
CANCER RESEARCH | GENOME AND EPIGENOME

Regulatory Network of PD1 Signaling Is Associated with
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ABSTRACT
◥

Glioblastoma is an aggressive cancer of the brain and spine.
While analysis of glioblastoma ‘omics data has somewhat improved
our understanding of the disease, it has not led to direct improve-
ment in patient survival. Cancer survival is often characterized by
differences in gene expression, but the mechanisms that drive these
differences are generally unknown. We therefore set out to model
the regulatory mechanisms associated with glioblastoma survival.
We inferred individual patient gene regulatory networks using data
from two different expression platforms from The Cancer Genome
Atlas. We performed comparative network analysis between
patients with long- and short-term survival. Seven pathways were
identified as associated with survival, all of them involved in
immune signaling; differential regulation of PD1 signaling was
validated to correspond with outcome in an independent dataset

from the German GliomaNetwork. In this pathway, transcriptional
repression of genes for which treatment options are available was
lost in short-term survivors; this was independent of mutational
burden and only weakly associated with T-cell infiltration. Collec-
tively, these results provide a new way to stratify patients with
glioblastoma that uses network features as biomarkers to predict
survival. They also identify new potential therapeutic interventions,
underscoring the value of analyzing gene regulatory networks in
individual patients with cancer.

Significance: Genome-wide network modeling of individual
glioblastomas identifies dysregulation of PD1 signaling in patients
with poor prognosis, indicating this approach can be used to
understand how gene regulation influences cancer progression.

Introduction
Microarrays and next-generation sequencing technologies have

been broadly applied to the study of cancer. Large collaborative
projects, such as The Cancer Genome Atlas (TCGA), have explored
the ‘omics landscape for many different cancer types. Although this
has somewhat improved our understanding of the biology underlying
the development and progression of cancer (1), it has only led to direct
improvement of patient survival for a limited subset of cancer types.
For most cancers, genomic signatures associated with survival are very
complex, making it difficult to point to direct targets for treatment.

An example is glioblastoma multiforme, an aggressive cancer of the
brain and spine.With amedian overall survival of only 15–17months,
glioblastoma has a particularly poor prognosis. Multiple gene signa-
tures have been identified that correlate with glioblastoma survival
(see, e.g., refs. 2–6), but comparison of these signatures finds very few
shared genes or pathways, making interpretation of the results difficult

at best. Although unsupervised clustering of gene expression analysis
has identified glioblastoma subtypes that differ somewhat in patient
survival (7), and integrative analysis with mutational profiles has shed
some light on what could drive these subtypes (8), the causative
regulatory mechanisms that distinguish these subtypes are not fully
understood. We believe that, by modeling the regulatory mechanisms
that mediate gene expression patterns associated with patient subtypes
and survival, we will be better able to explain what influences disease
progression, and may identify therapeutic interventions that advance
precision medicine treatments for patients with glioblastoma.

Gene regulatory mechanisms can bemodeled using gene regulatory
network reconstruction approaches. An example of such an approach
is PANDA (Passing Attributes between Networks for Data Assimila-
tion; refs. 9, 10). PANDA relies on message passing (11) to infer
regulatory processes by seeking consistency between transcription
factor (TF) protein–protein interaction (PPI), DNA motif binding,
and gene expression data. PANDA has been key to understand tissue-
specific gene regulation (12), identify regulatory differences between
cell lines and their tissues of origin (13), and to identify regulatory
changes that may drive cancer subtypes (14). One drawback, however,
of estimating regulatory networks using PANDA or other methods is
that network reconstruction relies upon combining information from
large, typically diverse study populations to estimate one “aggregate”
network representing that dataset.

To reconstruct regulatory networks for each sample in a dataset, we
developed LIONESS, or Linear Interpolation to Obtain Network
Estimates for Single Samples (15). LIONESS assumes that the edges
estimated in an “aggregate” networkmodel are a linear combination of
edges specific to each of the input samples. This allows estimation of
individual sample edge scores using a linear equation.What thismeans
is that, instead of only reconstructing one single network representing
glioblastoma, we can “extract” distinct, reproducible networks for each
individual patient from this aggregate networkmodel. This allows us to
associate individual networks and network properties with clinical
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endpoints, such as patient survival and response to therapy, and is
therefore an exciting advance in network inference with potential
applications in precision medicine. We have used this method in a
number of applications includingmodeling 8,279 sample-specific gene
regulatory networks to discover sex-biased gene regulation across 29
tissues (16) and modeling regulatory networks for more than 1,000
patients with colon cancer to find sex-linked regulatory mechanisms
associated with response to chemotherapy (17).

In the study presented here, we applied PANDA and LIONESS to
model gene regulatory networks for individual patients with primary
glioblastoma from TCGA. We performed a comparative network
analysis to identify regulatory differences between patients with long-
and short-term survival (Fig. 1). We validated our results in an
independent dataset of primary glioblastomas from the German
Glioma Network. This integrative gene regulatory network approach
allowed us to identify disrupted regulation of PD1 pathway genes as
associated with glioblastoma survival. Specifically, we found that
transcriptional repression of genes involved in PD1 signaling is lower
in short-term survivors. This is independent of PD1 gene methylation
status, and mutation burden, and weakly associated with immune
infiltrate, and therefore suggests a new mechanism of heterogeneity in
glioblastoma prognosis.

