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Noninvasive assessment of autonomic nervous system (ANS) activity is of great

importance, but the accuracy of the method used, which is primarily based on

electrocardiogram-derived heart rate variability (HRV), has long been suspected. We

investigated the feasibility of photoplethysmography (PPG) in ANS evaluation. Data of

32 healthy young men under four different ANS activation patterns were recorded:

baseline, slow deep breathing (parasympathetic activation), cold pressor test (peripheral

sympathetic activation), and mental arithmetic test (cardiac sympathetic activation).

We extracted 110 PPG-based features to construct classification models for the four

ANS activation patterns. Using interpretable models based on random forest, the main

PPG features related to ANS activation were obtained. Results showed that pulse rate

variability (PRV) exhibited similar changes to HRV across the different experiments. The

four ANS patterns could be better classified using more PPG-based features compared

with using HRV or PRV features, for which the classification accuracies were 0.80, 0.56,

and 0.57, respectively. Sensitive features of parasympathetic activation included features

of nonlinear (sample entropy), frequency, and time domains of PRV. Sensitive features of

sympathetic activation were features of the amplitude and frequency domain of PRV of

the PPG derivatives. Subsequently, these sensitive PPG-based features were used to

fit the improved HRV parameters. The fitting results were acceptable (p < 0.01), which

might provide a better method of evaluating ANS activity using PPG.

Keywords: photoplethysmography, autonomic nervous system, cardiovascular system, heart rate variability,

classification, noninvasive assessment technique

INTRODUCTION

The autonomic nervous system (ANS) plays a crucial role in the regulation of human
function. Excessive sympathetic activation is associated with numerous cardiovascular diseases
and even sudden death (Lahiri et al., 2008). Therefore, the assessment of ANS activation is
of great significance. Electrocardiogram (ECG)-derived heart rate variability (HRV) is used
widely for the evaluation of ANS activation. In addition, photoplethysmography (PPG) also
offers a wealth of cardiovascular information (Allen, 2007). Therefore, PPG-derived pulse rate
variability (PRV) is considered as an alternative measure to HRV. Related research has included
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data from different experimental states, such as body positions
(supine, tilting, and standing) (Charlot et al., 2009; Gil et al.,
2010; Iozzia et al., 2016), whole-body cold exposure (Mejía-Mejía
et al., 2020), and mental stress (Giardino et al., 2002; Pernice
et al., 2019). A common conclusion is that PRV and HRV are
interchangeable at resting state. However, their substitutability
is distinctly reduced or even destroyed during most task
states. Furthermore, another issue that is often overlooked is
the inaccuracy of HRV itself, especially sympathetic-related
parameters (Billman, 2013), which may further limit the
application of PRV in estimating ANS activity.

In addition to PRV, PPG offers further information, which
includes blood pressure (Liang et al., 2019), systemic vascular
resistance (Awad et al., 2007; Wang et al., 2009), arterial tone and
stiffness (Allen and Murray, 2003; Millasseau et al., 2006), and
vasomotor responsiveness (McVeigh et al., 1997). Moreover, its
first (velocity of PPG, VPG) and second derivatives (acceleration
of PPG, APG) are closely related to vascular status (Takada et al.,
1996; Imanaga et al., 1998; Takazawa et al., 1998), which have
been applied to examinations of aging (Bortolotto et al., 2000;
Baek et al., 2007), carotid distensibility (Imanaga et al., 1998),
arterial stiffness in adolescents (Miyai et al., 2001), and treated
hypertensive patients (Hashimoto et al., 2002). It is believed that
the derivatives of PPG are more sensitive to small changes in PPG
(Elgendi, 2012); however, only PPG features are considered when
identifying specific physiological and pathological states, such as
low-stress states (Pelaez et al., 2019) and postoperative pain (Seok
et al., 2019). Since ANS is the main regulatory system of the
cardiovascular system, ANS assessment may be more accurate if
features of PPG and its derivatives are combined.

Machine learning is a promising method for comprehensively
utilizing multiple types of information and has been applied
to other physiological signals, such as electroencephalogram
and ECG (Hu et al., 1997; Wang et al., 2014). However, most
classification models cannot be used to determine underlying
mechanisms because of their “black box” characteristics.
Breiman (2001) proposed an efficient ensemble algorithm named
random forest (RF), whose internal estimation can measure
the feature importance. Based on the RF model, Genuer et al.
(2010) designed an interpretable model that guarantees good
classification performance and obtains themost sensitive features
for physiological states associated with the classification.

The purpose of this study was to explore the feasibility
of using PPG for ANS evaluation. We implemented the
classification of four ANS patterns using 110 PPG-based features
by innovatively introducing the features of PPG derivatives.
Based on the interpretable RF model, the most sensitive features
for sympathetic and parasympathetic activity were identified. We
then developed a regression model with these sensitive features
to estimate the improved HRV parameters to provide a better
method of evaluating ANS activity using PPG.

MATERIALS AND METHODS

Data Acquisition
We recruited 32 healthy, young, male volunteers aged between
19 and 26 years (23.2 ± 2.9 years). Participants abstained

from smoking, consuming caffeine and alcohol, and performing
heavy physical exercise for 24 h before the test. The study
was conducted in accordance with the Helsinki Declaration
of 1975 (as revised in 2008) concerning human and animal
rights and was approved by the ethics committee of the Xi’an
Jiaotong University. Written informed consent was obtained
from all subjects.

