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Abstract

Acute respiratory tract infections (ARTI), including the common cold, pharyngitis, sinusitis,

otitis media, bronchiolitis and pneumonia are the most common diagnoses among patients

seeking medical care in western countries, and account for most antibiotic prescriptions.

While a confirmed and fast ARTI diagnosis is key for antibiotic prescribing, empiric antimi-

crobial treatment remains common, because viral symptoms are often clinically similar and

difficult to distinguish from those caused by bacteria. As a result, inappropriate antibiotic pre-

scriptions are high and in certain settings likely higher than the commonly estimated 30%.

The QIAstat Respiratory Panel® assay (QIAstat RP) is a multiplexed in vitro diagnostics

test for the rapid simultaneous detection of 21 pathogens directly from respiratory samples,

including human mastadenovirus A-G, primate bocaparvovirus 1+2, human coronavirus

(HKU1, NL63, OC43, 229E), human metapneumovirus A/B, rhinovirus/enterovirus, influ-

enza A virus (no subtype, subtype H1, H1N1/2009, H3), influenza B virus, human respiro-

virus 1+3, human orthorubulavirus 2+4, human orthopneumovirus, Bordetella pertussis,

Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella pneumophila. We

describe the first multicenter study of 445 respiratory samples, collected through the 2016–

2017 and 2018 respiratory seasons, with performance compared against BioFire FilmArray

RP v1.7 and discrepancy testing by Seegene Allplex RP. The QIAstat RP demonstrated a

positive percentage of agreement of 98.0% (95% CI: 96.0–99.1%) and a negative percent-

age agreement of 99.8% (95% CI: 99.6–99.9%). With use of this comprehensive and rapid

test, improved patient outcomes and antimicrobial stewardship may potentially be achieved.
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Introduction

Acute respiratory tract infections (ARTI) are a leading cause of morbidity and mortality

worldwide and a frequent reason for seeking medical care [1]. Most pathogens have predilec-

tion for either the upper or lower respiratory tract but may move into the other compartment.

The etiology is diverse, led by a high viral heterogeneity and also comprises bacteria [2,3]. The

health-related burden of acute respiratory tract infections is significant in defined populations

like the very young, the elderly, the chronically ill with underlying comorbidities (e.g., heart or

lung disease, diabetes), the malnourished and the immunocompromised (e.g., transplant

recipients, HIV-infected individuals) [4–9].

Certain pathogens, including influenza A/B virus, human orthopneumovirus (also known

as respiratory syncytial virus) and Bordetella pertussis, conventionally require contact isolation

of hospitalized patients when detected, to avoid further institutional spread [10]. Their fast

detection and identification are essential for infection control effectiveness.

Acute respiratory signs and symptoms are seldom specific for a single pathogen, and detec-

tion strategies that allow for multiple agents to be simultaneously detected, may have a signifi-

cant impact on infectious disease management [11–13]. For the patient, the ability to rapidly

and accurately rule in /out a respiratory pathogen supports optimized overall care (e.g. hospital

admission or not) and therapy selections, e.g. terminating unnecessary antimicrobials and tar-

geted use of antiviral agents [14–18]. From a public health perspective, syndromic respiratory

infection testing has shown to be a useful tool for seasonal and sporadic outbreak surveillance

and preparedness [19], supporting the effective management of health care resources [20].

Thus, as respiratory viruses and their potential role are increasingly acknowledged, the

use of multiplex PCR testing is recommended since December 2018 by the Infectious Diseases

Society of America in all immunocompromised populations presenting with ARTI symptoms

and also suggested in other populations if their results are taken into account to improve

patients management [21].

This study describes the first multicenter evaluation of the clinical performance characteris-

tics of the QIAstat Respiratory Panel (QIAstat RP, Qiagen, Hilden, Germany) on respiratory

samples, compared to FilmArray Respiratory Panel Assay v1.7 (FilmArray RP, bioMérieux,

Marcy l’Etoile, France) with discrepancy testing performed by Allplex™ Respiratory Panel (All-

plex RP, Seegene, Seoul, South Korea) in two geographic settings in Europe.

