated and characterized BSBL-producing Enterobacteriaceae obtained
from zoo mammals at two Belgian zoos.

2. Materials and Methods
2.1. Belgian Zoos

Zoo 1 has around 8000 animals of 590 different species, including 247 fish, 138 avian,
77 mammalian, 62 reptilian, 45 invertebrate, and 21 amphibian species. The zoo occupies a
0.11 km2 site in an urban region located in the northern part of Belgium and has around
1 million visitors per year. Zoo 2 houses more than 7000 animals of 587 different species,
including 234 avian, 116 mammalian, 104 fish, 92 reptilian, 25 invertebrate, and 16 amphib-
ian species. The zoo occupies a 0.75 km2 site in a rural region located in the southwestern
part of Belgium and has around 2 million visitors per year. In both zoos, antimicrobials are
only administered curatively on an individual basis for a limited period of time and under
guidance of the veterinary officer.

2.2. Selective Isolation from Fecal Samples

Fresh fecal droppings were collected from 38 various terrestrial mammals. From Zoo
1, individual samples (n = 6) were obtained from 1 Amur tiger, 1 Western lowland gorilla,
1 Amur leopard and 3 spectacled bears (A–C), while mixed samples (n = 7) were taken
from enclosures occupied by two or more individuals of the same species, namely 2 Asian
elephants, 2 Eastern lowland gorillas, 2 siamangs, 3 African lions, 9 chimpanzees, 2 jaguars,
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and 3 dromedaries. From Zoo 2, individual samples (n = 25) were obtained from 2 Asian
elephants (A–B), 2 African elephant (A–B), 2 Bengal tigers (A–B), 1 giraffe, 1 giant panda,
1 black and white ruffed lemur, 1 ring-tailed lemur, 2 white rhinoceros (A–B), 1 spotted
hyena, 2 hippopotamuses (A–B), 2 African lions (A–B), 1 Sumatran orangutan, 1 snow
leopard, 1 koala, 1 Tasmanian devil, 1 giant anteater, 1 South American tapir, 1 cheetah,
and 1 Alpine marmot.

One hundred mg feces was weighed from each sample, homogenized in 10 mL
Buffered peptone water (Sigma-Aldrich, Saint Louis, MI, USA) and incubated overnight
at 37 ◦C. After incubation, a swab was taken from the homogenized sample, streaked on
McConkey III agar plates (Sigma-Aldrich) supplemented with 8 µg/mL ceftiofur (Sigma-
Aldrich) and incubated overnight at 37 ◦C. Thereafter, all colonies differing in morphology
were selected per sample and purified on Columbia agar plates (Oxoid, Basingstoke, UK).
The purified colonies were identified using MALDI-TOF MS (Bruker Daltonics, Bremen,
Germany) as described previously [12].

2.3. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility testing of each isolate was determined using the disk
diffusion method according to the Clinical Laboratory Standards Institute (CLSI) stan-
dards (M02, 2018). Escherichia coli ATCC 25922 was included as internal quality control.
Isolates were tested for resistance against β-lactams (ampicillin (10 µg), cefalexin (30 µg),
cefquinome (30 µg), ceftiofur (30 µg), amoxicillin-clavulanic acid (20 + 10 µg), imipenem
(10 µg), and cefoxitin (30 µg)) (Neo-Sensitabs; Rosco Diagnostica, Taastrup, Denmark) to
confirm the presence of β-lactamase producers. In addition, susceptibility to aminoglyco-
sides (amikacin (30 µg), gentamicin (10 µg), neomycin (120 µg), and streptomycin (10 µg)),
amphenicols (florphenicol (30 µg)), tetracyclines (tetracycline (30 µg) and doxycycline
(30 µg)), nitrofurans (nitrofurantoin (100 µg)), fluoroquinolones (enrofloxacin (10 µg)),
trimethoprim (5 µg) and trimethoprim-sulfamethoxazole (1.25 + 23.75 µg)) (Neo-Sensitabs;
Rosco Diagnostica) was determined. Clinical resistance was based on CLSI breakpoints
(M100, 2019). Multiple drug resistance was defined as simultaneous resistance to antimi-
crobials of at least three different classes [13].

2.4. Molecular Mechanisms of Resistance

Isolates with a BSBL phenotype were examined by PCR (n = 35), followed by gel
electrophoresis and DNA sequencing for the presence of bla-genes encoding CTX-M,
SHV, TEM and CMY β-lactamases, as previously described [14]. The obtained nucleotide
sequences were compared with those previously described for bla-genes using BLAST with
default parameters.

