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ABSTRACT

Alterations of cell adhesion are involved in cancer progression, but the mechanisms underlying
the progression and cell adhesion have remained poorly understood. Focusing on the complex
between EpCAM, claudins and tetraspanins, we described a sequence of events by which of the
molecules associate each other in ovarian cancer. The interactions between molecules were
evaluated by immunoprecipitations and then immunoblotting. To identify the effects of complex
formation on the ovarian cancer progression, the different types of ovarian cancer cell lines were
compared. In this study, we report the identification of the EpCAM-claudin-4 or —7-CD82 complex
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in the ovarian cancer progression and metastasis in vitro. Additionally, we demonstrated palmi-
toylation and intra- or extra-cellular regions are critically required for the complex formation.
These results represent the first direct evidence for the link between the dynamism of cell

adhesion molecules and ovarian cancer progression.

Introduction

Epithelial ovarian cancer (EOC) is the fifth commonest
cancer and the leading cause of gynaecological cancer
death among women. The non-specific nature of symp-
toms caused to diagnostic delay and the most women
patient presented with the metastasized (FIGO stages
III-1V) disease at the time of diagnosis [1]. About 85%
to 90% of malignant ovarian tumours were derived
from the ovarian surface epithelium (OSE) or inclusion
cysts [2]. Studies have shown that the EOC has
a complex differentiation mechanism and is composed
of diverse tumour groups with distinctive morphologic
and molecular genetic properties [3].

The adhesion of epithelial cells to their neighbours
and the extracellular matrix is mediated by the different
types of junctional complexes and cell adhesion mole-
cules. These complexes are also engaged in the signal
transmissions. Recent studies focused on to gain
insights into the cancer hallmarks about the role of
cell adhesion during the transformation of epithelial
cells. Tumour cells need cooperative activities between
individual cell adhesion molecules for the invasion to
surrounding tissue and metastasis to distant organs.
One of the intercellular cell adhesion molecules is
a type I, transmembrane, 39-42 kDa glycoprotein,
Epithelial cell adhesion molecule (EpCAM) which

aberrant expression is characteristic during and after
malignant transformation [4,5]. Also, Claudins are
among the most important tight junction proteins
which help to regulate paracellular permeability and
mediate cell adhesion. In general, claudin-1 and -7
were downregulated in oesophageal cancer [6], but
upregulated in others [7,8]. The most common clau-
din-3 and —4 were usually upregulated in cancers. The
ability of individual cells to differentiate their plasma
membrane to form specialized domains such as tetra-
spanin-enriched microdomains (TEMs) with distinct
proteins is crucial for many cellular biological processes
[9,10]. Many studies have found correlations between
tetraspanins and cancer progression [11,12]. There is
ample evidence for the complex of cell adhesion mole-
cules, EpCAM and claudin-7, and a tetraspanin, pro-
moting colorectal cancer progression [13]. The complex
between these molecules, rather than the individual
molecules, was responsible for the cancer progression
and also drug resistance.

The gains about diagnosis and treatment of ovarian
cancer are rather modest, and the rigorous and focused
assessment of individual gene products contribution to
tumorigenesis in the molecular pathogenesis of ovarian
cancer remains a need to better understand so new mole-
cular therapeutic targets for early detection and treatment
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have been identified. The functional consequences and the
underlying molecular mechanisms of the complex between
EpCAM, claudins and tetraspanins have not yet been
explored in the ovarian cancer progression. Starting from
the hypothesis that the complex between EpCAM, claudins
and tetraspanins might influence ovarian cancer progres-
sion and chemoresistance, we evaluated whether and which
of the molecules associate each other. Furthermore, the
indicated interactions were analysed in the tumour samples
which were obtained from xenograft ovarian cancer
animals.

Materials and methods
Cell lines and cell culture

The cell lines used were normal ovarian surface epithe-
lial (OSE), A2780, OVCAR-3, SKOV-3 and A2780cis.
Normal ovarian surface epithelial (OSE) cell line was
purchased from Abm-Good. A2780, OVCAR-3,
SKOV-3 and cisplatin-resistant A2780cis ovarian can-
cer cell lines were obtained from the European
Collection of Authenticated Cell Cultures (ECACC).
The cells were resuscitated from liquid nitrogen stocks
and cultured for less than 2 months before reinitiating
culture from the same passage. ECACC and Abm-Good
had authenticated the cell lines.