Material and methods

Study design and sites

The study was designed as an observational, prospective-retrospective study aiming to test all

QIAstat RP pathogens from fresh or frozen samples. The study was performed at two clinical

sites located in Denmark and Germany.

The Department of Clinical Microbiology, University Hospital of Hvidovre (Copenhagen,

Denmark) tested 228 respiratory samples collected in universal transport media (UTM). Sam-

ples were prospectively collected during an enrolment period between February 5th and Feb-

ruary 22nd, 2018.

The Department of Clinical Microbiology, University hospital of Bonn, Germany tested

217 protocol compliant retrospective clinical samples between January 24th and March 21th

2018. Samples had been collected during the 2016–2017 influenza season (December 2016–

May 2017) as flocked swab samples in UTM, and residual sample had been stored at -80˚C.

All samples were tested by the QIAstat RP (Qiagen, Hilden Germany) and the FilmArray

RP v1.7 (bioMérieux, Marcy l´ Etoile, France) that served as the reference method.
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Discrepancies between the two test methods for both clinical sites were resolved by Allplex RP

(Seegene, Seoul, South Korea) at the clinical site in Bonn.

Testing at both clinical sites was performed by trained laboratory personnel, who had

shown proficiency with both methods.

Clinical samples

Residual respiratory samples as nasopharyngeal flocked swabs in UTM (Copan, Brescia, Italy)

received for routine bacterial and viral testing from 445 patients were included in the study.

Samples were enrolled consecutively according to instrument capacity. Clinical samples were

included from two study sites after meeting the following inclusion criteria: Respiratory sam-

ples were collected utilizing flocked swab (FLOQSwabs™,Copan, Brescia, Italy) placed in UTM

and were sent for viral and/or bacterial testing. The residual volume of all included samples

was above 600 μL. All samples were tested by the QIAstat RP and the Filmarray RP within 4

days of collection when stored at 2–8˚C, and within 90 minutes after thawing when stored at

-80 C.

The samples were anonymized and assigned a study number linked to patient demographic

information, including age, sex and hospitalization status (general practice, hospitalized, pedi-

atric hospital/ward, intensive care unit). The samples had been collected under an institutional

review board (IRB)-approved protocol, which included a waiver of informed consent for the

use of residual anonymized samples. The protocol was approved by Ethikkommission an der

Medizinischen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn under the

approval 052/18 and by De Videnskabsetiske Komiteer Center for Sundhed, Region Hovedsta-

den under the approval H-18001793.

QIAstat Dx system and RP cartridge

The QIAstat Dx system is a new highly multiplexed platform for integrated nucleic acid extrac-

tion and multiplex, RT-real-time PCR detection. The QIAstat RP (Catalogue number 691211) is

designed to run on the QIAstat DiagCORE Analyzer testing respiratory samples from individu-

als with signs and symptoms of an acute respiratory tract infection. Each QIAstat RP cartridge

contains a full process Internal Control (IC), which is a MS2 bacteriophage that is included in

dried format and gets automatically rehydrated upon sample loading. The IC verifies all steps of

the analysis process during testing, including sample resuspension/homogenization, lysis,

nucleic acid purification, reverse transcription, and PCR. The cartridge has two distinct loading

ports and can be inoculated directly with a dry swab or with transport medium. In brief, samples

were homogenized by vigorous inversion of the vial and 300 μL UTM was transferred into the

assay cartridge using the provided transfer pipette. The inoculated cartridge was placed on the

instrument. The test started automatically and ran for 69 minutes. Upon completing the test and

ejecting the cartridge, the analyzer interpreted results and displayed a test summary. The ana-

lyzer will also report errors that may occur during processing. Amplification curves and cycle

threshold (Ct) values can be viewed for detected pathogens and for the IC. A report can be

printed or exported to an external USB storage device. The analyzer can be bidirectionally con-

nected to laboratory information systems.

The QIAStat Dx system consists of one to four Analytical modules (Catalogue number

9002814) plus one Analyzer Module (Catalogue number 9002824) that allows for time inde-

pendent parallel testing of one sample per module.