Materials and Methods
Gene expression data preprocessing

We downloaded primary glioblastoma gene expression data from
TCGA using RTCGAToolbox (18) as described previously (19). This
included Affymetrix HG-U133 microarray data for 525 patients and
Affymetrix Human Exon 1.0 ST microarray data for 431 patients. We
refer to these datasets as “discovery dataset 1” and “discovery dataset 2”
in the rest of this article.

We performed batch correction on each dataset independently,
using ComBat (20). Some TCGA batch numbers only contained one
glioblastoma sample (two batch numbers in discovery dataset 1 and
one in discovery dataset 2) and thus for those samples, batch
correction was not possible. We grouped these samples together
with those batches that were most similar in their expression
profiles, based on Pearson similarity. We visualized the distribution
of expression levels in each sample in density plots and removed
three outlier samples from discovery dataset 1, resulting in a dataset
that included 522 patients. We then used the quantile normalization
in Bioconductor package “preprocessCore” to normalize each data-
set independently (21).

We used data from the German Glioma Network (22) to for
independent validation of our findings from TCGA; we refer to the
German Glioma Network dataset as the “validation dataset.” These
data consist of untreated, primary glioblastomas profiled on Affyme-
trix HG-U133 Plus 2.0 microarrays and are available in the Gene
Expression Omnibus (GEO) with identifier GSE53733 (download
date: April 15, 2017; ref. 22). We downloaded the normalized expres-
sion data from the “Series Matrix File.” Follow-up information was
available in the form of three groups—long-term (survival
>36 months, n ¼ 23), intermediate (between 12–36 months, n ¼
31), and short-term (<12 months, n ¼ 16) survival.

Finally, we used data from Kwon and colleagues (23) to compare
primary (n ¼ 25) with recurrent (n ¼ 18) glioblastomas. These data
were profiled on Illumina HumanHT-12 V4.0 expression beadchips
and are available in GEO with identifier GSE62153. We used Bio-
conductor package “GEOquery” to download the normalized expres-
sion data (download date: June 19, 2021).

Curation of clinical data and selection of patient groups
For detailed information on how we curated the clinical data from

TCGA, we refer to our previous publication (24). In short, we used
RTCGAToolbox (18) to download the data, and curated these by
combining data from all available Firehose versions consecutively as to
retain all clinical information, with the most up-to-date information
for data present across different Firehose versions.

We used a survival threshold of 1.7 years (620 days) to define long-
term and short-term survival. We estimated this threshold by taking
the third quartile of the last day to follow-up available in discovery
dataset 1 to ensure a meaningful (e.g., not too short) threshold while
maintaining relatively balanced sample groups. This threshold also
falls in between thresholds previously used to define survival groups
(Supplementary Table S1). It divided the patient population of dis-
covery dataset 1 into a group of 127 relatively long-term survivors who
survived for at least 1.7 years, 336 short-term survivors who deceased
within 1.7 years, and 59 patients for whom not enough follow-up data
were available (“censored” patients). We excluded the latter group
from our analyses. Similarly, the group of patients in discovery dataset
2 was divided into 116 long-term, 275 short-term, and 40 censored
patients. We note that, for the significant pathways identified in the
comparison of networks for these survival groups (see below), we
repeated the analysis for a wide range of survival thresholds—all
thresholds that resulted in a minimum group size of 10 patients—
to ensure the robustness of our results.

Modeling single-sample networks
We used theMATLAB version of the PANDA network reconstruc-

tion algorithm (available in the netZoo repository https://github.com/
netZoo/netZooM) to estimate aggregate gene regulatory networks.
PANDA incorporates regulatory information from three types of data:
gene expression data (see above), PPI data, and a “prior”network based
on a TF motif scan to their putative target genes, which is used to
initialize the algorithm.

To build the motif prior, we used a set of 695 TF motifs from the
Catalogue of Inferred Sequence Binding Preferences (CIS-BP; ref. 25),
which we had selected previously (12). We scanned these motifs to
promoters as described previously (26). After intersecting the prior to
only include genes and TFs with expression data (see above) and at
least one significant promoter hit, this process resulted in an initial
map of potential regulatory interactions involving 650 TFs targeting
10,701 genes.

We estimated an initial PPI network between all TFs in our motif
prior using interaction scores from StringDb v10 (27), as described in
Sonawane and colleagues (12). PPI interaction scores were divided by
1,000 to have them range [0,1] and self-interactions were set equal to
one.

For each dataset, we built an aggregate network using PANDA and
then used the LIONESS equation in MATLAB to extract networks for
individual samples.

Community structure comparison
To perform a comparative analysis of regulatory network commu-

nity structures between the two patient groups, we averaged the single-
sample networks in each of the groups. We filtered these networks for
canonical edges (prior edges representing putative TF–DNA binding)
and then performed community structure analysis using the bipartite
community structure detection algorithm in CONDOR (28). As
CONDOR requires positive edge weights, we transformed the network
edges as in Sonawane and colleagues (12) using the following equation,
before applying CONDOR:
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W tð Þ
ij ¼ ln eW

tð Þ
ij þ 1

� �
;

where WðtÞ
ij is the edge weight calculated by PANDA between a TF (i)

and gene (j) in a particular network (t).
We used ALPACA (29)—a method that uses message passing and

modularity optimization to identify structural changes in complex
networks—to compare the community structure of the long-term
survival network with that of the short-term network set as a baseline,
and vice versa. We reported differential communities that included a
minimumof 10 nodes. To identify enrichment inGeneOntology (GO)
terms, we used communities that included at least 50 genes. We
compared the top 50 genes based on their ALPACA scores with the
background of all genes in the network model, using the “classical”
Fisher exact test from R package “topGO.” We corrected P values for
multiple testing using the Benjamini and Hochberg approach and
reported those GO terms with FDR < 0.25 and gene set size <50 as
significantly enriched.