Cell growth conditions

A2780, OVCAR-3 and A2780cis, SKOV-3 and OSE
cell lines were grown in RPMI, McCoy’s 5A and
Prigrow I growth mediums, respectively. All growth
mediums contain 10% foetal bovine serum (FBS) and
1% penicillin-streptomycin. The cells were incubated in
a CO, incubator, conditioned to 37 °C and 5% CO,
levels.

The preparation of cell and tissue lysates

The cells were lysed in the lysis buffer (50 mM Tris, pH
8.0, 150 mM NaCl) including the appropriate detergent
(1% Triton X-100, Brij 96 and CHAPS). After sonica-
tion and incubation on ice, lysates were centrifuged at
13,300 rpm for 20 minutes at 4 °C. Total proteins were
purified from snap frozen tumours after homogeniza-
tion in 50 mM Tris-HCl (pH 8.0), 150 mM NacCl, 1%
Triton X-100. Lysates were cleared by centrifuging at
13,300 rpm for 20 min. The supernatants were used for
western blotting and immunoprecipitation. The protein
levels were determined with BCA assay as indicated in
the manufacturer’s instructions.

Immunoprecipitation

The immune complexes consisting of protein-antibody-
Protein A/G beads in the supernatants were collected
by centrifugation at 13,300 rpm for 20 minutes at 4 °C.
The cleared pellets were incubated in SDS-PAGE load-
ing buffer at 95 °C for 20 minutes and maintained in
the solubilized form by centrifugation.

Western blotting

The supernatants were mixed with SDS-PAGE loading
buffer and loaded onto gels. The proteins were fractioned
by SDS-PAGE and electroblotted onto the membranes.
After blocking, membranes were incubated with the pri-
mary antibodies of EpCAM (Abcam-ab71916;1:1000),
claudin-1 (Thermo-374900;1:250), claudin-3 (Thermo-
PA5-37526;1:250), claudin-4 (Abcam-ab53156;1:750),
claudin-7 (Thermo-PA5-23689;1:250), E-cadherin (Cell
Signalling-3195 $;1:1000), PKCa (Santacruz-sc-
208;1:250), PKCP1 (Santacruz-sc-209;1:250), GAPDH
(Santacruz-sc-25778;1:2500), CD82 (Tspan-27) (Thermo-
PA5-20356;1:200) and CD9 (Tetraspanin-29) (Cell
Signalling-13174;1:1000). The membranes were screened
by HRP-conjugated secondary antibodies.

Immunofluorescence analysis

Cells were grown on glass coverslips and fixed in 4%
paraformaldehyde (PFA). After permeabilization and
blocking, the cells were incubated with the antibodies
against studied molecules and then with secondary
antibodies conjugated with Alexa Fluor 488 and 594.
The nucleus was stained with DAPI. Cells were
mounted upside down on the microscope slide and
the localization of studied molecules was assessed with
immunofluorescence microscopy.

Inhibition of palmitoylation, cross-linking and
cholesterol depletion

70-80% confluent cells were incubated 50 pM of pal-
mitoylation inhibitor, 2-bromopalmitate (2-BP) for
20 hours at 37 °C. Membrane permeable and imperme-
able cross-linking agents, DSP and DTSSP were treated
at 1 mM for 30 minutes at 37 °C.

Xenograft animal studies

Six- to eight-week-old female BALB/c nude mice were
provided by the Izmir Biomedicine and Genome Centre
(Izmir, Turkey). The animals were housed in microiso-
lator cages in a pathogen-free animal bio-safety level-2



facility at 22 + 2°C. Human SKOV-3 cells (5x10° cells/
mice) were injected intraperitoneally (ip.) into the
immunodeficient mice (n = 6). Animals were assigned
based on their genotype, age and sex matched. No ran-
domization was used. All procedures involving the use
and care of mice were approved ethically and scientifi-
cally by the university in compliance with the Practice
Guidelines for Laboratory Animals of Turkey.

Statistical analysis

Data were analysed for n = 3 experiments. No samples
or animals have been excluded from the analysis.