For all E. coli isolates showing presence of bla-gene(s) (n = 25), whole-genome sequenc-
ing (WGS) was performed to determine presence of a clonal expansion of the isolate(s)
in or between both zoos. In addition, E. marmotae was included to investigate its phy-
logenetic relationship with the E. coli isolates. WGS was performed using the MinION
long-read sequencing platform (Oxford Nanopore Technologies, Oxford, UK). In brief,
isolates were cultivated overnight at 37 ◦C on Columbia agar plates, after which genomic
DNA was isolated using the ZymoBiomics DNA MiniPrep Kit (Zymo Research, Irvine,
CA, USA) according to the manufacturer’s instructions. Subsequently, high molecular
weight DNA of each isolate was used for MinION library preparation using the Rapid
Barcoding Kit (RBK0004, Oxford Nanopore Technologies). A MinION set-up was used for
48 h sequencing runs with a new FLO-MIN106D R9.4.1 flow cell. Quality of the isolation
and sequencing procedure was verified by a positive control strain (E. coli ATCC 25922)
and blank as negative control, included in each separate sequencing run.

Raw sequence read output files were base called using the high accuracy model of
Guppy Basecaller GPU (v3.3.0, ONT), followed by demultiplexing of barcoded samples
with qcat (v1.1.0, ONT). Subsequently, basecalled reads were filtered and trimmed using
Nanofilt (v2.5.0) with a Q > 7 threshold [15]. Quality filtered reads were used as input for
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Flye (v2.6; [16]) de novo genome assembly, followed by read mapping against the generated
draft assemblies with Graphmap (v0.5.2; [17]). Accuracy increased by polishing de novo
assembled genomes using Racon GPU (v1.4.0, Clara Genomics, NVIDIA) and Medaka
GPU (v0.10.1, ONT, Oxford, United Kingdom). Final taxonomic classification of polished
assemblies was done using Kraken2 [18]. Computational speed of the bioinformatics
pipeline increased by the integration of Geforce RTX 2080 Ti (GPU)-based computations
where compatible with software.

The resistome of all Escherichia spp. isolates was analyzed using the online soft-
ware tools CARD [19] and Resfinder [20], after which the results were compared with
the obtained antimicrobial susceptibility patterns. Antimicrobial resistance (AMR) gene
clusters were defined as resistance genes present on the same contig within an isolate.
Presence of plasmids was verified using PlasmidFinder in Abricate (v1.0.1; [21] and
https://github.com/tseemann/abricate, accessed: 12 April 2021). In addition, the online
software tool mlplasmids was used to predict whether the contigs containing AMR gene
clusters were plasmid- or chromosome-derived, using E. coli as species model and 1000 bp
as minimum sequence length [22]. Next, the online software tool ISfinder was used with
default settings to detect presence of transposable elements in close proximity to the AMR
gene clusters in the specific contigs [23], while ICEberg was used with default settings to de-
tect presence of integrative and conjugative elements (ICEs) or integrative and mobilizable
elements (IMEs) [24].

2.5. Phylogenetic Analysis and Strain Typing

All genomes were subjected to gene finding and automatic annotation using rapid
prokaryotic genome annotation (Prokka) v1.14.5 [25]. Thereafter, pangenomes were created
using rapid large-scale prokaryote pan genome analysis (Roary) v3.11.2 [26]. In brief, the
annotated proteins from all isolates were used for a BLASTP all-versus-all sequence similar-
ity search. From the BLASTP output, groups of orthologous proteins were predicted using
the Orthagogue and MCL software [27]. Orthologous groups with exactly one representa-
tive protein from each of the input strains were considered to be part of the Escherichia spp.
core genome. This obtained core genome alignment was then used for phylogenetic tree
construction using randomized accelerated maximum likelihood (RAxML) v8.2.12 [28] by
applying the -f a, -p 12345, -x 12345, -# 100, -m GTRGAMMA parameters and visualized
using interactive tree of life (iTOL) (http://itol.embl.de/, accessed: 28 August 2020).

To determinate clonal dissemination of the Escherichia spp. isolates, single nucleotide
polymorphisms (SNP)-based mapping analysis was performed using the CSI Phylogeny
1.4 tool with default parameters [29] and with reference genome E. coli K-12 MG1655
(NC_000913.3) determined by the RefSeq NCBI Genome Database. The constructed tree
was visualized using iTOL. In addition, multilocus sequence types were determined using
the Pasteur (http://bigsdb.pasteur.fr, accessed: 28 August 2020) and Warwick [30] institute
schemes, as well as phylogroups [31], serotypes [32], FimH and FumC types [33] and
virotypes [34].