LIMMA analysis
For each tumor sample, we calculated gene targeting scores by

taking the sum of all edge weights pointing to a gene (this is the
same as a weighted gene “degree”). This measure is representative of
the amount of regulation a gene receives from the entire set of TFs
available in our network models (17). We performed a Bayesian
statistical analysis using LIMMA (30) comparing gene targeting
scores in long-term survivors with those in short-term survivors,
correcting for the patient’s age at diagnosis of the primary tumor,
their sex, and whether they were treated with neoadjuvant therapy
or not. We repeated this analysis on network edge weights, so that
we could visualize edges connecting to genes in the PD1 signaling
pathway.

We note that we also evaluated other relevant clinical features in
glioblastoma, including 1p19q co-deletion, IDH1/2 [isocitrate dehy-

drogenase (IDH)] status, and MGMT promoter methylation status.
1p19q co-deletion status (available for 96% of patients) was, as
expected in this primary cohort, only deleted in a small fraction
(0.4%) of patients. We ran linear models correcting for MGMT and
IDH status, and reported the results when correcting for IDH status
(available for 79% of patients) as well. As MGMT status was only
available for 53% of patients, we did not correct for this variable.

For the analysis in the validation dataset of primary tumors, we
compared the long-term groupwith the short-term group as defined in
Reifenberger and colleagues (22). We used the dataset from Kwon and
colleagues (23) to perform an additional validation, comparing recur-
rences with primary tumors.

Preranked gene set enrichment analysis
We performed preranked gene set enrichment analysis (GSEA;

ref. 31) on the t-statistics from the LIMMA analysis to identify
Reactome gene sets enriched for differentially targeted genes. We
defined gene sets with FDR < 0.05 and absolute GSEA enrichment
score (ES) > 0.5 to be significantly differentially targeted.We evaluated
gene sets that had less than 50 genes, so as to exclude some of the more
general pathways.

Cellular composition analysis
We used xCell (32) to estimate cell compositions in each tumor

sample in each of the three datasets. xCell is a novel gene signature-
based method that integrates the advantages of gene set enrichment
with deconvolution approaches to infer 64 immune and stromal cell
types. The scores calculated by xCell approximate cell type fractions,
and adjust for overlap between closely related cell types. Finally, the
method calculates P values for the null hypothesis that a cell type is not
in the mixture and thereby allows for filtering out cell types that are
likely not present in the sample. We applied the xCell pipeline to each
of the datasets and used the default threshold of 0.2 to filter out cell
types not present in the datasets.

Figure 1.

Schematic overview of the study. Left box, overview of the approach used to reconstruct individual patient networks with PANDA and LIONESS by integrating
information on PPIs between TFs, prior information on TF-DNAmotif binding, and gene expression data from two platforms using data from TCGA (n¼ 522 and 431
patients). Right box, overview of the differential regulation analysis.
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We used CIBERSORTx (33) as a second deconvolution approach to
validate the findings obtainedwith xCell.We used themedian values of
expression for the single-cell RNA sequencing (RNA-seq) data pro-
vided by the Allen Institute for Brain Science, available at https://
portal.brain-map.org/atlases-and-data/rnaseq/human-m1-10x as ref-
erence for the human brain (M1–10X, 127 cell types; ref. 34). We used
the CIBERSORTx "impute cell fractions" module with default para-
meters (relative mode, no batch correction, no quantile normalization,
and no permutations for significance analysis; ref. 33). We then
compared the identified cell fraction compositions between the two
survival groups using the Wilcoxon rank-sum test.

P-values from xCell and CIBERSORTx were corrected for multiple
testing using the Benjamini and Hochberg method (35).

Association with mutation load
We downloaded and preprocessed glioblastoma mutation data as

previously described in Kuijjer and colleagues (24). We selected data
corresponding to patients that we used in our network analysis
(n¼ 232).We calculated patient-specific tumormutation scores based
on all available genes (n ¼ 26,076) using SAMBAR [https://github.
com/kuijjerlab/SAMBAR and Kuijjer and colleagues (24)], which
corrects the number of somatic mutations per gene based on the gene
length and then sums these scores to obtain a patient-specific tumor
mutation burden score. We calculated PD1 pathway targeting scores
by dividing the sum of the PD1 gene targeting scores in each sample by
the number of PD1pathway genes available in our dataset (n¼ 13).We
then correlated the patient mutation scores with these PD1 pathway
targeting scores using Spearman correlation. In addition, we assessed
the association between PD1 pathway targeting scores and mutation
scores in individual Reactome pathways, across patients. As for most
pathways only a subset of patients had non-zero mutation scores, we
used Pearson correlation (which can handle ties) to calculate these
pathway-specific scores.