Results

The first goal of this study was to examine the changes
in the levels of cell adhesion molecules involved in
ovarian cancer progression and metastasis, and to
determine whether and which of the molecules associ-
ate each other. The difference between the characters of
ovarian cancer cells lines demonstrated the functions of
complex in ovarian cancer progression and metastasis.

The expressions of cell adhesion molecules alter in
the ovarian cancer progression

The expression patterns of EpCAM, claudins, E-cadherin
and tetraspanins were investigated compared within ovar-
ian cancer cell lines, A2780, OVCAR-3, SKOV-3 and
A2780cis (Figure 1). As shown in Figure 1(a), the levels
of EpCAM and claudin isoforms were also low in A2780
cells which were differentiated from normal ovarian sur-
face epithelial cells. When examined at the protein level, it
was found that EpCAM and claudin isoforms were upre-
gulated in OVCAR-3, SKOV-3 and A2780cis cells com-
pared with A2780 cells (Figure 1(a,b). Western blot results
of ovarian surface epithelial (OSE) cells showed that they
did not express claudin isoforms and E-cadherin (data not
shown). Similar to EpCAM and claudins expressions,
E-cadherin was expressed in OVCAR-3, SKOV-3 and
A2780cis cells while it was very low in A2780. CD82
and CD9 were downregulated in OVCAR-3 and SKOV-
3 cells compared to A2780 (Figure 1(c,d)).

EpCAM-claudin-tetraspanin complex forms through
ovarian cancer progression

Coexpression of EpCAM, claudins and tetraspanin,
rather than the expressions of the individual molecules
at low or high levels, may be correlated with the ovar-
ian cancer progression. We speculated that the mole-
cules might interact, and their concerted activity might
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promote tumour progression. To support this hypoth-
esis, we first evaluated whether and which of these
molecules associate each other using
coimmunoprecipitation.

Figure 2 showed whether and which of EpCAM, clau-
din-1, -3, —4, and -7, CD82 and CD9 interacted each other
in A2780, OVCAR-3 and SKOV-3 cells. EpCAM and CD9
coimmunoprecipitated with claudin-4 and vice-versa.
Claudin-3, -4 and -7 showed homo- and heterophilic
interactions with claudin-4. Claudin-7 immunoprecipitates
contained EpCAM, claudin-1, -3, —4 and -7, CD82 sug-
gesting claudins interacted at the low levels with the other
studied molecules, although claudin levels are so low as to
be absent. EpCAM, claudin-1, -3, —4 and -7 and CD9
precipitated in the CD82 immunoprecipitates. Also, it was
shown that CD82, located in the tetraspanin-enriched
microdomains (TEMs) acted as a scaffold to regulate the
interactions. EpCAM coimmunoprecipitated with claudin-
1, -3, -4, =7 and CD82 in OVCAR-3 cells and vice-versa
(Figure 2(b)). Heterophilic interactions between claudin-4
and claudin-7 were determined. The amounts of claudin-1
were at the low levels in claudin-4 immunoprecipitates
while claudin-3 was significantly higher. Similar to
A2780, CD82 collected all the studied molecules in CD82
immunoprecipitates of OVCAR-3 cells. As seen in Figure 2
(c), in SKOV-3 cells, EpCAM precipitated in claudin-1, -3,
—4, -7 and CD82 immunoprecipitates. Claudin-1 inter-
acted with both claudin-4 and -7, and vice-versa. Also,
claudin-4 immunoprecipitates contained claudin-7. In
addition to EpCAM and claudins, homophilic and hetero-
philic interactions were shown between claudin isoforms.
Claudin-1 did not coimmunoprecipitate or hardly immu-
noprecipitate with claudin-4 and -7 in A2780 cells.
Instead, immunoprecipitates of claudin-1 in OVCAR-3
and SKOV-3 cells contained claudin-4 and -7, together
with upregulated expressions of claudin-4 and —7. The
coimmunoprecipitations of claudin-1, —4 and -7 with
CD82 demonstrated that these complexes were also located
in TEMs.