The QIAstat RP detects 17 viral and four bacterial pathogens including human mastadeno-

virus A-G (formerly adenovirus), primate bocaparvovirus 1+2 (formerly bocavirus), human

coronavirus (differentiating HKU1, NL63, OC43 or 229E), human metapneumovirus A/B
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(hMPV), rhinovirus/enterovirus, influenza A virus (as no subtype, subtype H1, H1N1/2009 or

H3), influenza B virus, human respirovirus 1 or 3, human orthorubulavirus 2 or 4 (formerly

human parainfluenza virus type 1–4), human orthopneumovirus, Mycoplasma pneumoniae,
Legionella pneumophilia, Bordetella pertussis and Chlamydia pneumoniae.

A QIAstat RP test was considered valid if the test was completed normally and the control

passed. Results for influenza A virus were reported as influenza A virus subtype H3N2, influ-

enza A virus subtype H1N1, or influenza A virus A pdm2009 for the pandemic 2009 influenza

A strain—in case both the influenza A virus and the respective subtype/strain were detected.

In case no subtype was detected, influenza A virus was reported as influenza A virus, no

subtype.

This study was conducted with an investigational use only (IUO) version of the QIAstat

RP. The final CE-marked QIAstat RP is identical to the IUO panel used in this study, with the

exception that results for the Chlamydia pneumoniae target are not reported, pending regula-

tory clearance.

FilmArray Respiratory Panel 1.7

The FilmArray RP is a multiplex sample-to-answer PCR panel that tests for 20 viral and bacte-

rial pathogens on nasopharyngeal swabs in UTM at a time. A sample volume of 300 μL is

required for the testing with approximately two minutes of hands-on-time in the set-up of the

test.

The system consists of one to eight modules (BioFire FlimArray Torch, Salt Lake City,

Utah, USA) that that allows for time independent parallel testing of one sample per module.

The test runs for approximately 65 minutes. A report can be printed or exported to an external

USB storage device. The analyzer can be bidirectionally connected to laboratory information

systems.

The FilmArray RP v1.7 detects 17 viral and three bacterial pathogens including human

mastadenovirus A-G, human coronavirus (differentiating HKU1, NL63, OC43 or 229E),

human metapneumovirus A/B (hMPV), rhinovirus/enterovirus, influenza A virus (as no sub-

type, subtype H1, H1N1/2009 or H3), influenza B virus, human respirovirus 1 or 3, human

orthorubulavirus 2 or 4, human orthopneumovirus, Mycoplasma pneumoniae, Bordetella per-
tussis and Chlamydia pneumoniae.

For human coronavirus HKU1 the FilmArray RP assay was accepted as correct as the path-

ogen is not included in the panel on the Allplex RP.

Allplex Respiratory Panel

Samples that yielded discordant results between the QIAstat RP and the FilmArray RP were

discrepancy tested by the Allplex RP assay.

The Allplex RP is a RT-PCR assay that tests for 19 viral and seven bacterial pathogens on

nasopharyngeal swabs, nasopharyngeal aspirate or bronchoalveolar lavage at a time.

The Allplex RP runs on the Seegene workflow that consists of a module for nucleic acid

extraction and PCR setup, a 96-well PCR thermocycler and a computer for interpretation and

reporting with a total sample-to-answer time in less than one day.

The Allplex RP detects human mastadenovirus A-G, primate bocaparvovirus 1+2, human

coronavirus (differentiating NL63, OC43 or 229E), human metapneumovirus A/B (hMPV),

rhinovirus, enterovirus, influenza A virus (as no subtype, subtype H1, H1N1/2009 or H3),

influenza B virus, human respirovirus 1 or 3, human orthorubulavirus 2 or 4, human orthop-

neumovirus A or B, Mycoplasma pneumoniae, Bordetella pertussis, Bordetella parapertussis,
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Legionella pneumophila, Chlamydia pneumoniae, Streptococcus pneumoniae and Haemophilus
influenzae.

The Allplex RP assay was used as the comparator method for primate bocaparvovirus 1+2,

as this analyte is not included in the FilmArray RP panel and the Allplex RP results were

accepted as correct.

Statistical analysis

Sensitivity and specificity are reported as the QIAstat RP could be compared to a combined

result from the FilmArray RP and the Allplex RP. Results are reported as true positive (TP),

false positive (FP), false negative (FN) and true negative (TN) results. Binomial two-sided 95%

confidence intervals were calculated using the Wilson Score Method.