Each subject participated in four experiments (E1 to E4)
corresponding to the four different patterns of ANS activation in
the body.

E1 was baseline (BSL), which referred to a resting state with no
particular branch of ANS being activated, and subjects sat quietly
while keeping their eyes open.

E2 involved slow deep breathing (SDB), whereby the
parasympathetic branch of the ANS was activated; this
has been used as a stress-reduction technique previously
(Gilbert, 2003). Subjects closed their eyes while in a sitting
position. To avoid mental concentration induced by controlled
breathing (McClain et al., 2017), no specific respiratory
rate was set. Subjects were encouraged to slow down and
deepen their breathing as long as they felt relaxed and
comfortable. Data acquisition was performed after 10min of
respiratory training.

Mental arithmetic (MAT) in E3 referred to a state where
the cardiac sympathetic branch of ANS was activated (Wang
et al., 2016). Participants were seated in front of a monitor and
performed continuous subtraction operations using the minuend
and subtrahend presented on the monitor. The minuend was a
random integer between 800 and 900, and the subtrahend was 7,
9, and 13 for the three rounds, respectively, which changed every
100 s to prevent subjects from getting used to the operation and
decreasing their attention.

The cold pressor test (CPT) in E4 referred to a state where the
peripheral sympathetic branch of ANS was activated (Silverthorn
and Michael, 2013). Subjects were asked to immerse their
right hand (the part below the wrist) into cold water with a
temperature of 4–5◦C while in a sitting position.

The acquisition duration of each experiment was 5min,
without physical movement or talking, followed by a 15-min
rest before the next experiment, during which time subjects were
permitted to stand if they felt uncomfortable. All experiments
were conducted in a silent and temperature-controlled room
(25◦C) between 2 and 4 p.m.

Photoplethysmography (index finger of the left hand), one-
lead ECG, and chest band-based respiratory signals were
recorded at a sampling rate of 1,000Hz (MP150; BIOPAC
Systems, Goleta, CA, USA). The measurement module of PPG
was OXY100E, which was operated in accordance with the
principles outlined in the Lambert–Beer law. The OXY100E
probe incorporates light-emitting diodes (LEDs), which include
one red LED with a wavelength of 660 nm and one infrared
LED with a wavelength of approximately 910 nm. Electrode
connections were made according to the MP Hardware Guide.
Because of the aberrant PPG waveform in two SDB and
four CPT recordings, which made it impossible to extract
feature points, data from four subjects were excluded from the
following analyses.
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Signal Preprocessing and Feature
Extraction
All computations in this section were executed using
MATLAB R2015b.

ECG Signal Preprocessing, Traditional HRV, and

Improved HRV Calculation
The wavelet transform was used to remove baseline drift
(below 0.122Hz) and high-frequency noise (over 31.25Hz)
from the ECG signal. Then, R peaks were detected using the
wavelet modulus maximum algorithm (Li et al., 1995). To
avoid false detection, artifact modification and rejection were
performed manually. Continuous R–R interval (RR) sequences
were converted into heart rate (HR) using 60/RR. HR was
then resampled at 4Hz and divided by its average value before
frequency analysis to remove the mathematic impact of meanHR
(Sacha, 2013).

Subsequently, Morlet-wavelet transform (MWT) with the
mother wavelet “cmor3-1” (Wang et al., 2016) was implemented
on the processed HR to obtain the frequency-dependent complex
analytic signal y(t, f ), and the time-frequency power spectrum of
which was calculated as Equation 2.1 (Schiecke et al., 2014):

ps
(

t, f
)

=
∣

∣y(t, f )
∣

∣

2
(2.1)

Then, the traditional HRV parameters, low-frequency power
(LF, 0.03–0.15Hz), high-frequency power (HF, 0.15–0.4Hz), and
total power (TP) of HRV were acquired by integrating ps(t,f )
within their corresponding frequency range. Normalized LF
[nLF = LF/(LF+HF)] and LF/HF were also calculated. It is
generally believed that HF represents parasympathetic activity,
nLF represents sympathetic activity, and LF/HF represents
sympathovagal balance (Berntson et al., 1997).

Because traditional HRV does not always correctly represent
ANS activity, an improved HRV method based on time-variant

cardiorespiratory relation was proposed (Liu et al., 2019).
Taking respiratory signal as a reference, the original HR is
divided into a respiratory-related HR component (HRr) and
a respiratory-unrelated HR component (HRru), for which the
spectrum transforms are HFr and LFru, respectively. Further
calculations of nLFru [nLFru = LFru/(LFru + HFr)] and
LFru/HFr were also performed. HFr represents parasympathetic
activity, nLFru represents sympathetic activity, and LFru/HFr
represents sympathovagal balance.

PPG Signal Preprocessing and Feature Calculation
Frequency components of the PPG signal beyond 0.122–
15.625Hz were removed using wavelet transform. The first and
second derivatives of PPG (VPG and APG) were calculated. The
characteristic points in the waveforms were named according to
Elgendi et al. (2018) whereby 10 typical points were selected that
could be accurately discerned from the PPG, VPG, and APG
waveforms (Figure 1A).