Association with methylation data
We downloaded TCGA methylation beta value data for glioblas-

toma samples from the GDC Data Portal on June 9, 2019 (https://
portal.gdc.cancer.gov/repository). We selected only primary tumor
samples used in our network analysis, which included 246 samples
obtained from the Illumina Infinium HumanMethylation27 (27K)
BeadChip array and 93 samples from the Illumina Infinium Human-
Methylation450 (450K) BeadChip array. We subsetted to probes for
genes in the PD1 pathway, which included 19 probes on the 27K
platform, and 274 probes on the 450K platform. We performed
quantile normalization on the methylation beta values, followed by
a Bayesian statistical analysis using LIMMA as described above. For
each platform, we compared the normalized beta values between
short-term and long-term survivors, adjusting for age, sex, and
whether the patient was treated with neoadjuvant therapy or not. We
adjusted the P values using the Benjamini and Hochberg method (35).

Validation in protein abundance data
We downloaded protein abundance data for glioblastoma samples

from TCGA using Bioconductor package “RTCGA.RPPA” (accessed
April 13, 2018; ref. 36).We subsetted these data to primary tumors only
and to samples corresponding to patients that were available in our
network analysis (n¼ 233). We selected PD1 pathway proteins in the
RPPAdata based onwhether they corresponded to PD1pathway genes
from the Reactome signature (18 genes in total).We identified 3 of 208
proteins as components of the PD1 pathway: Lck, p62-LCK-ligand,
and PDCD4. We compared protein abundance of these three proteins

between the two survival groups using a t test, and corrected for the
FDR using the Benjamini and Hochberg method (35).

Data and code availability
The input data, clinical information, code to reproduce all

individual patient networks, and the entire collection of recon-
structed networks used in this study are available on https://grand.
networkmedicine.org/cancers/GBM_cancer/. Code to reproduce
the results and figures is available at http://netbooks.networkmedi
cine.org/ under “Case studies—Gene regulatory network analysis
in Glioblastoma.”

Results
Data features

We investigated the regulatory processes that drive survival differ-
ences in glioblastoma by performing network analysis in two discovery
datasets followed by a validation in two independent datasets (Fig. 1).
For the discovery datasets, we analyzed microarray data of primary
glioblastoma tumor samples from TCGA, which were profiled on two
different platforms—AffymetrixHG-U133 arrays (discovery dataset 1)
and Affymetrix Human Exon 1.0 ST arrays (discovery dataset 2). We
removed potential outlier samples based on gene expression densities
and retained 522 and 431 samples, respectively, for the primary
analysis. These included 424 samples obtained from the same patients.
Thus, by assessing reproducibility of our network models in these two
discovery datasets, we could identify whether the network models are
robust across platforms.

For the independent validation dataset of primary tumors, we
downloaded normalized microarray data from the German Glioma
Network (22) fromGEO,whichwere profiled onAffymetrixHG-U133
Plus 2.0 arrays. This validation dataset included 70 primary, untreated
glioblastoma samples. Patient clinical features for the discovery dataset
are summarized in Table 1. For this validation dataset, no clinico-
pathologic features except for survival information were available. In
addition, we performed a comparison of primary and recurrent
glioblastomas profiled on Illumina HumanHT-12 V4.0 expression
beadchips. This second validation dataset included a total of 43
samples (23).

To identify regulatory gene network differences associated with
survival, we divided the patient population into two groups (see
Materials and Methods). The first group had overall survival of more
than 1.7 years (127 and 116 patients for discovery datasets 1 and 2,
respectively) while the second group died within 1.7 years of initial
diagnosis (336 and 275 patients, respectively); patients who were alive,
but for whomwe did not have follow-up data >1.7 years were excluded
from the analysis (59 and 40 patients, respectively). The number of
long-term and short-term survivors in each dataset were wellmatched,
and we controlled the downstream analysis of the discovery data for
potential differences between the two outcome groups for age, sex, and
neoadjuvant treatment status. We note that we also evaluated correc-
tion for IDH status, as well as multiple survival thresholds (see
Materials and Methods and below).

Patient-specific glioblastoma networks
In previous studies, we found gene regulatory network analysis

identified altered phenotype-relevant biological processes that were not
observed using other analytic methods. Specifically, we found that TFs
often demonstrate altered regulatory roles through changes in their
targeting patterns that are independent of their own mRNA expression
levels (12, 13, 17), highlighting the importance of integrative frameworks
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that include information on putative TF-DNA binding sites to model
regulatory mechanisms. Therefore, we performed a gene regulatory
network analysis of glioblastoma using the PANDA and LIONESS
integrative network modeling framework (Fig. 1), reconstructing reg-
ulatory networks for each individual in our discovery populations and
independently for the validation sets.

PANDA uses a message passing algorithm to seek consistency
between evidence provided by multiple datasets. PANDA starts with
a TF to target gene prior network that is based on amotif scanmapping
TF binding sites to the promoter of their putative target genes. The
method then integrates this prior network of putative interactions with
PPIs between TFs and with target gene expression data. It does this
through identifying overlaps in targeting patterns in the three input
networks, rather than through estimating correlations between TFs or
between TFs and their target genes [as we previously showed in
Sonawane and colleagues (12), expression levels of important regu-
latory factors are not always correlated with their targets]. The
resulting gene regulatory network consists of weighted edges between
each TF-target gene pair. These edge weights reflect the strength of the
inferred regulatory relationship.

We initiated PANDA with TF binding sites from CIS-BP (25), PPI
data from StringDb (27), and expression data from either the discovery
or the validation datasets tomodel aggregate gene regulatory networks
based on all samples. We then used LIONESS to estimate each
individual patient-specific regulatory network. These individual
patient networks allow us to associate network properties with clinical
information.