For human coronavirus HKU1 and primate bocaparvovius 1+2 results were compared by

calculation of positive percent agreement (PPA) and negative percent agreement (NPA) as

only results from the QIAstat RP and either the FilmArray RP or Allplex RP were available.

Primate bocaparvovirus 1+2 is not included as a target in the FilmArray RP and the human

coronavirus HKU1 is not included in the Allplex RP making it impossible to determine the

sensitivity and specificity for these two targets. Accordingly, overall agreement is also reported

as PPA and NPA as sensitivity and specificity was not determined for all targets.

The PPA represent how often a new test (NT) agrees with a non-reference standard (NRS)

and is calculated as PPA = “NT and NRS positive” / (“NT and NRS positive” + “NT negative

and NRS positive”), whereas the NPA is calculated as NPA = “NT and NRS negative” / (“NT

and NRS negative” + “NT positive and NRS negative”).

Results

Patient demographics

445 patients were included in the study. Gender distribution was almost equal with 223 female

patients and 222 male patients. 122 patients (27.4%) were younger than six years, 56 patients

(12.6%) were between six and 21 years, 124 patients (27.9%) were between 22 and 49 years and

137 patients (30.8%) were 50 years or older. No age information was available for six patients

(1.3%). The majority of samples, 307 (69.0%) were referred for testing by general practitioners.

106 samples (23.8%) were from hospitalized patients, 30 (6.8%) were from a pediatrics hospi-

tal/ward and two samples (0.4%) came from an intensive care unit. All patients had presented

with signs and symptoms of an acute respiratory tract infection.

Summary of QIAstat RP findings

The QIAstat RP detected one or more potential pathogens in 333 (74.8%) of the 445 tested

samples (Table 1) for a total of 415 pathogens (Table 2).

Table 1. Total number of QIAstat RP positive samples according to number of detected pathogens per sample.

Pathogens detected by QIAstat RP Number of samples % of total samples (total = 445)

>0 333 74,8%

1 268 60,2%

2 53 11,9%

3 8 1,8%

4 3 0,7%

5 1 0,2%

https://doi.org/10.1371/journal.pone.0230183.t001
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Multiple pathogens were detected in 19.5% of the positive samples (65/333), and the highest

number of pathogens detected in a single sample was five (human respirovirus 3, human

orthorubulavirus 4, human coronavirus OC43, rhino-/enterovirus and primate bocaparvo-

virus 1+2). The majority of multiple infection samples contained two pathogens, which was

the case for 53/65 samples (81.5%). The QIAstat RP detected a bacterial pathogen in 7.6% of

all samples (34/445). In 25 out of 34 samples only bacteria were detected and in the remaining

nine samples, additional viral pathogens were detected (four samples with two pathogens,

four samples with three pathogens and one sample with four pathogens).

The number of each potential pathogen detected by the QIAstat RP in co-infections, by

hospitalization and by age group is presented in Table 2. The most frequently detected patho-

gen was human orthopneumovirus, which was detected in 98 samples, 71 of which (72.4%)

came from patients less than 6 years of age. The second most common pathogen was influenza

A virus, which was detected in 75 samples, equally distributed between the H1 pdm2009 and

H3N2 strains. Rhino-/enterovirus was detected in 63 samples and influenza B virus was

detected in 51 samples, highlighting the very active influenza B virus season in early 2018.

QIAstat RP performance

For 440 of 445 specimens (98.9%), a valid result was obtained by the initial QIAstat RP testing.

Five samples (1.1%) were invalid after the first QIAstat RP testing, comprising one run aborted

by the analyzer (0.22%), three runs with software errors (0.67%), and one run in which the

Table 2. Number of QIAstat RP detected pathogens allocated by co-infection, hospitalization status and by age groups. Number of pediatric patients is outlined in

superscript and number of intensive care unit patients is outlined in subscript.