For Fourier-transform infrared spectroscopy, bacterial isolates were cultured on
Mueller-Hinton for 22 ± 1 h at 35 ± 2 ◦C. A loopful of bacterial cells was suspended
in 1.5 mL suspension vials with inert metal cylinders with 50 µL of 70% ethanol and
vigorously vortexed after which 50 µL of HPLC water was added. After homogenization,
15 µL of each suspension were inoculated in triplicate on a silicon plate (Bruker Daltonics,
Bremen, Germany). Two internal standards (IRTS1 and IRTS2) were spotted using a 12 µL
volume according to the manufacturer’s guidelines after which the plates were dried for
approximately 30 min. Spectra were acquired and processed by OPUS v7.5 and IR Biotyper
software (Bruker Daltonics). Data from the area of polysaccharides (1300–800 cm−1) were
vector normalized, and the second derivative was used to amplify differences between
isolates. Hierarchical cluster analysis was done using the Euclidean average—mean spec-
tra algorithm as available in the IR Biotyper software. These experiments were 3 times
independently repeated.

https://github.com/tseemann/abricate
https://github.com/tseemann/abricate
http://itol.embl.de/
http://bigsdb.pasteur.fr
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3. Results
3.1. Bacterial Isolates and Antimicrobial Susceptibility

Thirty-five putatively ceftiofur-resistant isolates were obtained from fecal samples of 20
zoo mammals, while fecal samples of the other 18 zoo mammals were culture-negative. In more
detail, 7/13 zoo mammals were found positive from Zoo 1 and 13/25 from Zoo 2. One isolate
was selected from each fecal sample of 10 zoo mammals, whereas multiple morphologically
different isolates were selected from the other 10 mammals, namely: 2 isolates from each
fecal sample of 6 mammals, 3 isolates from each fecal sample of 3 mammals and 4 isolates
from one mammal (Table 1). Using MALDI-TOF MS, most of the isolates were identified as
Enterobacteriaceae (80.0%, 28/35), namely E. coli (89.2%, 25/28), Escherichia marmotae (3.6%, 1/28),
Klebsiella pneumoniae (3.6%, 1/28) and Citrobacter freundii (3.6%, 1/28). Six isolates were identified
as Pseudomonas sp. (17.1%, 6/35) and one isolate as Achromobacter spanius (2.9%, 1/35) (Table 1).
All isolates showed an identification score value ≥ 2.0.

Table 1. Identification of 35 ceftiofur-resistant isolates obtained from fecal samples of zoo mammals
and overview of detected bla-genes in these isolates.

Zoo Zoo Mammal Isolate Identification bla-Genes

1 Amur tiger B E. coli CTX-M-1
Western lowland gorilla E1 E. coli TEM-1

E2 E. coli TEM-1
E3 E. coli TEM-1
E4 E. coli TEM-1

Amur leopard I1 E. coli CTX-M-1
I2 E. coli CTX-M-1

Spectacled bear_B K1 E. coli CTX-M-1
K2 E. coli CTX-M-1

Spectacled bear_C L1 E. coli CTX-M-1
L2 E. coli CTX-M-1
L3 E. coli CTX-M-1

2 Ring-tailed lemur T1 E. coli TEM-1
T2 E. coli TEM-1
T3 E. coli TEM-1

White rhinoceros_B U1 E. coli CTX-M-1
U2 E. coli CTX-M-1

Spotted hyena V1 E. coli CTX-M-1
V2 E. coli CTX-M-1

African lion_A X1 E. coli CTX-M-1
X2 E. coli CTX-M-1
X3 E. coli CTX-M-1

Snow leopard γ2 E. coli TEM-1; CTX-M-1
South American tapir κ1 E. coli CTX-M-1

κ2 E. coli CTX-M-1
Alpine marmot µ E. marmotae CTX-M-1
African lion_B δ Klebsiella pneumoniae CTX-M-15; SHV-32

Tasmanian devil θ Citrobacter freundii CMY-124

1 Dromedaries (n = 3) M Pseudomonas sp. /
2 Asian elephant_A N Pseudomonas sp. /

Asian elephant_B Z1 Pseudomonas sp. /
Z2 Pseudomonas sp. /

Sumatran orangutan β Pseudomonas sp. /
Hippopotamus_A η Pseudomonas sp. /

1 Eastern lowland gorillas (n = 2) F Achromobacter spanius /

Species identification was performed using MALDI-TOF; bla-genes were detected using PCR; / = no bla-genes
were detected; all isolates were obtained from individual animals, except for M and F which were isolated from a
mixed sample of three dromedaries and two Eastern lowland gorillas, respectively.