Immune system network modules are associated with
glioblastoma survival

As a baseline for our individual patient network analysis, we first
compared the robustness of the condition-specific networks modeled
on the two discovery datasets. We calculated network similarity using
Pearson correlation and found that the networks were highly repro-
ducible, with Pearson R ¼ 0.94, P < 2.2e-16 (see Supplementary

Fig. S1). We next evaluated whether there were global network
structural differences between the long-term and short-term survivors.
To do this, we merged the individual patient networks of each
discovery dataset into two condition-specific networks by, for all
edges, taking the average of the edge weight across the patient group.
For each discovery dataset, this resulted in one condition-specific
network representing individuals with long-term survival and one
representing individuals with short-term survival. We then used
CONDOR (28), a community detection algorithm specifically
designed to detect modules in bipartite networks, and applied
ALPACA (29) to extract differential network modules that distinguish
the long-term from the short-term survival network and vice versa.
ALPACA calculates a “differential modularity” score that compares
the density of modules in the “perturbed” network to the expected
density of modules in the “baseline” network.

ALPACA found 14 differential modules in the long-term versus
short-term comparison in discovery dataset 1 and 17 differential
modules in discovery dataset 2. We performed GO term analysis on
the top 50 genes with highest differential modularity scores in these
modules [as described in Padi and colleagues (29)], and identified two
modules that had significant overrepresentation ofGO terms in each of
the discovery datasets. In total, we identified overrepresentation of 19
GO terms (see Fig. 2A). The three GO terms with the highest
enrichment scores were significant in both discovery datasets. These
terms included “innate immune response in mucosa,” “mucosal
immune response,” and “organ or tissue specific immune response.”
This result suggests that the regulatory network in glioblastoma
changes its topology when the disease becomes more aggressive and
that this rewiring involves genes with a role in immune response.

In addition to analyzing global differences in network module
structure, we pulled out the TFs and target genes with the greatest
contributions to the observed differences in network topology. We
averaged the differential modularity scores from ALPACA across the
networks modeled on the two discovery datasets. To extract the top
differential nodes, we transformed these scores to a log scale. We then

Table 1. Clinical features for patients available in the two discovery datasets from TCGA.

Discovery dataset 1 Discovery dataset 2
Long-term surv. Short-term surv. P Long-term surv. Short-term surv. P

Number of patients 127 336 – 116 275 –

Sex
Female 55 122 0.198 49 96 0.172
Male 72 214 67 179

Age 49.2 � 14.7 60.7 � 13.2 4.34e-13 49.7 � 14.5 60.0 � 13.7 4.55e-10
Year of diagnosis 2003 � 4.4 2004 � 5.1 0.162 2003 � 4.2 2003 � 4.9 0.797
Race

Asian 5 4 0.178 5 4 0.200
Black 8 17 8 14
White 113 298 102 241
Not reported 1 17 1 16

Ethnicity
Hispanic or latino 2 8 0.731 1 7 0.443
Not hispanic or latino 111 276 105 234
Not reported 14 52 10 34

Neoadjuvant therapy
Yes 68 160 0.250 64 137 0.375
No 57 172 51 134
Not reported 2 4 1 4

Note: t test was performed for age and year of diagnosis. For other clinical features, Fisher exact test was performed, excluding unreported values.
Abbreviation: Surv., survival.
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calculated themedian and interquartile range (IQR) for TFs and target
genes separately, as these are bipartite networks with different target-
ing properties—TFs are fewer in number and generally regulate a large
number of genes, while there are more target genes than TFs—
therefore, in- and out-degree values cannot be directly compared
(see Fig. 2B for their distribution).

We identified four TFs for which differential modularity deviated
more than 1.5�IQR from the median (Fig. 2B). The top TF was
BRCA1, which plays an important role in DNA damage repair, and is
affected in many cancer types (37). Other TFs included ZBTB33,
CREB3L1, and CTCF. ZBTB33 can promote histone deacetylation and
the formation of repressive chromatin and plays a role in the Wnt
signaling pathway. CREB3L1 is required to protect astrocytes from
endoplasmatic reticulum-induced stress (38), and is activated in
response to virus infection (39). CTCF can bind to a large number
of sites in the human genome and is known to regulate important
cellular processes, both in neuronal development and in the immune
system (40).

For 12 target genes, differential modularity scores deviated with
more than 3�IQR from the median (Fig. 2B). These include cancer-
associated genes such as PPP2R3C, a serine/threonine phosphatase
involved in PI3K/Akt signaling and B-cell survival, and DSN1, encod-
ing a kinetochore protein. Genes known to be expressed in the brain
(e.g., TACR2, TRPV4, and HSPBAP1) were also among the top target
genes, as well as genes that may act as TFs (RBPJL and TOX4).

As ALPACA is not symmetric, we also contrasted short-term with
long-term community structures and found similar results, with
immune signaling pathways significantly enriched in differential
communities in both datasets (see Supplementary Fig. S2A for
enriched GO terms; Supplementary Fig. S2B for the distribution of
ALPACA scores).

Regulation of PD1 pathway genes is associated with
glioblastoma survival

After having analyzed the structural differences between condi-
tion-specific networks, we set out to analyze networks for each
individual patient. We hypothesized that these individual patient

network models, parameterized by the “weights” assigned to TF/
target gene interactions (edges) we estimate, are predictive of
clinical outcome. The basis for this hypothesis is that the edge
weights provide an estimate of which gene regulatory programs are
active in each individual.