Pathogen Total number Detected in co-infection From hospitalized patient <6 years 6–21 years 22–49 years >49 years

Adenovirus 36 24 74 21 8 6 1

Bocavirus 5 4 0 2 3 0 0

Coronavirus 229E 2 1 0 1 0 1 0

Coronavirus HKU1 3 2 1 1 1 0 1

Coronavirus NL63 11 4 52 3 0 4 4

Coronavirus OC43 4 3 0 0 2 1 1

hMPV 19 9 11 10 1 3 5

Rhino-/Enterovirus 63 40 149 33 10 9 10

Influenza A virus /- 4 1 1 2 0 1 1

Influenza A virus /H3N2 36 3 20 2 2 11 21

Influenza A virus /H1N1 pmd 2009 35 2 181 8 1 18 8

Influenza B virus 51 4 251
1 3 9 15 24

PIV 1 2 1 0 2 0 0 0

PIV 2 1 0 1 1 0 0 0

PIV 3 8 3 1 4 1 3 0

PIV 4 3 3 1 1 2 0 0

RSV 98 34 2715 71 5 7 9

B. pertussis 5 2 55 3 2 0 0

C. pneumoniae 7 0 33 4 2 1 0

M. pneumoniae 22 7 7 2 5 10 5

Total 415a 147 13741
1 174 54 90 90

aNo age information was available for seven pathogen results. Adenovirus equals human mastadenovirus A-G, bocavirus equals primate bocaparvovirus 1+2, PIV 1+3

equals human respirovirus 1+3, PIV 2+4 equals human orthorubulavirus 2+4, RSV equals human orthopneumovirus.

https://doi.org/10.1371/journal.pone.0230183.t002
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internal control failed to amplify (0.22%). All five samples were retested with the QIAstat RP

and yielded a valid result after the second QIAstat RP testing.

The performance characteristics for individual QIAstat RP targets before discrepancy reso-

lution are presented in Table 3 and the performance characteristics after discrepancy resolu-

tion are presented in Table 4.

Before resolution by discrepancy testing, QIAstat RP and FilmArray RP agreed on the

detection of 376 pathogens in the 445 samples (Table 3). For all pathogens except human mas-

tadenovirus A-G, rhino-/enterovirus, hMPV, influenza A virus no subtype and human respir-

ovirus 3, the agreement was excellent (Table 3). For human respirovirus 3 and influenza A

virus no subtype the total number of positive samples by at least one method was only nine

and five respectively. For human mastadenovirus A-G the QIAstat RP and FilmArray RP

agreed on 27 positive samples out of 41 initial positive samples (Table 3). After discrepancy

testing the sensitivity for the QIAstat RP was 97.1% (33/34, Table 4). For rhino-/enterovirus

the QIAstat RP and FilmArray RP agreed on 49 positive samples out of the 71 initial positive

samples. After discrepancy testing the sensitivity for the QIAstat RP was 94.4% (52/55). For

hMPV the QIAstat RP and FilmArray RP agreed on 19 positive samples out of 21 initial posi-

tive samples. After discrepancy testing the sensitivity was 95.0% (19/20).

Table 3. Performance summary and characteristics of the QIAstat RP versus the FilmArray RP before resolution of discordant results by Allplex RP.

QIAstat RP compared to FilmArray RP Confirmation by Allplex

Pathogen +/+ +/- -/+ -/- ++/- +/- - - -/+ -/++

Adenovirus 27 9 5 404 6 3 4 1

Bocavirusc 3c 2c 0c 440c NA NA NA NA

Coronavirus 229E 2 0 0 443

Coronavirus OC43 4 0 0 441

Coronavirus HKU1b 1 2 0 442 NAb NAb NA NA

Coronavirus NL63 11 0 0 434

Rhino-/Enterovirus 49 14 8 374 3 11 5 3

hMPV 19 0 2 424 1 1

Influenza virus A /- 2 2a 1 440 1 0 1

Influenza A /H3N2 34 2 1 408 2 0 1 0

Influenza A /H1N1 0 0 0 445

Influenza A /H1-2009 strain (pandemic) 33 2 0 410 2 0

Influenza virus B 50 1 0 394 1 0

PIV 1 2 0 0 443

PIV 2 1 0 0 444

PIV 3 8 0 1 436 1 0

PIV 4 2 1 0 442 0 1

RSV 95 3 4 343 3 0 2 2

B. pertussis 5 0 0 440

C. pneumoniae 7 0 0 438

M. pneumoniae 21 1 0 423 0 1

L. pneumophila NA NA NA NA NA NA NA NA

Overall 376 39 22 8908 18 16 14 8

aOne sample with insufficient volume for discrepancy testing.
bNot included in the Allplex RP.
cNot included in the FilmArray RP. NA not available.