The disk diffusion diameter results of E. coli ATCC 25922 fell within the accept-
able quality ranges defined by CLSI (M100, 2019). Phenotypic resistance to β-lactam
and non-β-lactam antimicrobials of the isolates is shown in Table 2. Potential ESBL and
AmpC producers were identified in 84% and 16% of the E. coli isolates (21/25 and 4/25,
resp.). Resistance to non-β-lactam antimicrobials was detected in 96% of the E. coli isolates
(24/25), of which 64% showed multidrug resistance (16/25). Resistance to trimethoprim-
sulfamethoxazole was most frequently detected (80%, 20/25), followed by tetracycline
(64%, 16/25), doxycycline (60%, 15/25), streptomycin (40%, 10/25), trimethoprim (32%,
8/25), enrofloxacin (16%, 4/25) and gentamicin (12%, 3/25) resistance (Table 2). E. mar-
motae was identified as a potential ESBL producer, showing additional resistance against
trimethoprim-sulfamethoxazole and trimethoprim.
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Table 2. Phenotypic resistance to β-lactam and non-β-lactam antimicrobials of 35 ceftiofur-resistant isolates obtained from zoo mammals.

Isolate AMP AMC CFO CFLEX CFQUI CFTIO IMI GEN ENROF TRIM SxT NEOMY DOX TET STR FFC AMI NI
E. coli B R S S R R R S S S S R S R R I S S S

E1 R R R R S R S S S R R I R R R S S S
E2 R R R R S R S S S R R S R R R S S S
E3 R R R R S R S S I R R S R R R S S S
E4 R R R R S R S S I R R S R R R S I S
I1 R S S R R R S S S S R I R R I S S S
I2 R S S R R R S S R S S I R R R S I S
K1 R S S R R R S S S S R S R R I S S S
K2 R S S R R R S S S S R I R R I S S S
L1 R S S R R R S S S S R S R R I S S S
L2 R S S R R R S S S S R S R R I S S S
L3 R S S R R R S S S S R S R R I S S S
T1 R S S R R R S R R R R R R R R I S S
T2 R S S R R R S R R R R R R R R S S S
T3 R S S R R R S R R R R R R R R S S S
U1 R S S R R R S S S S S I S S R S S S
U2 R S S R R R S S S S S S S S R S S S
V1 R S S R R R S S S S R S S S I S S S
V2 R S S R R R S S S S R S S S I S S S
X1 R S S R R R S S S S R S S S S S S S
X2 R S S R R R S S S S R I S S I S S S
X3 R S S R R R S S S S R S S S S S S S
γ2 R S S R R R S S S S R S S R S S S S
κ1 R S S R R R S S S R S I S S S S S S
κ2 R S S R R R S S S S S S S S S S S S

E. marmotae µ R S S R R R S S S R R I S S S S S S
E. coli ATCC 25922 S S S S S S S S S S S S S S I S S S

Klebsiella pneumoniae δ R * S S R R R S S R S S I S S S S S S
Citrobacter freundii θ R * R * R R * S R S S S S S I R S R S S S
Pseudomonas sp. M R * R * R * R * S R * S S S R * R * R * R * R * R * R * S R *

N R * R * R * R * S R * S S S R * R * R * R * R * R * R * S R *
β R * R * R * R * S R * S S R R * R * R * R * R * R * R * S R *
Z1 R * R * R * R * S R * S S I R * R * R * R * R * R * R * S R *
Z2 R * R * R * R * S R * S S I R * R * R * R * R * R * R * S R *
η R * R * R * R * I R * S S R R * R * R * R * R * R * R * S R *

Achromobacter spanius F R * S R * R * S R * S S S R R S S S R * S S S

* = intrinsic resistance; R = resistant, I = intermediate, S = sensitive, AMP = ampicillin (10 µg), AMC = amoxicillin-clavulanic acid (20 + 10 µg), CFO = cefoxitin (30 µg), CFLEX = cefalexin (30 µg), CFQUI =
cefquinome (30 µg), CFTIO = ceftiofur (30 µg), IMI = imipenem (10 µg), GEN = gentamicin (10 µg), ENROF = enrofloxacin (10 µg), TRIM = trimethoprim (5 µg), SxT = trimethoprim-sulfamethoxazole (1.25 +
23.75 µg), NEOMY = neomycin (120 µg), DOX = doxycycline (30 µg), TET = tetracycline (30 µg), STR = streptomycin (10 µg), FFC = florphenicol (30 µg), AMI = amikacin (30 µg), NI = nitrofurantoin (100 µg).
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K. pneumoniae and C. freundii were identified as potential ESBL producers, show-
ing additional resistance against enrofloxacin and against streptomycin and doxycycline,
respectively. Two of the 6 Pseudomonas sp. isolates showed resistance to enrofloxacin,
while A. spanius showed resistance to trimethoprim-sulfamethoxazole and trimethoprim
(Table 2).