EpCAM-claudin-tetraspanin complex influences
drug resistance

Coexpression was observed in the primary ovarian
A2780 cancer cells and also the metastasizing
OVCAR-3 and SKOV-3 cancer cells. Thus, we also
asked, whether chemoresistance of human ovarian can-
cer was so correlated with EpCAM, claudin-4 and -7,
and CD82 coexpression/complex formation. The
immunoprecipitation experiments in the cisplatin-
resistant A2780 cell line, A2780cis the pointed towards
a significant contribution of EpCAM/claudin-7/CD82
complex to apoptosis resistance (Figure 2(d)).
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Figure 1. Protein levels of EpCAM, claudin isoforms and E-cadherin, tetraspanins alter in ovarian cancer progression and chemore-
sistance. A and C A2780, OVCAR-3, SKOV-3 and A2780cis cells were lysed in 1% Triton X-100 containing lysis buffer. After SDS-PAGE
and transfer to nitrocellulose membranes, blots were incubated with the indicated antibodies. GAPDH was used as a control. B and
D Bar graphs show the relative band intensity of EpCAM, claudin-1, —3, —4 and -7, E-cadherin, CD82 and CD9 in A2780, OVCAR-3,

SKOV-3 and A2780cis cells (n = 3; mean + SEM).

EpCAM, claudins and tetraspanin colocalize in both
metastasizing and drug-resistant ovarian cancer
cells

In addition to immunoprecipitation, fluorescence colo-
calization claims the physical association of molecules
which interact with each other. As seen in Figure 4(a,b)
and ¢, EpCAM associated with claudin-4 and -7 in
OVCAR-3 and SKOV-3 cells irrespective of whether

the lines expressed CD82, showing low-level expression
of CD82 sufficed for colocalization. Colocalization of
EpCAM and CD82 verified these findings. In A2780cis
cells, EpCAM and claudin-7 colocalized with CD82
(Figure 4(d)). The results obtained by coimmunopreci-
pitation were confirmed by colocalization and showed
that claudin-4 and -7, and CDS82 interacted with
EpCAM in OVCAR-3 and SKOV-3 cells (Figure 3).
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Figure 2. EpCAM, claudins and tetraspanins interact each other in
ovarian cancer cells. The cells were lysed in 1% Triton X-100 contain-
ing buffer. Lysates were precipitated with the indicated antibodies of
studied molecules. A2780 (a), OVCAR-3 (b), SKOV-3 (c) and A2780cis
(d) cells were used in this experiment (n = 3).
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The palmitoylation and the interaction within intra-
or extracellular domains of claudins and
tetraspanin affect the complexes

In metastasizing and cisplatin-resistant ovarian cancer
cells, claudin-4 or-7/EpCAM/CD82 complex has been
detected and the question arose whether the interac-
tions were direct or indirect. After the disruption of
secondary and indirect interactions with the lysis in
Triton X-100 containing a buffer, claudin-4 and -7
were recovered in EpCAM and CD82 precipitates,
defining EpCAM, claudin-4 or -7 and CD82 as the
direct binding partners. Furthermore, to verify direct
interaction between EpCAM, claudins and tetraspanins,
we used chemical crosslinking. A2780, OVCAR-3 and
SKOV-3 cells were treated with the cross-linkers DSP
and DTSSP (Figure 5). In both conditions which DSP
and DTSSP were used for crosslinking of intracellular
and extracellular cysteine domains, respectively (Figure
5, lanes ¢ and d), the interactions of EpCAM, claudin-1
and —4 with CD82 were conserved in OVCAR-3 and
SKOV-3 cells, even lysed in the RIPA buffer compared
with untreated control samples. The results showed
convincing evidence of their close proximity in
OVCAR-3 and SKOV-3 cells by both intracellular and
extracellular interaction domains. In contrast to
OVCAR-3 and SKOV-3 cells, the interactions between
EpCAM and CD82 in A2780 cells were lost when lysed
in the RIPA buffer, even DSP treatment (Figure 5, lane
d) while EpCAM maintained association with CD82
under relatively harsh detergent conditions of RIPA
buffer only when cells were treated with DTSSP
(Figure 5, lane c). These results suggested that CD82
and EpCAM interact via extracellular domains; vice
versa, claudin-1 and —4 interactions with CD82 need
intracellular domains. Similarly, with the results of
OVCAR-3 and SKOV-3, the interactions of claudin-1
and —4 with CD82 were conserved in A2780 cells
treated with DSP (lane d), but they were lost under
DTSSP treated conditions (Figure 5, lane c).