One heartbeat PPG waveform can be divided into two phases:
the rising edge primarily concerned with systole and the falling
edge with diastole and wave reflections from the periphery.
Five points were extracted from the PPG waveform: onset of
the systolic wave (O), the systolic peak (S), the midpoint of
the systolic peak (M), the dicrotic notch (N), and the diastolic
peak (D) (Elgendi, 2012). For the VPG waveform, the two most
prominent points were identified: the maximum slope point in
systole (w) and the maximum slope point in diastole (z). Point
w is recommended as the most appropriate reference point for
calculating HR (Suhrbier et al., 2006; Peralta et al., 2019), and
point z has great auxiliary value for the extraction of points
N and D from the PPG waveform. Each heartbeat of the APG
waveform also consists of five characteristic points (a, b, c, d, and
e), all of which are sensitive to vascular status (Takazawa et al.,
1998). However, in practice, points c and d are difficult to extract

FIGURE 1 | Feature extraction of PPG and its derivatives. (A) Feature points on PPG, VPG (first derivative or velocity of PPG), and APG (second derivative or

acceleration of PPG). (B) Representative features of the PPG. (C) Representative features of the PPG. O: onset of the systolic wave; S: the systolic peak; M: the

midpoint of the systolic peak; N: the dicrotic notch; D: the diastolic peak; w: the maximum slope point in systole; z: the maximum slope point in diastole. a: the

maximum acceleration point in systole; b: the maximum negative acceleration point in the falling edge; e: the maximum acceleration point in diastole. PW, pulse width

corresponding to the midpoint of the rising phase; PPT, peak to peak interval between the systolic and diastolic peaks; TW, tidal wave; TWt, time range of TW; TWv,

amplitude of TW; TWa, area of TW.
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accurately. To ensure repeatability of the study, we extracted only
points a, b, and e.

According to the above definition, points S, w, a, and b
were identified by searching for the extreme points on the
corresponding signals within 400ms of the R peak of the ECG.
Then, points e and z were detected by finding the maximum
point within 200ms of point b. For detecting points N and D, two
strategies were used (Millasseau et al., 2002, 2003). If the value
of z was > 0, point N was positioned at the zero-crossing point
before z, and point D was positioned at the zero-crossing point
after z. Otherwise, point D was positioned at point z, and point
N was positioned in the middle between points e and z. Point
O was identified using the intersecting technique (Chiu et al.,
1991). First, the point of the maximum first derivative on the
PPG was identified. Points were then added on both sides of this
point until the correlation coefficient between the actual signal
and the fitted line became<0.999. Point Owas determined by the
intersection of this line and a horizontal line that passed through
the minimum point of the corresponding PPG segment. To avoid
false detection, visual inspection and manual modification were
carried out after automatic detection.

After feature point extraction, a total of 110 PPG-based
features were obtained, which consisted of 80 PPG features,

24 VPG&APG features, and 6 pulse rate (PR)-related features
(Table 1).

Features of PPG
For each cardiac cycle, 22 basic morphological parameters
of PPG were acquired (Figure 1B, Table 1). We calculated
their mean value, standard deviation (Std), which represents
the overall variation, and root mean square of the successive
difference (Rmssd) that represents local variation during 5min
of data acquisition.

In addition to the morphological features, the characteristics
of the tidal wave (TW, Figure 1C) were also extracted. TW has
a frequency ranging from 15 to 35Hz and is often used as an
index to indicate the hardening of blood vessels (Kageyama et al.,
2007). Four basic features were calculated based on the TW: area
of TW (TWa), power of TW (TWp), product of amplitude (TWv),
time span (TWt) of TW (TWvt), and stress index (TWSI). We
also extracted themean value, Std, and Rmssd of the features over
5 mins of data acquisition (Figure 1C, Table 1). TWP and TWSI

were defined and calculated as Equations 2.2 and 2.3:

TWP (i) =

Ni
∑

t=Si

35 Hz
∑

f=15 Hz

MWT(PPG) (2.2)

TABLE 1 | The 110 features extracted from PPG, VPG (first derivative or velocity of PPG), APG (second derivative or acceleration of PPG), and PRV (pulse rate variability).

PPG Interval 1: T (time span of the pulse) 6: PPT (interval between the systolic [S] and

diastolic peaks [D])

2: T1 (rising time of the pulse) 7: T1/T

3: T2 (systolic time of the pulse) 8: T2/T (the same as T3/T)

4: T3 (diastolic time of the pulse) 9: PW/T

5: PW (pulse width corresponding to the

midpoint of the rising phase)

10: PPT/T

Area 11: A1 (area of systolic phase) 14: IPA: A2/A1 (diastolic area/systolic area)

12: A2 (area of diastolic phase) 15: A1/A

13: A (A1 + A2, area of the pulse)

Height 16: H1 (height of the systolic peak) 19: H2/H1

17: H2 (height of the dicrotic wave) 20: RI: H3/H1

18: H3 (height of the diastolic peak)

Slope 21: RS (H1/T1) 22: FS (H1/(T–T1))

23–44: Std of 1–22. 45–66: Rmssd of 1–22.