3.2. Molecular Mechanisms of Resistance

By using PCR, all E. coli isolates showed presence of bla-gene(s), namely: 68% isolates
carried the blaCTX-M-type gene (17/25), 28% isolates the blaTEM gene (7/25) and one
isolate showed presence of both the blaCTX-M-type gene and the blaTEM gene. Sequence
analysis revealed the following bla-gene types: CTX-M-1 (n = 17) and TEM-1 (n = 8)
(Table 1). No blaCMY genes were found, despite presence of phenotypic AmpC producers.
E. marmotae showed presence of the blaCTX-M-type gene, after which sequence analysis
revealed it to be CTX-M-1.

K. pneumoniae showed presence of both the blaCTX-M-type gene and the blaSHV gene,
whereas C. freundii carried the blaCMY gene. Sequence analysis revealed it to be CTX-M-15,
SHV-32 and CMY-124 respectively (Table 1). None of the Pseudomonas sp. isolates carried
bla-gene(s), nor did A. spanius.

3.3. WGS and Resistome

For all E. coli isolates showing presence of bla-gene(s) (n = 25), WGS was performed to
determine presence of a clonal expansion of isolate(s) in or between both zoos. In addition,
E. marmotae was included to investigate its phylogenetic relationship with the E. coli isolates.
The genome sizes ranged from 4.98 to 5.40 Mb and showed the following characteristics:
50.4 to 50.9% GC; 7016 to 8808 coding sequences; 661 to 949 hypothetical proteins and 107
to 115 RNAs.

Similar results were obtained when analyzing the resistome of the isolates using CARD
and Resfinder (Additional files 1 and 2). Although the presence of bla-genes detected by
PCR was confirmed, additional bla-genes were found, namely: ampC (all isolates, except
for isolate µ (E. marmotae)), DHA-1 (isolates E1-4), CTX-M-3 (isolates T1-3) and CTX-
M-61 (isolate γ2). In general, the observed phenotypic resistance towards tetracyclines,
fluoroquinolones, aminoglycosides, trimethoprim and/or sulfonamides could be linked
with the presence of AMR genes (Table 3). Furthermore, other AMR genes, such as
multidrug efflux pumps, were detected in all Escherichia spp. isolates (Additional files 1
and 2).

Most of the AMR genes were located on plasmids, except for CTX-M-1 of isolates L1-3
and the CTX-M-3, mphA, and AAC(3)-IIc cluster of isolates T1-3, which were located on
chromosomes (Table 3). AMR gene clusters were observed in 18/26 Escherichia spp. isolates,
and most often between bla-genes and genes encoding resistance to sulfonamides and/or
tetracyclines. Furthermore, the AMR gene clusters could be linked with transposases
and/or putative predicted IMEs or ICEs (Table 3). Additional information on plasmid
replicon typing and identification can be found in Additional file 3.
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Table 3. Overview, clustering, and localization of AMR genes detected in Escherichia spp. isolates obtained from zoo
mammals.

Isolate Potential Important AMR Genes Phenotypic
Resistance Clustered AMR Genes † Linked Transposases or

IME ‡
Predicted Contig

Origin §

B β-lactams: ampC1, CTX-M-1 Yes CTX-M-1, tet(C) and sul 2 IS1294, ISEcp1, IS186B,
and IS5075

Plasmid
Tetracyclines: tet(A), tet(C) Yes

Sulphonamides: sul2 Yes

E1-4 β-lactams: ampC1, TEM-1, DHA-1 Yes TEM-1, tet(B), tetR, sul2,
APH(3”)-Ib and APH(6)-ld

Tn2 and IS5 Plasmid
Tetracyclines: tet(B), tetR Yes

Sulphonamides: sul1, sul2 Yes
Trimethoprim: dfrA8, dfrA17 Yes
Aminoglycosides: APH(6)-Id,

APH(3”)-Ib Yes QnrB4, sul1, mphA, and
dfrA17 IS186B, IS1R, and Tn2 Plasmid

Macrolides: mphA /
Fluoroquinolones: QnrB4 No

I1-2 β-lactams: ampC1, CTX-M-1 Yes CTX-M-1, tet(C) and sul 2
ISEcp1, IS1294, and

IS186B

Plasmid
Tetracyclines: tet(C) Yes

Sulphonamides: sul2 Yes
Aminoglycosides: efflux pumps Yes
Fluorquinolones: efflux pumps Yes