We estimatedwhether alteration of the inferred regulatory networks
was predictive of patient survival. For each gene in each sample, we
calculated a “gene targeting score” equal to the sum of edge weights in
the regulatory model. We used Bayesian statistical analysis (LIMMA)
to test for significant associations of the gene targeting scores with
survival. We corrected this analysis for patient age, sex, and neoadju-
vant treatment status. We used GSEA (31) using Reactome (41)
signatures from MSigDb (42) on the moderated t-statistic from the
LIMMA analysis to identify pathways significantly differentially tar-
geted between good and poor survivors (FDR < 0.05). We performed
this analysis on both discovery datasets.

We identified 54 and 46 pathways (FDR < 0.05, absolute ES >0.5,
gene set size <50) in discovery dataset 1 and 2, respectively. Seven
pathways were significant in both datasets and each of these seven
pathways had a role in immune function (Fig. 3), confirming our
findings from theALPACAcomparison.Wenote thatwe also repeated
the analysis with correction for IDH status (available for 79% of
patients) in addition to the covariates mentioned above. All seven
pathways identified in the analysis without correction for IDH status
remained significant after correcting for IDH status.

To validate these results, we repeated our network analysis pipeline
on an independent validation dataset from the German Glioma
Network. Even though the sample size of this validation dataset was
considerably lower than those in the discovery datasets, we identified
one of the seven pathways as significantly enriched (FDR ¼ 0.017),
with the same direction of enrichment (ES ¼ �0.67)—the PD1
signaling pathway.

Finally, to ensure that our results were stable across multiple
survival thresholds, we repeated the comparative network analysis in
the two discovery datasets across multiple survival thresholds, which
we ranged from zero to the maximum follow-up, with intervals of
0.1 years, keeping comparisons that had group sizes of at least 10
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patients. We found that the PD1 signaling pathway was stable across a
wide range of thresholds (see Supplementary Fig. S3A for discovery
dataset 1 and Supplementary Fig. S3B for discovery dataset 2).

Loss of transcriptional repression of PD1 signaling in patients
with short-term survival

We next visualized the gene regulatory network around the PD1
signaling pathway and found that genes belonging to this pathway are
overexpressed in the short-term survival group, but that their expres-
sion levels are repressed in the group of patients with better survival
(Fig. 4). This repression of PD1 signaling genes is lost in patients with
the worst survival profiles. In total, we found 105 TFs to be involved in
differential targeting of the PD1 signaling pathway, indicating that the
regulatory network rewiring involved in glioblastoma survival is
complex. In addition, several TFs were involved in differential regu-
lation of multiple PD1 target genes (these are indicated with a larger
font size in the figure). Examples of such TFs are GSX2, ZIC2,
HMGA1, GATA4, ZKSCAN1, and SMARCC1.

GSX2 and ZIC2 are involved in brain development (43, 44).GSX2 is
a class II Homeobox gene that is found primarily in the brain and is
involved in brain development and neuronal differentiation. It was
previously reported as part of a three-gene signature that can predict
outcome in low-grade glioma (43). HMGA1 can promote cell growth
in glioma cells (45). Overexpression of this TF was shown to correlate
with proliferation, invasion, and angiogenesis in glioblastoma (46).
Hypermethylation of the GATA4 promoter has been identified in
glioblastoma and several other cancer types (47). ZKSCAN1 and
SMARCC1 have not yet been identified in glioblastoma, but play a
role in other cancer types. ZKSCAN1 was shown to be involved in cell
proliferation, migration, and invasion in hepatocellular carcino-
ma (48), while SMARCC1 has been associated with colorectal cancer
survival (49). These TFs are involved in metastasis and invasion, brain
development, cell proliferation, and cancer. They could be potentially
targeted to improve survival or to boost PD-1/PD-L1 inhibition in
glioblastoma.

Loss of transcriptional repression of PD1 signaling in recurrent
compared with primary tumors

To determine whether PD1 signaling regulation is associated
with tumor aggressiveness and progression in general, we modeled

networks on a second independent validation set, which included
recurrent and primary glioblastomas. We repeated our analysis pipe-
line, comparing networks modeled on recurrent with networks mod-
eled on primary tumors. A total of four pathways were significantly
differentially regulated, of which, the PD1 signaling was the top ranked
pathway (ES¼�0.72, FDR¼ 0.046). This indicates that PD1 signaling
repression is lower in recurrent tumors compared with primary
tumors, and thus strengthens our results that loss of repression of
the pathway is associated with tumor progression.

PD1 targeting scores weakly associate with CD8-positive naïve
T-cell fractions

Because a recent study had shown that differences in coexpres-
sion, which are used as input in PANDA, may be caused by different
cellular compositions in bulk tissues (50), we tested whether there
were differences in immune cell composition in samples from the
two patient groups. To do this, we used xCell (32) to calculate the
cell type composition in each sample. We then performed a t test to
determine whether our sample groups were enriched for specific
cell types. We identified significant enrichment for CD8-positive
naïve T cells in long-term survivors in the two discovery datasets
(FDR < 0.1), as well as CD4-positive memory T cells in discovery
dataset 2 (see Supplementary Fig. S4A for discovery dataset 1,
Supplementary Fig. S4B for discovery dataset 2, and Supplementary
Fig. S4C for the validation dataset). However, while we identified a
nominal significance (P < 0.05) for CD8-positive naïve T cells in the
validation dataset as well, this was not significant after correcting
for multiple testing.