Other features 67: TWa: area of tidal wave (TW) 69: TWvt: product of TWv and TWt

68: TWP: power of TW 70: TWst: stress index

71–74: Std of 67–70. 75–78: Rmssd of 67–70.

79: TPcar : total power of cardiac component 80: TPres: total power of respiratory component

VPG and APG Height 81: Hw (height of w point in VPG) 85: He (height of e point in APG)

82: Hz (height of z point in VPG) 86: Hb/Ha

83: Ha (height of a point in APG) 87: He/Ha

84: Hb (height of b point in APG) 88: (Hb–He)/Ha

89–96: Std of 81–88. 97–104: Rmssd of 81–88.

PRV 105: LF (low frequency power of PRV) 108: nLF (LF/(LF+HF))

106: HF (high frequency power of PRV) 109: LF/HF

107: TP (total power of PRV) 110: SampEn: sample entropy of pulse rate

VPG, first derivative or velocity of PPG; APG, second derivative or acceleration of PPG; PRV, pulse rate variability; Std, standard deviations; Rmssd, root mean square of the successive

difference; PW, pulse width corresponding to the midpoint of the rising phase; PPT, peak to peak interval between the systolic and diastolic peaks; IPA, inflection point area ratio; TW,

tidal wave; RS, rising slope of PPG; FS, falling slope of PPG.
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TWSI (i) = TWP/[TWv (i) ∗TWt (i)] (2.3)

where MWT refers to Morlet-wavelet transform with the mother
wavelet “cmor3-1.”

The wavelet analysis of the PPG signal identified two strong
components that reflected cardiac and respiratory modulation of
PPG (Dehkordi et al., 2018). A review of observational studies
showed that the cardiac and frequency bands for children and
young adults range from 0.50 to 3Hz (30–180 beats/min) and
0.14 to 0.9Hz (8–54 breaths/min), respectively, whereas in adults,
they are more restricted (Fleming et al., 2011). Combined with
the data of our experiment, we set the two ranges as 0.75 to 2.5Hz
(45–150 beats/min) for the cardiac component (TPcar, as shown
in Equation 2.4) and 0.1 to 0.6Hz (6–36 breaths/min) for the
respiratory component (TPres, as shown in Equation 2.5):

TPcar =

300s
∑

t=0

2.5 Hz
∑

f=0.75 Hz

MWT (PPG) (2.4)

TPres =

300s
∑

t=0

0.6Hz
∑

f=0.1Hz

MWT(PPG) (2.5)

Features of APG and VPG
Studies on the derivatives of PPG (VPG and APG) have been
conducted since the 1990s, and their amplitudes have been
found to closely relate to vascular status (Takazawa et al.,
1998). However, in studies that use PPG for physiological
or pathological classification, only the features of PPG are
used, and those of PPG derivatives are not (Pelaez et al.,
2019; Seok et al., 2019). Because the vascular state is strongly
associated with sympathetic nerves, we speculated that the use
of the features of PPG derivatives would benefit sympathetic
assessment. Eight amplitude features of VPG and APG, as
well as their Std and Rmssd over 5min of data acquisition,
were extracted.

PR-Related Features
Suhrbier et al. (2006) recommended w–w interval (interval
between the adjacent w points of the VPG) as the optimal
surrogate for R–R interval when calculating PR and PRV. The
calculation of PRV was the same as that of HRV.

Sample entropy (SampEn), proposed by Richman and
Moorman (2000), is a nonlinear method used to evaluate the
complexity of physiological time series:

SampEn = − ln

[

Bm+1(r)

Bm(r)

]

(2.6)

where m is the pattern length and r is the similarity criterion.
Bm (r) is the number of two sets of simultaneous data points of
length m that have a distance < r. SampEn of PR was obtained
usingm= 2 and r = 0.2∗std.

Feature Selection Using RF
Random forest is one of the most widely used machine
learning algorithms and is highly efficient at solving classification

problems without scaling the data or repeatedly adjusting the
parameters (Breiman, 2001). Based on this, Genuer et al. (2010)
proposed an interpretable RF model which is particularly useful
when the sample size is small and the number of features
is relatively large. Two types of feature sets can be acquired
using this method: interpretation and classification features.
The former contains all the important features that can help
determine the underlying physiological mechanism, and the
latter removes redundant interpretation features to include the
least number of features that still enable good classification
performance. The detailed process is described below (Genuer
et al., 2010), and the related parameters include the number
of trees in the forest (n_estimators), the maximum number
of features of decision trees (max_features), and the setup of
random seeds during program running (random_state).

The first step is feature ranking. The features are ranked by
sorting the feature importance averaged over the 50 runs in
descending order (n_estimators = 2,000, max_features = 0.3,
random_state= 0–49).

The second step is feature elimination. The Std is calculated
for the sorted feature importance in step one. Classification and
Regression Tree (CART) model fitting is implemented on the Std
results to obtain the threshold, which is defined as the minimum
prediction value. Features with importance below this threshold
are removed.