Many transmembrane proteins, not only tetraspanins
but also undergo palmitoylation [14-17]. But, how the
palmitoylation affects the assembly of complexes or
specialized sites in the plasma membrane is still con-
troversy. As seen in Figure 5, after treatment of intact
A2780, OVCAR-3 and SKOV-3 cells with 2-BP which is
widely used to inhibit protein palmitoylation, the inter-
actions of EpCAM, claudin-1 and -4 with CD82 were
examined in CD82 immunoprecipitates. The interac-
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Figure 3. The illustration of possible interactions in A2780, OVCAR-3 and SKOV-3 cells. The blue, green and red lines show the
possible complexes between the molecules in A2780, OVCAR-3 and SKOV-3 cells, respectively.

tions of EpCAM with CD82 in A2780, OVCAR-3 and
SKOV-3 cells were greatly destroyed compared with
untreated control samples, lysed in RIPA buffer run in
parallel (Figure 5, lane e). In addition, CD82 also did
not coimmunoprecipitate with claudin-1 and —4 in
OVCAR3 and SKOV-3 cells, treated with 2-BP
(Figure 5, lane e). Similarly, after 2-BP treatment,
EpCAM, claudin-1 and —4 molecules were not deter-
mined in the claudin-7 immunoprecipitates of A2780,
OVCAR-3 and SKOV-3 cells (Figure 5, lane e). The
results showed that palmitoylation regions may be
directly responsible for the interactions between
EpCAM, claudin isoforms and CD82.

Both crosslinking of intra- and extracellular domains
and palmitoylation may be responsible in the stable
interactions of studied molecules because palmitoyla-
tion by membrane-bound DHHC proteins affects the
close proximity of interaction between molecules for
promotion of stable membrane associations.
Therefore, to evaluate the effects of palmitoylation-
mediated membrane association on the crosslinking
domains, A2780, OVCAR-3 and SKOV-3 cells were
treated with first 2-BP and then DSP or DTSSP
(Figure 5). When palmitoylation was firstly inhibited,
the effects of DSP and DTSSP on the CD82-EpCAM
interactions reversed in A2780 cells (Figure 5, lanes
a and b). The results demonstrated that palmitoylation
domains were more important than the intracellular
and extracellular interaction domains. 2-BP plus DSP
treatment (Figure 5, lane b) in A2780 cells reduced the
band density of CD82-claudin-1 and CD82-claudin-4

interactions compared with single 2-BP (lane e) and
DSP treatments (Figure 5, lane d). In contrast, the
interactions between EpCAM and claudin-1 with
CD82 of A2780 cells increased after 2-BP plus DTSSP
treatment (Figure 5, lane a). While CD82-claudin-1
interactions were lost in OVCAR-3 cells treated with
2-BP, 2-BP plus DSP and 2-BP plus DTSSP treatments
have recovered the interactions. Similarly, claudin-4
levels in CD82 immunoprecipitates were not obviously
altered in OVCAR-3 cells after 2-BP plus DSP (lane b)
and 2-BP plus DTSSP treatments (Figure 5, lane a).
DSP and DTSSP treatment after inhibition of palmitoy-
lation did not recover the interactions of EpCAM,
claudin-1 and —4 with CD82, because of the significant
disruption of the interaction with 2-BP treatment. It
showed that palmitoylation state may be force interac-
tion domains into close interaction proximity. In
A2780, OVCAR-3 and SKOV-3 cells treated with
2-BP plus DSP and DTSSP, the levels of EpCAM,
claudin-1 and -4 associated with claudin-7 did not
alter compared with the cells treated with DSP and
DTSSP, suggesting that the interaction domains instead
of palmitoylation domains may be important for the
formation and stabilization of the interactions.