We did not observe significant differences in other cell types, nor in
the total immune scores (Supplementary Fig. S5A).We then correlated
the total immune scores (the sum of xCell scores of all immune cell
types) with the PD1 pathway targeting scores to determine whether
there was any other dependence between targeting scores and immune
infiltrate, but did not observe any significant correlations in the
discovery datasets (Supplementary Fig. S5B). We also did not observe
significant differences in correlation coefficients between the two
survival groups.

Deconvoluting with CIBERSORTx (33), using single-cell RNA-seq
from human brain as a baseline, did not identify significant differences
(FDR < 0.05) in cell types between the two survival groups in any of the
cohorts, confirming the results obtained with xCell.

Together, these results indicate that while PD1 targeting scores may
somewhat associate with infiltration of CD8-positive naïve T cells, they
cannot solely be explained by the amount of immune infiltration in the
tumor samples. The association between repression of PD1 signaling
and survival is therefore not likely to be caused solely by differences in
immune composition, but rather by regulatory differences in the
cancer cells.

Differential regulation of PD1 signaling is independent of overall
tumor mutation load

We next tested whether differential regulation of PD1 signaling was
associated with tumor mutation burden. A higher mutation burden
has been associated with a higher level of neoantigen presentation that
may facilitate immune recognition of cancer and thus activate an
antitumor immune response. It has also been associated with better
response to immune checkpoint inhibitors (51).

For this and the following analyses, we focused on comparison of
PD1 targeting scores from discovery dataset 1. We downloaded and
preprocessed mutation data for patients with glioblastoma as
described in Kuijjer and colleagues (24) and selected data for those
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Bubble plot representation of the seven pathways that were significantly
differentially regulated between long- and short-term survivors in both datasets
from TCGA. For each pathway, two bubbles are shown—one for each dataset—
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patients we used in our network analysis (n¼ 235). We calculated the
somatic mutation burden in these tumors using the overall mutation
rate scores obtained with SAMBAR—a mathematical approach that
converts and de-sparsifies somatic mutations in genes into pathway
mutation scores (24). We used Spearman correlation to compare PD1
pathway targeting with the overall mutation rates. We did not identify
any significant association between mutation burden and targeting of
PD1 signaling genes [Fig. 5A, Spearman R ¼ 0.016, P ¼ 0.81 for the
PD1 targeting score, range of Spearman R for individual genes [�0.14,
0.075)], indicating that regulation of PD1 signaling is independent of
mutation burden in glioblastoma.

PD1 pathway targeting weakly associates with mutations in
cell-cycle genes

To identify whether there was an association between targeting of
the PD1 pathway and mutations in specific biological pathways, we
correlated PD1 pathway targeting scores with mutation scores of
individual biological pathways from SAMBAR (see Materials and
Methods). We identified one pathway that significantly correlated
(FDR < 0.1) with PD1 targeting scores, although the correlation
coefficient was rather low (Pearson R ¼ 0.26), indicating a weak
association—the Sigma-Aldrich pathway “G1- and S-phases”
(Fig. 5B). This pathway consists of 15 genes, including cyclin D1,

Figure 4.

Network representation of the PD1 signaling pathway in discovery dataset 1. Node size corresponds to the number of edges connected in the graph; line width of
edges corresponds to their significance in differential regulation. Gene targeting scores (or “degrees”) are shown with a circle surrounding the node. Red, higher
expression/targeting in short-term survivors; blue, higher expression/targeting in the long-term survivors.
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cyclin-dependent kinases and their inhibitors, E2F TFs, MDM2, and
TP53. A high mutation score in this pathway associated with a high
targeting of the PD1pathway (repression). Non-canonical functions of
cell-cycle genes include regulating the immune system (52), and this
could be a potential mechanism for this association. The top pathways
with FDR < 0.25 include two pathways associated with RAR/RXR and
CTCF TF activity, respectively, indicating that mutations in these
pathways may influence targeting of PD1 signaling. While both
RAR/RXR andCTCF are transcriptional regulators, the genes available
in these pathways are targets of these TFs, and the pathways do not
include the TFs themselves. It is yet unclear whymutational patterns in
targets of these TFs show a trend in correlating with PD1 pathway
targeting scores.

Validation of the PD1 signaling pathway in other ‘omics data
types

Finally, we analyzed differential regulation of PD1 signaling in the
context of other ’omics data types, including methylation and protein
abundance data.

First, we downloaded methylation data from glioblastoma samples
fromTCGA, and subsetted these to samples from the same patients we
used in our network analysis. Data from two methylation arrays were
available—Illumina Infinium Human Methylation 450K BeadChips
(available for 93 patients in our cohort), which included 274 probes
associated with PD1 genes, and Illumina Infinium HumanMethyla-
tion27 BeadChips (available for 246 patients in our cohort), including
19 probes associatedwith these genes.We performed LIMMAanalyses
to determine whether any of these probes were differentially methyl-
ated between the long- and short-term survival groups. We did not
identify any significant differentially methylated probes, indicating
that the repression of PD1 pathway genes in the long-term survival
group is not driven by methylation, but directly by TF/target gene
interactions.

To validate protein abundance levels of PD1 signaling genes, we
downloaded reverse phase protein array (RPPA) data from glioblas-
toma samples from TCGA, and subsetted these to samples from the
same patients we used in our network analysis (n¼ 233).We evaluated
differential abundance of the three PD1 signaling proteins for which
abundance data was available between the long-term and short-term
survivors and identified one protein with significant differential
abundance: p62-Lck-ligand (translated by the SQSTM gene). This
protein had lower abundance in patients with long-term survival

(FDR ¼ 0.0058, Fig. 6), further strengthening the involvement of the
PD1 signaling pathway in glioblastoma survival.