Step three is the selection procedure for the interpretation
features. A series of models are built starting with the most
important feature, and features are added to the model one at
a time until all important features have been included. Features
of the model that lead to the smallest out-of-bag (OOB) error
are the interpretation features (n_estimators= 500, max_features
= sqrt).

Step four is the selection procedure for the classification
features. This procedure eliminates redundant interpretation
features. Using sequential feature introduction, a variable is
added only if the error gain exceeds a threshold (Equation 2.7).
The threshold is set to the mean of the absolute values of the
first-order differentiated OOB errors between the first model
(after interpretation feature selection) and the model including
all features after the elimination procedure (n_estimators = 500,
max_features= sqrt, random_state= 0):

threshold =
1

pelim − pinterp

pe lim−1
∑

j=pinterp

∣

∣oob
(

j+ 1
)

− oob(j)
∣

∣ (2.7)

where pelim is the number of features after feature elimination,
and pinterp is the number of interpretation features.

According to the above method, we built classification
models for the following four classification problems:
BSL&SDB, BSL&CPT, BSL&MAT, and BSL&SDB&CPT&MAT.
Validation of the classification models was carried out using
10-fold cross-validation. The number of trees in the forest
(n_estimators) and the maximum number of features of
decision trees (max_features) were determined using the
grid search method, where the options for n_estimators
ranged from 40 to 540 with a step size of 50, and the
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options for max_features were 0.3, “sqrt,” and 0.7. Because
different random states lead to slightly different results, we
implemented the above procedures 30 times in different
random states (random state = 0–29) and calculated the
average accuracy (AC). Python 3.8.2 (Python Software
Foundation, Netherlands) was used for feature selection
and model building.

Using Sensitive PPG Features to Fit the
Improved HRV Parameters Using Stepwise
Regression
A growing body of research has suggested that the traditional
HRV parameters are highly questionable (Billman, 2013).
Therefore, we verified the feasibility of fitting the improved HRV
parameters using the selected PPG features, which were the

FIGURE 2 | Heart rate variability (HRV) and pulse rate variability (PRV) for different ANS activation patterns. (A) LF, low-frequency power. (B) HF, high-frequency

power. (C) nLF, normalized low-frequency power. (D) LF/HF, ratio of LF to HF. BSL, baseline state; SDB, slow deep breathing; CPT, cold pressor test; MAT, mental

arithmetic test. The significance of the differences in HRV parameters between each experimental state and BSL state is denoted by * for p < 0.05 and ** for p <

0.01. N and NN indicate p < 0.05 and p < 0.01, respectively, for the corresponding comparisons of the PRV parameters. The physiological mechanism of HRV

parameters is considered as follows: LF mainly contains information on sympathetic activity, HF reflects parasympathetic activity, nLF is a relatively pure measure of

sympathetic activity, and LF/HF reflects sympathovagal balance.
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classification features of BSL&SDB&CPT&MAT. Using stepwise
regression, we automatically selected the most important
variables to establish the prediction model of the regression
analysis. Variables were introduced one by one on the condition
that the partial regression square sum was significant. The
previously introduced variables were tested one by one, and
the non-significant variables were removed. This process was
repeated until no significant variables were selected or removed
from the regression equation.

Statistical Analysis
Differences between BSL and SDB, CPT, and MAT were
compared using paired t-tests in the 28 subjects who had data
of all four states (SPSS Statistics 22; IBM, USA). Statistical
significance was represented as p < 0.05 and p < 0.01. Data are
presented as means±mean square error (MSE).

RESULTS

First, the results of HRV and PRV parameters under different
ANS activation patterns were shown in Figure 2. The HRV

method showed that LF, nLF, and LF/HF increased during SDB
compared with that during BSL, which suggested significant
sympathetic activation. And duringMAT, HF decreased, whereas
nLF and LF/HF increased compared with that during BSL,
which suggested an increase of sympathovagal balance due to
the decrease of parasympathetic activation. These results did not
characterize the real changes in the ANS in the corresponding
activation experiments (compared with that in the BSL states).
The variation trends of the PRV parameters were consistent
with those of the HRV parameters in different experiments.
Meanwhile, there were also several differences. Specifically, the
LF and HF of PRV were larger than those of HRV. For LF, this
trend was most evident for SDB, whereas for HF, this was evident
across all four experiments. Similarly, nLF and LF/HF of PRV
were slightly smaller than those of HRV.

Heart rate variability, PRV, and all PPG-based features were
used for the classification (Figure 3). HRV performed well for
classifying BSL&SDB (accuracy > 0.93); however, it was not
ideal for classifying BSL&CPT, BSL&MAT, or the four ANS
activation patterns (BSL&SDB&CPT&MAT), as indicated by the
classification accuracies of 0.75, 0.70, and 0.56, respectively.

FIGURE 3 | The classification accuracies of the models based on heart rate variability (HRV), pulse rate variability (PRV), and all PPG-based features (mean accuracy

of 30 runs at different random states).
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No improvement in classification performance was achieved
when using PRV compared with that using HRV, especially for
BSL&CPT and BSL&MAT, which showed significant decreases
in accuracy. However, using all PPG-based features improved
classification accuracies for BSL&CPT, BSL&MAT, and all the
four ANS activation patterns to 0.98, 0.84, and 0.80, respectively,
although accuracy remained unchanged for BSL&SDB.