K1-2 β-lactams: ampC1, ampC, CTX-M-1 Yes CTX-M-1, tet(A), tet(D) and
sul2

ISEcp1, IS1294, and
IS186B

Plasmid
Tetracyclines: tet(A), tet(D) Yes

Sulphonamides: sul2 Yes

L1-3 β-lactams: ampC1, CTX-M-1 Yes CTX-M-1 ISEcp1; putative ICE
with T4SS

Chromosome

Tetracyclines: tet(A) Yes
Sulphonamides: sul2 Yes tet(A) and sul2 IS1294 and IS5075 Plasmid

T1-3 β-lactams: ampC1, CTX-M-3,
TEM-1 Yes CTX-M-3, mphA, and

AAC(3)-IIc
Tn2; Putative IME Chromosome

Tetracyclines: tet(B), tetR Yes
Sulphonamides: sul2 Yes
Trimethoprim: dfrA17 Yes

Aminoglycosides: APH(3′)-Ia,
APH(6)-Id, APH(3”)-Ib, aadA5,

AAC(3)-IIc
Yes TEM-1, tet(B), dfrA17, sul2,

APH(3′)-Ia, APH(6)-Id,
APH(3”)-Ib and aadA5

Tn2, ISEc8, IS3411, IS1R,
and IS2

Plasmid

Macrolides: mphA /
Fluoroquinolones: gyrA, parC Yes

U1-2 β-lactams: ampC1, ampC, CTX-M-1 Yes CTX-M-1 ISEcp1 and IS1294 Plasmid
Aminoglycosides: efflux pumps Yes

Fluoroquinolones: gyrA No

V1-2 β-lactams: ampC1, CTX-M-1 Yes CTX-M-1, sul2 IS5075, IS1294, and
ISEcp1

Plasmid
Sulphonamides: sul2 Yes

X1-3 β-lactams: ampC, CTX-M-1 Yes CTX-M-1, sul2 IS5075, IS1294, and
ISEcp1

Plasmid
Sulphonamides: sul2 Yes

γ2 β-lactams: ampC1, ampC,
CTX-M-61, TEM-1 Yes CTX-M-61, TEM-1, sul2 Tn2, ISEcp1, IS2, IS1294,

and IS5075 Plasmid

Tetracyclines: efflux pumps Yes
Sulphonamides: sul2 Yes

κ1 β-lactams: ampC1, CTX-M-1 Yes CTX-M-1 ISEcp1 and IS1294 Plasmid
Trimethoprim: dfrA5 Yes

K2 β-lactams: ampC1, ampC, CTX-M-1 Yes CXT-M-1 ISEcp1, IS1294 Plasmid

µ β-lactams: CTX-M-1 Yes CTX-M-1 ISEcp1 and IS1294 Plasmid
Sulphonamides: sul2 Yes
Trimethoprim: dfrA17 Yes sul2, dfrA17, aadA5 IS5075 and TnEc3 Plasmid

Aminoglycosides: aadA5 No

ATCC 25922 / / / / /

All isolates were identified as E. coli, except for µ, which was identified as E. marmotae. AMR = antimicrobial resistance; IME = integrative
mobilizable elements; ICE = integrative and conjugative element; † = AMR genes present on the same contig; ‡ = presence of transposases
and IME were determined by ISfinder and ICEberg, respectively; § = localization of AMR genes on plasmid or chromosome was determined
by mlplasmids.

3.4. Phylogenetic Analysis and Strain Typing

As shown in Table 4, isolates showing identical multilocus sequence types also shared
the same phylogroup, serotype, FimH, and FumC type and virotype. This shared homology
was observed for all isolates obtained from the same animal, except for κ1 and κ2 obtained
from the South American tapir. Strain type homology was also observed between isolates
B, I1-2, and K1-2 obtained from the Amur tiger, Amur leopard and spectacled bear_C at
Zoo 1, respectively, and between isolates V1-2 and X1-3 obtained from the spotted hyena
and African lion_A at Zoo 2, respectively. In general, phylogroup B1 and virotype B were
most frequently identified (i.e., 13/26 and 20/26, resp.).
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Table 4. Overview of the multilocus sequence type, phylogroup, serotype, FimH, and FumC type and virotype of the
Escherichia spp. isolates obtained from zoo mammals.