https://doi.org/10.1371/journal.pone.0230183.t003
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After resolution by discrepancy testing on the Allplex RP, a total of 402 pathogen results

were considered as true positive (Table 4), of which QIAstat RP detected 394, for an overall

PPA of 98.0% (95%CI 96.0%-99.1%). After discrepancy testing, the overall NPA of the QIAstat

RP was 99.8% (95%CI 99.6%-99.9).

Twenty-two pathogens detected by FilmArray RP were not detected by QIAstat RP

(Table 3). Fourteen of these were also not detected by AllPlex RP and were considered as true

negatives, leaving 8 pathogen detections as false negatives (Table 4). Thirty-nine pathogens

detected by QIAstat RP were not detected by FilmArray RP (Table 3). Twenty-one of these

were also not detected by AllPlex RP and were considered as false positives (Table 4).

Three of the 22 pathogens detected by FilmArray RP but not detected by QIAstat RP were

detected in single infection samples and additional two of the pathogens not detected by QIA-

stat RP were both detected in the same double infection sample. The five pathogens involved

were rhino-/enterovirus (three), human mastadenovirus A-G (one) and human orthopneumo-

virus (one). All off these five pathogens were detected by the discrepancy method (Allplex RP).

The remaining 17 pathogens not detected by QIAstat RP but detected by FilmArray RP were

from 17 samples with two or more pathogens. Three of these 17 pathogens (one hMPV, one

Table 4. Performance summary and characteristics of the QIAstat RP versus the FilmArray RP after resolution of discordant results by the Allplex RP.

QIAstat RP compared to FilmArray RP after Allplex RP discrepancy testing

Pathogen TP FP FN TN Sensitivity 95% CI Specificity 95% CI

Adenovirus 33 3 1 408 97.1 85.1–99.5 99.3 97.9–99.8

Coronavirus 229E 2 0 0 443 100.0 34.2–100.0 100.0 99.1–100.0

Coronavirus OC43 4 0 0 441 100.0 51.0–100.0 100.0 99.1–100.0

Coronavirus NL63 11 0 0 434 100.0 74.1–100.0 100.0 99.1–100.0

Rhino-/Enterovirus 52 11 3 379 94.4 85.1–98.1 97.2 95.0–98.4

hMPV 19 0 1 425 95.0 76.4–99.1 100.0 99.1–100.0

Influenza A virus /- 3 1a 1 440 75.0 30.1–95.4 99.8 98.7–100.0

Influenza A virus /H3N2 36 0 0 409 100.0 90.8–100.0 100.0 99.1–100.0

Influenza A virus /H1N1 0 0 0 445 NA NA 100.0 99.1–100.0

Influenza A virus /H1-2009 strain (pandemic) 35 0 0 410 100.0 89.8–100.0 100.0 99.1–100.0

Influenza B virus 51 0 0 394 100.0 93.0–100.0 100.0 99.0–100.0

PIV 1 2 0 0 443 100.0 34.2–100.0 100.0 99.1–100.0

PIV 2 1 0 0 444 100.0 20.7–100.0 100.0 99.1–100.0

PIV 3 8 0 0 437 100.0 67.6–100.0 100.0 99.1–100.0

PIV 4 2 1 0 442 100.0 34.2–100.0 99.8 98.7–100.0

RSV 98 0 2 345 98.0 93.0–99.4 100.0 98.9–100.0

B. pertussis 5 0 0 440 100.0 56.6–100.0 100.0 99.1–100.0

C. pneumoniae 7 0 0 438 100.0 64.6–100.0 100.0 99.1–100.0

M. pneumoniae 21 1 0 423 100.0 84.5–100.0 99.8 98.7–100.0

L. pneumophila NA NA NA NA NA NA NA NA

QIAstat RP versus FilmArray RP (human coronavirus) or Allplex RP (bocavirus). No discrepancy testing