Table 2 lists the interpretations and classification features
for the four classification models that used all the PPG-based
features. Interpretation features were a set of features with the
highest single-feature contribution rate. Overall, there were 20
interpretation features, which were listed in Table 2, and their
variations among the four ANS states were depicted in Figure 4.

Table 2 shows that the important interpretation features
for BSL&SDB (parasympathetic activation) were SampEn,
LF, LF/HF, nLF, TP, and Std(T), all of which were associated
with PR. For the classification of BSL&CPT (peripheral
sympathetic activation), although most features differed
significantly (Figure 4), Rmssd(Ha) was the only interpretation
and classification feature, which achieved the optimal
accuracy without the cooperation of other features. For the
classification of BSL&MAT (sympathetic activation), the
important interpretation features were the three amplitude
features of the PPG derivatives [Mean(He), Rmssd(He), and
Std(Hz)], followed by the two PRV features (nLF and LF/HF).
Besides the features mentioned above, the interpretation
features of BSL&SDB&CPT&MAT also included two features
of Hb/Ha [Std(Hb/Ha) and Rmssd(Hb/Ha)], which were
significantly increased in CPT than in the other three states,
and indicated that Hb/Ha was a favorable feature of peripheral
sympathetic activation.

The classification features of BSL&SDB&CPT&MAT
comprised the best feature collection capable of distinguishing
the four different ANS activation patterns and were used to fit

the improved HRV parameters (Table 3). The fitting features for
LFru were LF, Std(He), and Std(T); and those for HFr were LF,
LF/HF, and Std(T). The p-value and F-value results showed that
the two regression models were both acceptable.

The specific fitting results were shown in Figure 5. We
observed that the data of the same parameter (i.e., LFru or HFr)
varied considerably depending on the experimental settings.
In detail, LFru of the CPT and MAT was significantly higher
than that of BSL and the SDB, and the HFr of the SDB was
significantly higher than that of the other three experiments.
It could also be seen that the fitting results obtained by using
the ANS-sensitive PPG-based features could well reproduce the
variation trend of the two parameters in different experiments.
The fitting of the LFru was relatively inferior to that of the
HFr, which was not satisfactory especially for the LFru of
the CPT.

The statistical results of the SDB, CPT, and MAT compared
with those of BSL, based on the improved HRV parameters
and fitting data, were shown in Figure 6. The improved HRV
method showed that HFr increased, whereas LF, nLF, and
LF/HF decreased during SDB compared with that during
BSL, which indicated significant parasympathetic activation. In
contrast, LF, nLF, and LF/HF increased significantly during
MAT compared with that during BSL, which indicated
sympathetic activation. These results characterized the real
changes in the ANS in the corresponding activation experiments
(compared with that in the BSL). For LFru, HFr, and
their corresponding fitting data, although there were some
differences in the mean values, little difference was found
for the variation trends. Relatively more differences were
found in the derived parameters, nLFru and LFru/HFr, and
their fitting data. Despite these differences, the fitting results
could still highlight the corresponding changes of ANS in
each experiment.

TABLE 2 | Classification models based on all PPG features.

Classification problem Accuracy Interpretation features Classification features

Mean Max Min

BSLandSDB 0.93 0.95 0.90 110(SampEn), 105(LF), 109(LF/HF), 108(nLF),

107(TP), 23[Std(T)], 26[Std(T3)], 99[Rmssd(Ha)],

65[Rmssd(Rs)], 97[Rmssd(Hw)]

110, 105, 109, 23, 26

BSLandCPT 0.98 0.98 0.98 99[Rmssd(Ha)] 99

BSLandMAT 0.84 0.87 0.78 85[Mean(He)], 101[Rmssd(He)], 90[Std(Hz)],

108(nLF), 109(LF/HF), 99[Rmssd(Ha)],

100[Rmssd(Hb)], 70[Mean(TWst )], 93[Std(He)],

16[Mean(H1)]

85, 90, 108, 99

BSLandSDBandCPTandMAT 0.80 0.84 0.78 105(LF), 94[Std(Hb/Ha)], 110(SampEn), 109(LF/HF),

108(nLF), 99[Rmssd(Ha)], 107(TP), 85[Mean(He)],

102[Rmssd(Hb/Ha)], 21[Mean(Rs)]

105, 94,109, 99, 102, 23

The interpretation and classification features corresponding to the highest classification accuracy in 30 runs are listed. For those that had more than 10 interpretation features, only the

top 10 are listed. Features are presented in descending order of feature importance.