Isolate Pasteur ST Warwick ST Phylogroup Serotype CHTyper Virotype

B 294 162 * B1 O8:H28 fumC65
fimH32 B

E1 2 10929 * C O16:H48 fumC11
fimH475 /

E2 2 10929 * C O16:H48 fumC11
fimH475 /

E3 2 10929 * C O16:H48 fumC11
fimH475 /

E4 2 10929 * C O16:H48 fumC11
fimH475 /

I1 294 162 * B1 O8:H28 fumC65
fimH32 B

I2 294 162 * B1 O8:H28 fumC65
fimH32 B

K1 294 162 * B1 O8:H28 fumC65
fimH32 B

K2 294 162 * B1 O8:H28 fumC65
fimH32 B

L1 529 Unknown ST;
Nearest match: 180, 675 B1 O22:H16 fumC23

fimH32 B

L2 529 Unknown ST;
Nearest match: 180, 675 B1 O22:H16 fumC23

fimH32 B

L3 529 Unknown ST;
Nearest match: 180, 675 B1 O22:H16 fumC23

fimH32 B

T1 355 162 * B1 O55:H10 fumC65
fimH32 B

T2 355 162 * B1 O55:H10 fumC65
fimH32 B

T3 355 162 * B1 O55:H10 fumC65
fimH32 B

U1 Unknown ST;
Nearest match: 325 1844 B1 O8:H49 fumC29

fimH38 B

U2 Unknown ST;
Nearest match: 325 1844 B1 O8:H49 fumC29

fimH38 B

V1 42 57 * E O140:H25 fumC31
fimH27 B

V2 42 57 * E O140:H25 fumC31
fimH27 B

X1 42 57 * E O140:H25 fumC31
fimH27 B

X2 42 57 * E O140:H25 fumC31
fimH27 B

X3 42 57 * E O140:H25 fumC31
fimH27 B

γ2 843 1564 * A 0-:H21 fumC252
fimH / B

κ1 24 Unknown ST;
Nearest match: 58, 223 Unknown O8:H25 fumC4

fimH32 B

κ2 165 10 * C O16:H12 fumC11
fimH24 /

µ
Unknown ST;

Nearest match: 606 8370 * F O13:H56 fumC48
fimH150/160 /

ATCC 25922 52 Unknown ST;
Nearest match: 73, 5999 B2 O6:H1 fumC24

fimH30 /

All isolates were identified as E. coli, except for µ, which was identified as E. marmotae. ST = sequence type; * = three up to five alleles with
an identity between 99.1% and 99.8% were found; / = no match was found.

Phylogenetic trees based on core genome and SNPs alignment as well as the IR
Biotyper dendrogram confirmed clustering of all isolates obtained from the same animal
species, except for κ1 and κ2 (Figures 1–3). Clustering of isolates B, I1-2, and K1-2 and of
isolates V1-2 and X1-3 was demonstrated as well.
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were identified as E. coli, except for µ, which was identified as E. marmotae.

4. Discussion

In this study, around 37% of the sampled zoo mammals showed fecal carriage of
BSBL-producing Enterobacteriaceae (i.e., 14/38), thereby exceeding previously reported rates
of 11% up to 32% for zoo animals in Japan, China, and the Czech Republic [5–8]. These
discrepancies might be explained by the relatively low number of sampled animals in
this study (n = 38), sampling of different animal species, geographical differences and/or
differences in zoo management. It is also possible that the prevalence of BSBL producers in
zoo animals is currently being underestimated due to the limited number of studies. In
comparison, presence of BSBLs in food-producing animals has been intensively studied,
with reported prevalence rates of up to 89% [1]. Our results might also indicate that the
prevalence of BSBL-producing bacteria in zoo animals has been increasing, similar to
described for humans, pets and food-producing animals [3]. It would be interesting to
perform more studies to determine the real burden of BSBLs in zoo animals.

In line with previous studies, most BSBL-producing isolates were identified as E. coli,
with a predominance of the ESBL phenotype and only few AmpC producers. Furthermore,
CTX-M-1 was the predominant ESBL in the fecal flora of zoo animals, similar to the situation
in pets, food-producing animals and wild birds [1,5]. Although the pathogenic significance
of E. coli strains carrying this enzyme is unclear, a higher percentage of CTX-M-1 producers
has been reported in sick companion- and food-producing animals compared to healthy
ones (i.e., 30% vs. 23%, resp.) [1]. Nevertheless, sick animals are often treated with first
generation cefalosporins, penicillins and/or amoxicillin, which may have contributed to
an increased prevalence of CTX-M-1. Both in our study and the one of Dabiosova et al., all
zoo animals showing presence of CTX-M-1 producers were clinically healthy [5], although
we were unable to obtain information of previous antimicrobial treatments.