Discussion
Transcriptomic analysis has previously identified numerous gene

sets as potentially associated with survival in glioblastoma. However,
many of the published prognostic signatures are not reproducible.
Therefore, we hypothesized that alternative mechanisms may explain
the heterogeneity in glioblastoma survival. Most notably, previous
studies have not reported alterations in PD1 pathway expression to be
associated with survival. Using an integrative network approach to
model gene regulation in individual tumors, we found the regulation of
PD1 signaling to be repressed in primary glioblastomas of patients who

Figure 5.

Association of PD1 pathway targeting
with mutation data. A, Smooth scat-
terplot comparing PD1 targeting
scores with mutation load. B, Results
from the association of PD1 pathway
scores with mutation scores in individ-
ual pathways. The three most signifi-
cant pathways are labeled. Purple
dots, pathways with positive correla-
tion; yellow dots, pathways with neg-
ative correlation.
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Validation analysis in RPPA data. p62-Lck-ligand protein abundance is
significantly higher in short-term survivors compared to long-term survivors
(FDR ¼ 0.0058).
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exhibited relatively long-term survival, loss of this repression in
patients with worse outcome, and loss of repression of the pathway
in recurrent compared with primary tumors. This signature of PD1
pathway repression was independent of total tumor mutation burden
and methylation, and only weakly associated with immune cell
infiltrate, suggesting that repression of the PD1 signaling pathway is
an independent prognostic signature in glioblastoma that could
potentially be used as a biomarker to predict survival.

PD1 signaling pathway plays an inhibitory regulatory role not only
during T-cell exhaustion, leading to suppression of T-cell responses,
but also during naïve-to-effector CD8 T-cell differentiation (53, 54).
Consistent with this biological role of the PD1 pathway and the
association of immune infiltration of tumors, particularly lympho-
cytes, with better prognosis across cancers (55, 56), we found a
nominally significant higher abundance of CD8-positive naïve T cells
in long-term survivors compared with short-term survivors. However,
there was no significant correlation betweenCD8-positive naïve T cells
abundance levels and PD1 targeting scores, indicating that immune
infiltration does not completely explain the association between
repression of PD1 signaling and better survival. Our results thus
indicate that PD1 pathway regulatory differences occur in cancer
cells, or in a combination of cancer and immune cells.

Immunotherapy, and in specific immune checkpoint inhibitors and
PD-1/PD-L1 inhibitors have transformed the field of cancer treatment
and have been shown effective in different cancer types. While such
inhibitors have already been used in a clinical setting in glioblastoma, it
is still unknown whether PD1 blockade gives clinical benefit in the
disease, in part because glioblastoma is a highly heterogeneous dis-
ease (57). As we have shown here, patient-specific regulatory network
modeling can help determine whether the pathway is likely to be
transcriptionally active in the tumor, and thus may indicate whether it
can potentially be targeted. Thus, tumor-specific regulatory networks
could be used as a potentially new way to stratify patients with
glioblastoma.

Large-scale genome-wide network models as measured here with
the PANDA and LIONESS approaches could—in addition to their
potential to identify biomarkers—also highlight new avenues for
treatment. For example, specific TFs that drive activation of the PD1
pathway could potentially be targeted in the short-term survival group.
While TFs have historically been viewed as undruggable, recent
advances have made it possible to target them and this is an emerging
field in cancer research (58). Many of the TFs that we found to
differentially regulate multiple PD1 pathway genes have previously
been associated with metastasis, migration, and survival in other
cancer types, such as GSX2, ZIC2, HMGA1, and GATA4. This makes
them promising targets for treatment that may help revert the PD1
signature toward its repressive state.

Regulatory network rewiring—such as that of the PD1 pathway that
we observed in this study—can be sometimes inferred from subtle
changes in gene expression, including patient-specific changes in
different genes that affect the same biological pathway. Importantly,
regulatory network changes do not necessarily derive from differences
in the expression levels of TFs themselves, as we previously found in an
analysis of gene regulatory networks across 38 tissues (12). Instead,
tissue-specific gene expression is regulated by TFs that change their
targeting patterns to activate tissue-specific regulatory roles. Differ-
ences in these targeting patterns can be caused by a multitude of
mechanisms, including the residency time of the TF on the DNA, the
TF’s protein abundance levels as well as the abundance of other
regulatory factors in the cell (59), or epigenetic and posttranscriptional

regulation (60, 61). These mechanisms are likely to drive regulatory
heterogeneity in cancer in the same way as they drive tissue specificity.
We would therefore like to stress the importance of system-wide
network modeling in cancer to better understand drivers of hetero-
geneity in cancer.

In summary, our network analysis uncovered patterns of transcrip-
tional regulation that differentiate long- and short-term glioblastoma
survivors and identified differences in regulatory processes involved in
immune regulation that can potentially be targeted in the clinic. These
results underscore the importance of analyzing gene regulatory net-
works in addition to exploring differential gene expression, and
illustrate how alterations of network structure may be predictive of
patient survival and identify possible regulatory targets for therapeutic
intervention. Most importantly, the comparative network analysis
approach outlined here can be used to investigate the molecular
features that drive prognosis in other cancers and complex diseases
and thus has the potential to expand the use of individualized network
medicine in disease study and management.
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