BSL, baseline state; SDB, slow deep breathing; CPT, cold pressor test; MAT, mental arithmetic test; Mean, mean accuracy of 30 runs at different random states; Max, maximum

accuracy; Min, minimum accuracy; Std, standard deviations; Rmssd, root mean square of the successive difference; SampEn, sample entropy of pulse rate; LF, low-frequency power

of PRV; TP, total power of PRV; nLF, normalized low-frequency power; LF/HF, ratio of LF to HF; T, time span of the pulse; T3, diastolic time of the pulse; TWst, stress index; H1, height of

the systolic peak; RS, rising slope of PPG; Hw, height of w point in VPG (first derivative or velocity of PPG); Hz, height of z point in VPG; Ha, height of a point in APG (second derivative

or acceleration of PPG); Hb, height of b point in APG; He, height of e point in APG.
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FIGURE 4 | The distribution of interpretation features in different ANS states. For each feature, the data were normalized between the four states. Red (baseline state,

BSL), blue (slow deep breathing, SDB), black (cold pressor test, CPT), and pink (mental arithmetic test, MAT). The diamond mark represents the mean value. Std,

standard deviations; Rmssd, root mean square of the successive difference; H1, height of the systolic peak; RS, rising slope of PPG; T, time span of the pulse; T3,

diastolic time of the pulse; TWst, stress index; Hw, height of w point in VPG; Hz, height of z point in VPG; Ha, height of a point in APG; Hb, height of b point in APG;

He, height of e point in APG; SampEn, sample entropy of pulse rate; LF, low-frequency power of PRV; TP, total power of PRV. nLF, normalized low-frequency power;

LF/HF, ratio of LF to HF.

DISCUSSION

In this study, we explored the utility of PPG signals
for ANS assessment. The classification of different
ANS activation patterns was achieved using PPG-based
features, and we obtained ANS-related PPG features.
Then, these features were used to fit the improved HRV
parameters, and a model to estimate ANS activation
was developed.

Heart rate variability has been widely used to evaluate
ANS activity. However, it was found that LF has a weak
relationship with sympathetic activity because it contains
multiple regulatory information, which includes the sympathetic
system, parasympathetic system, and some undefined factors
(Randall et al., 1991; Houle and Billman, 1999; Goldstein et al.,
2011). In contrast, HF is strongly influenced by respiratory rate
and may exceed the defined frequency band (0.15–0.4Hz) in
many cases (Berntson et al., 1993). These flaws were clearly
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exposed, as shown in Figure 2. The LF of the SDB group
increased significantly because the parasympathetic regulation-
related spectrum shifted to the LF band with decreased
respiratory rate. In the MAT group, HF significantly decreased
and the changes in LF were slight, which may have been due to
the high proportion of parasympathetic regulation in LF.

When considering using PPG for ANS evaluation, most
studies have focused on evaluating the possibility of replacing
HRV with PRV (Schafer and Vagedes, 2013). The basic
conclusion is that time and frequency parameters of PRV and
HRV are interchangeable only in the supine state but not in other
states, such as head-up tilt, standing, cold stimulation, mental
stress, and during exercise (Giardino et al., 2002; Charlot et al.,

TABLE 3 | Using sensitive PPG features to fit the improved HRV parameters.

LFru HFr

Fitting parameters Intercept −250.5855 25.7447

LF −0.2786 1.2110

Std(Hb/Ha) 2.5954e+03 0

LF/HF 0 −28.7423

Rmssd(Ha) 0 0

Rmssd(Hb/Ha) 0 0

Std(T) 6.0328 1.1627

Model evaluation F-value 47.6866 452.363

p-value 2.9264e−20 1.5981e−64

At p < 0.05, the standard F-value was F(122,3) = 2.6789.

LF, low-frequency power of PRV; LF, high-frequency power of PRV; LF/HF, ratio of LF

to HF; T, time span of the pulse; Ha, height of a point in APG (second derivative or

acceleration of PPG); Hb, height of b point in APG.

2009; Gil et al., 2010; Iozzia et al., 2016; Pernice et al., 2019;Mejía-
Mejía et al., 2020). Although studies vary considerably because of
diverse experimental settings and/or analysis methods, a unifying
result is that the spectrum power of PRV (especially the HF
band) is always larger than that of HRV (Schafer and Vagedes,
2013), which was also evident in our study (Figure 2). Given the
limitations of HRV, other approaches to evaluate ANS activation
are needed.

Photoplethysmography measures the changes in blood
volume in the fingertips and is related to cardiac and vascular
performance, both of which are mainly subjected to the
regulation of the ANS (Avolio, 2002). Therefore, other features
of PPG besides PRV can also provide information about ANS
activity from more perspectives. Results showed a significant
improvement in the classification accuracy after usingmore PPG-
based features compared with that using PRV (Figure 3). On a
complete PPG waveform, the horizontal axis corresponds to the
entire cardiac cycle (T) and its internal details, such as systole
(T2) and diastole (T3). The longitudinal axis (or amplitude) of
the PPG waveform represents the change in blood volume, which
is related to stroke volume and the state of the peripheral blood
vessels. In particular, the amplitude-related features of VPG and
APG aremore sensitive to vascular lesions (Bortolotto et al., 2000;
Baek et al., 2007) and vascular resistance (Takazawa et al., 1998).

Slow deep breathing is often used as a stress reduction
technique in previous studies (Gilbert, 2003; Busch et al., 2012).
The existing researches indicate that slow breathing enhances
activation of the parasympathetic nervous system (Pal et al.,
2004), which has far more effects on HR than on the vascular
states. As a result, it leads to a decrease in average HR (Jerath
et al., 2006) and an increase in HRV (Jan et al., 2019), which
are also evident in our results. Figure 4 showed that in the SDB
compared with that in the BSL, the pulse rate-related features

FIGURE 5 | The fitting results of the improved HRV parameters using the PPG features and stepwise regression. (A) LFru, low-frequency power of the improved HRV.