Additional clustering was shown between five E. coli isolates obtained from an Amur
tiger, an Amur leopard and a spectacled bear from Zoo 1, and between five E. coli isolates
obtained from a spotted hyena and an African lion from Zoo 2. These findings indicate
that a clonal expansion of a E. coli strain occurred in both zoos. Transmission of both clones
may have occurred through multiple pathways, of which shared meat diets may be an
important one. Indeed, ESBL- and AmpC-producing E. coli strains are frequently found
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in meat, with prevalence rates of up to 100% [35]. This might also provide an explanation
why ESBL- and AmpC-producing E. coli strains were slightly more frequently isolated
from carnivorous zoo mammals (7/11) than herbivorous ones (4/11). Nevertheless, other
pathways may have contributed to the clonal expansion, as the spectacled bear’s diet
differed from those of the Amur tiger and Amur leopard from Zoo 1. For example, both E.
coli strains may have been transferred via mechanical vectors, as these animals are housed
next to each other and have the same animal caretakers.

For the first time, an ESBL producing and MDR E. marmotae was isolated from an
Alpine marmot (Marmota marmotae). So far, in only one other study this bacterium was
isolated from the feces of wild Himalayan marmots (M. himalayana) [36]. The phylogenetic
trees based on (i) core genome and (ii) SNPs alignment as well as (iii) FTIS confirmed a
separate clustering of the E. marmotae isolate from the E. coli isolates. Although the presence
of virulence associated genes and cell invasion experiments in vitro already suggested that
E. marmotae is likely to be an invasive pathogen [36], further studies will be required to
demonstrate its pathogenicity and zoonotic potential.

Besides Escherichia species, K. pneumoniae, Pseudomonas sp. and C. freundii were isolated
from 21% of the sampled zoo mammals (8/38). All three species are well described
ubiquitous and opportunistic animal and human pathogens, with reported cases of zoonotic
and/or anthropozoonotic transmission [37,38]. For the first time, however, the blaCMY-124
gene was shown to be present in C. freundii isolated from a Tasmanian devil, as well as
the combination of CTX-M-15 and SHV-32 in K. pneumoniae isolated from an African lion.
Further epidemiological studies in zoo animals should be performed to estimate the real
burden of these bla-gene clusters.

Most of the obtained isolates were MDR and this mainly against (potentiated) sul-
fonamides and tetracyclines, as already shown by others [8]. Although the underlying
mechanism of multidrug resistance development in this study is unclear, previous an-
timicrobial treatments may have played a role. Indeed, Ishihara et al. linked the use of
amoxicillin as first-line therapy in zoo animals with phenotypic resistance to ampicillin.
Resistance to kanamycin, gentamicin, trimethoprim and tetracycline was also significantly
higher in animals treated with ampicillin, indicating co-localization of antimicrobial re-
sistance genes on mobile genetic elements [7]. Indeed, in this study, almost all AMR
genes were located on plasmids containing transposons. Apart from treatment, transfer
of resistant bacteria and/or horizontal transfer of resistance genes through feed, humans
and surroundings may also contribute to multidrug resistance development [10]. Since we
were unable to obtain in-depth information on previous treatments, food source origin, etc.,
it would be interesting to investigate this in a future survey. Identifying risk factors will be
necessary to control further selection and dissemination of MDR bacteria in zoo mammals.

The presence of MDR bacteria in zoo mammals may impose health risks for visitors
and animal caretakers of Belgian zoos. As already described for farm animals [1], zoo
animals may serve as a reservoir and disseminator of zoonotic pathogens and antimicrobial
resistance for humans, other animals, and the environment. To minimize spread and
dissemination, it can be advised to apply additional hygienic measures in zoos, such as
eating and drinking restrictions and provision of hand-sanitizing facilities, especially in
petting areas, as well as frequent surface disinfection and removal of animal feces [39].
Further research, however, remains necessary to investigate if these pathogens and/or
multidrug resistance effectively transfer from zoo mammals to humans and whether this
transfer is related to health risks. In that light, special attention should be made for animal
caretakers, as they have more intense and frequent contact with infected animals.

5. Conclusions

MDR BSBLs were shown to be present in the fecal microbiota of zoo mammals in two
zoos in Belgium. Interestingly, a clonal expansion of a E. coli strain may have occurred
in both zoos between different animal species, most likely through shared meat diets
and/or localization of animal enclosures next to each other. Further research is necessary
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to investigate if these MDR BSBLs effectively transfer to humans and whether this transfer
poses health risks.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9040834/s1, Table S1: Additional File 1.xlsx, Table S2: Additional File 2.xlsx,
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