Pathogen +/+ +/- -/+ -/- PPA 95% CI NPA 95% CI

Bocavirus 3 2 0 440 100.0 43.8–100.0 99.5 98.4–99.9

Coronavirus HKU1 1 2 0 442 100.0 20.7–100.0 99.5 98.4–99.9

Overall 394 21 8 8922 98.0 96.0–99.1 99.8 99.6–99.9

TP is true positive QIAstat RP results, FP is false positive, FN is false negative and TN is true negative results.
aInsufficient volume for discrepancy testing. Adenovirus equals human mastadenovirus A-G, bocavirus equals primate bocaparvovirus 1+2, PIV 1+3 equals human

respirovirus 1+3, PIV 2+4 equals human orthorubulavirus 2+4, RSV equals human orthopneumovirus.

https://doi.org/10.1371/journal.pone.0230183.t004
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influenza A virus, no subtype and one human orthopneumovirus) were detected by the dis-

crepancy method adding up to a total of 8 false negative pathogens.

QIAstat RP detected 39 pathogens not detected by FilmArray RP. 10 of these pathogens

were in single infection samples and the detected pathogens were rhino-/enterovirus (n = 1,

CT value 27.6), influenza B virus (n = 1, CT value 20.7), influenza A virus, no subtype (n = 1,

CT value 34.2), influenza A virus subtype H3N2 (n = 2, CT values 32.7 and 33.7), human

orthopneumovirus (n = 2, CT values 28.8 and 32.9) and human mastadenovirus A-G (n = 3,

CT values 21.3, 22.4 and 22.7). The influenza A virus with no detected subtype sample could

not be discrepancy tested due to insufficient residual volume and was accordingly considered

false positive by the QIAstat RP. One additional single-infection pathogen (the rhino-/enterovi-

rus) was considered false positive, as this result could not be confirmed positive by discrepancy

testing. The remaining eight single-infection pathogens were confirmed positive by the discrep-

ancy method and thus considered true positives (Table 4). The remaining 29 pathogens

detected by QIAstat RP but not detected by FilmArray RP were from samples with two or

more pathogens. Nineteen of these 29 pathogens (ten rhino-/enterovirus, CT values 26.9, 30.6,

32.2, 32.5, 32.6, 33.1, 33.1, 33.3, 33.5 and 34.4, three human mastadenovirus A-G, CT values

33.4, 33.7 and 37.3, one human orthorubulavirus 4, CT value 33.6, one Mycoplasma pneumo-
niae, CT value 33.3, two primate bocaparvovirus 1+2, CT values 34.1 and 34.9 and two human

coronavirus HKU1, CT values 31.7 and 33.1) could not be confirmed by discrepancy testing

and were thus considered false positives, for a total of 21 false positive pathogens (Table 4). The

remaining 10 pathogens were confirmed by the Allplex RP from samples with two or more

pathogens (three human mastadenovirus A-G, CT values 30.5, 30.8 and 33.3, three rhino-/

enterovirus, CT values 29.7, 30.0 and 32.2, human orthopneumovirus, CT value 16.2, two influ-

enza A virus subtype H3N2 and one influenza A virus, no subtype with no available CT value).

It was not possible to assess the sensitivity of the QIAstat RP for Legionella pneumophila or

influenza A virus subtype H1N1 as these organisms were not detected by any of the methods.

Primate bocaparvovirus 1+2 was detected by the QIAstat RP in five specimens, all containing at

least one other potential pathogen. The Allplex RP confirmed the detected primate bocaparvo-

virus 1+2 in three of five specimens. Because primate bocaparvovirus 1+2 is not included in the

panel of the reference method, the results are listed separately and are expressed as PPA/NPA.

Discussion

This study demonstrates for the first time the clinical performance of the new QIAstat RP

assay for detection of 21 respiratory pathogens. By comparison to the FilmArray RP, the over-

all PPA and NPA after discrepancy testing were 98.0% (95% CI: 96.0%-99.1%) and 99.8% (95%

CI: 99.6%-99.8) respectively. In general, the QIAstat RP assay showed excellent agreement

with FilmArray RP. For all pathogens included on the QIAstat RP test menu, except rhino-/

enterovirus (52 TP and 379 TN samples), influenza A virus, no subtype (3 TP and 440 TN sam-

ples) and hMPV (19 TP and 425 TN samples), the QIAstat RP showed sensitivity/PPA >97%

and specificity/NPA >99% (Table 4). The reason for the discordant results for rhino-/entero-

virus is not known but may potentially be explained by different diagnostic tests targeting dif-

ferent genetic regions of the rhino/enterovirus genome.