(B) HFr, high-frequency power of the improved HRV. BSL, baseline state; SDB, slow deep breathing; CPT, cold pressor test; MAT, mental arithmetic test. The

physiological mechanism of the improved HRV parameters are considered as: LFru mainly contains information on sympathetic activity, HFr reflects parasympathetic

activity.
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FIGURE 6 | The statistical results of slow deep breathing (SDB), the cold pressor test (CPT), and the mental arithmetic test (MAT) compared with the baseline state

(BSL) for the improved HRV parameters and fitting data. (A) LFru, low-frequency power of the improved HRV. (B) HFr, high-frequency power of the improved HRV. (C)

nLFru, normalized low-frequency power. (D) LFru/HFr, the ratio of LFru to HFr. The significance of the differences in the improved HRV parameters between each

experimental state and BSL state is denoted by * for p < 0.05 and ** for p <0.01. N and NN indicate p < 0.05 and p < 0.01, respectively, for the corresponding

comparisons of the fitted result. The physiological mechanism of the improved HRV parameters are considered as follows: LFru mainly contains information on

sympathetic activity, HFr reflects parasympathetic activity, nLFru is a relatively pure measure of sympathetic activity, and LFru/HFr reflects sympathovagal balance.

[Std(T), Std(T3), LF, TP, nLF, LF/HF, and SampEn] changed
more significantly than the other features. And the interpretation
features of BSL&SDBwere the time domain [Std(T) and Std(T3)],
the frequency domain (LF, LF/HF, nLF, and TP), and the
nonlinear domain (SampEn) features of pulse rate (Table 2).
Therefore, parasympathetic activation induced by SDB primarily
changed the horizontal axis of the PPG waveform (or cardiac
cycle), especially the diastole [Std(T3)].

For the CPT, the intense cold stimulation activated the
baroreflex modulation (Cui et al., 2002; Incognito et al.,
2019) and high-threshold nociceptive fibers (Kregel et al.,
1992), which might cause a more marked increase in muscle
sympathetic nerve activity (MSNA) if compared with SDB
and MAT. As a result, the most obvious changes caused
by CPT were concentrated on the amplitude-related features
[mean(H1), mean(Rs), Rmssd(Rs), mean(He), Std(Hz), Std(He),

Frontiers in Physiology | www.frontiersin.org 11 September 2021 | Volume 12 | Article 733264

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Liu et al. Photoplethysmography in ANS Assessment

Std(Ha/Ha), Rmssd(Hw), Rmssd(Ha), Rmssd(Hb), Rmssd(He),
and Rmssd(Hb/Ha)]. Among them, only Rmssd(Ha) was selected
as an interpretation feature for BSL&CPT (Table 2). Ha is the
amplitude of the first peak of APG and corresponds to the
position where the PPG signal has the highest acceleration during
the rising stage.

AlthoughMATmainly activates cardiac sympathetic nerves, it
also influences peripheral sympathetic activity (Anderson et al.,
1987). Our data (Figure 4) indicated that several amplitude
features exhibited greater changes than did PRV features. Of the
important interpretation features (Table 2), nLF and LF/HF were
ranked fourth and fifth, whereas almost all other features were
amplitude features [mean(He), Rmssd(He), and Std(Hz)]. This
might be partly due to the high sensitivity of the fingers to MSNA
and partly due to the limited accuracy of PRV parameters and
their big individual differences. Mejía-Mejía et al. (2020) also
suggested that PPG in peripheral sites such as the finger and
the toe may have different information not available in HRV.
From the feature importance of BSL&MAT, some amplitude
features [mean(He), Rmssd(He), and Std(Hz)] of VPG&APG
may be superior markers of sympathetic activation than are nLF
and LF/HF.

The classification features of BSL&SDB&CPT&MAT
consisted of sensitive features of both parasympathetic and
sympathetic activities. The fitting of the improved HRV
demonstrated the feasibility of ANS evaluation using these
PPG features because it reflected ANS activity more accurately
than did traditional HRV. However, we did not use additional
datasets to test the regression models, which might be one
of the limitations. On the contrary, our data included four
different ANS activation states, each with distinct changes
in LFru (or HFr, Figure 5). In this context, the two models
still showed good performance with p-values much <0.01
(Table 3), which illustrated the validity of the models from
another perspective. In addition, we only included data of 32
healthy young men, which would limit the generalizability
of our conclusions. In the future, more data from a wider
population are needed to establish more accurate and practical
prediction models.

CONCLUSION

Photoplethysmography offers promising applications in both
clinical and home monitoring. Since PRV has been proved with
limited accuracy in characterizing ANS activities, it is necessary
to consider the use of PPG in ANS from another perspective. The
results of the classification models showed that there were also
many other PPG features that were sensitive to ANS activities.
Finally, by combining such features in regression models to fit
the improved HRV parameters, it might be possible to enhance
the potential of PPG for ANS assessment.
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