The CT values for the pathogen targets present in the discrepant QIAstat positive RP and

FilmArray RP negative samples were detected by QIAstat with CT values in the range 30–37,

which may be considered as weakly positive. Only three targets were detected as QIAstat RP

positive and FilmArray RP negative target with CT values below 30, one human orthopneumo-

virus (CT 16.2) and two rhino-/enterovirus (CT 26.9 and 29.7) and thus as strong positive

samples.
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It would have been beneficial to resolve discrepancy results by sequencing as this potentially

would have clarified the discordant results for rhino-/enterovirus. This was not possible as

both the QIAstat RP and FilmArray RP as assays are performed in sealed samples-to-answer

cartridges that are constructed to prevent access to sample material remaining in the cartridge.

The QIAstat RP assay requires one manual pipetting step to load the patient sample into

test cartridge. The test cartridge ID and patient/sample ID is entered by on-board scanner and

the total assay time is approximately 69 minutes. The QIAstat Dx DiagCORE analyzer offers a

small footprint, traceable internal inhibition controls (by amplification curve as well as Ct

value), low maintenance requirements and low failure rate as well as seamless connectivity and

integration with hospital and laboratory information systems. In addition, the QIAstat Dx

DiagCORE analyzer offers access to amplification curves and Ct values of all detected patho-

gen targets. The QIAstat RP assay cartridge has on-board wet and dry reagents, build-in ampli-

fication inhibition controls, detects 21 pathogens in a total of 8 separate reaction chambers,

offers a direct dry swab testing option via a separate cartridge input port and stores at room

temperature. The QIAstat RP is CE IVD marked and FDA approval is pending.

The syndromic diagnostic approach for ARTI may provide multiple benefits for the institu-

tion (e.g. prudent use of side room isolation facilities, reduced prescription of antimicrobials,

targeted use of antivirals) The benefits have been partly described in previous publications.

Trabattoni et al reported a significant reduction in Emergency Department (ED) length of stay

as well as a significant reduction in hospitalization rate for patients tested by the Alere i influ-

enza assay in the ED [22], and Hansen et al reported a positive impact on admittance rate as

well as total cost by Roche Liat influenza testing in the ED setting [14]. Brendish et al reported

on encouraging findings of PoC testing of respiratory viruses, as their studies showed that this

testing was associated with a reduced length of hospital stay, resulted in more single doses or

brief courses of antibiotics as well as in an improved influenza detection and antiviral use [15].

However, understanding of the full impact on patient management by the syndromic testing

approach for ARTI as well as the cost-benefit will require more prospective outcome studies.

Such studies would also provide information regarding which patient population(s) will bene-

fit the most from respiratory tract syndromic testing and what the added benefits of syndromic

testing compared to selected target testing (e.g. influenza A/B virus, human orthopneumo-

virus, hMPV, Bordetella pertussis or combinations hereof).

This study has several limitations. First, as this study was not designed as an epidemiologi-

cal study, the included clinical samples were not collected consecutively and the detected co-

infection rates and the frequency of different pathogens in the co-infected samples may not

reflect the actual co-infection rates in the patient population at the time of sample collection.

Second, as several pathogens, e.g. coronaviruses, B. pertussis, C. pneumoniae and parainfluen-

zavirus 1–4, were only detected in few clinical samples, the performance of the QIAstat RP

assay for detection of these pathogens is uncertain.

In conclusion, in this first clinical study of the new QIAstat RP assay performed in two

diagnostic laboratories providing 445 clinical samples for analysis, we observed excellent diag-

nostic accuracy of the QIAstat RP assay compared to the comparator (FilmArray RP). The

QIAstat RP assay could potentially impact positively on antimicrobial stewardship, hospital

admittance and use of side room contact isolation facilities.
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