In vivo EpCAM-claudin-tetraspanin complex
formation

EpCAM, claudin-4 and -7, and CD82 coexpression
correlated with the metastasis and drug resistance in
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Figure 4. EpCAM/claudin-4, EpCAM-claudin-7 and EpCAM/CD82 colocalize in OVCAR-3 and SKOV-3 cells. OVCAR-3 and SKOV-3 cells
were double-stained with anti-EpCAM/anti-rabbit IgG-Alexa 594 and anti-claudin-4/anti-mouse IgG-Alexa 488 (a), anti-claudin-7/anti-
mouse lgG-Alexa 488 (b), anti-CD82/anti-mouse 1gG-Alexa 488 (c). A2780cis cells were double-stained with anti-CD82/anti-rabbit
IgG-Alexa 594 and anti-claudin-7/anti-mouse IgG-Alexa 488 or anti-EpCAM/anti-rabbit IgG-Alexa 594 and anti-CD82/anti-mouse IgG-
Alexa 488 (d). Staining was analysed using a fluorescence microscope (magnifications, 10, 20 and 40X; 80 um scale bar) and digital
overlays. Yellow staining indicates colocalization.

ovarian cancer. To reassure the in vivo relevance of  harvested tumour tissues of xenograft ovarian cancer
complex formation, EpCAM, claudin-4 and -7, and  mice. The tumours in 5 x 10° cell-injected nude mice
CD82 coimmunoprecipitations were evaluated in the  were metastasized on the liver surface, diaphragm and
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assembly of complexes. A2780, OVCAR-3 and SKOV-3 cells were treated with palmitoylation inhibitor, 2-BP, the membrane-
permeable cross-linker DSP or the membrane-impermeable cross-linker DTSSP, and conjugated. Lysates were precipitated with

anti-CD82 (a) and claudin-7 (b).

colon through the peritoneal cavity. In line with the
in vitro findings, we noted in vivo experiments that
EpCAM, claudin-4 and -7, and CD82 formed
a complex in TEM (Figure 6). Analysing the coexpres-
sion of these molecule pairs significantly strengthened
the difference between metastatic tumours and primary
tumours (data not shown).

Discussion

The adhesion of epithelial cells to their neighbours and
the extracellular matrix is mediated by different types of
junctional complexes. In addition to the mediation of

adhesion, these complexes are also engaged in the signal
transmissions. It has become increasingly apparent that
the dynamism of adhesion, established intra- and inter-
cellular interactions with cell adhesion molecules have
a vital role in maintaining cell integrity and tissue homo-
eostasis which unintended loss cause to the differentiation
of cells, invasion and metastasis of cancer cells.

Similar to our findings which prove the role of
EpCAM through ovarian cancer metastasis, Van der
Gun et al. (2011) also showed A2780 cell line as
EpCAM-negative line, SKOV-3 with an intermediate
EpCAM and OVCAR-3 with a high EpCAM expression
[18]. In a similar manner with our results, claudin-3
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Figure 6. The interactions in tumours of xenograft ovarian
cancer mice. After 4 weeks, the tumours were taken from the
animals and total proteins were purified from snap frozen
tumours by homogenization in 50 mM Tris-HCl pH 8.0,
150 mM NadCl, 1% Triton X-100. The indicated molecules were
immunoprecipitated and analysed by western blotting.

and claudin-4 upregulated in 90% of the ovarian cancer
cells [19,20]. A few studies observed the claudin-7 over-
expression in the ovarian cancer [21-23]. All results
demonstrated that claudin overexpression was respon-
sible for ovarian cancer progression. However, in
OVCAR-3 cells, the wupregulated expressions of
EpCAM and all studied claudins which are epithelial
markers, compared to A2780 and SKOV-3 cells defined
that the mesenchymal ovarian cancer cells gained their
epithelial characters back to adhere onto the perito-
neum after metastasis from tumour capsules and also
showed both epithelial and mesenchymal features.
Uncontrolled upregulated expression of the molecules
such as EpCAM and claudins in the metastasizing
OVCAR-3 and SKOV-3 cells may contribute to
increased risk because cell adhesions mechanically
link the cells and are critical for the controlling differ-
entiation and invasion. As a member of another junc-
tional complex in the epithelial cells, E-cadherin
expression in the ovarian carcinoma effusion fluids
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significantly was higher than the patient-matched pri-
mary carcinomas [24]. Furthermore, higher expression
levels of E-cadherin in OVCAR-3 than SKOV-3 cells
demonstrated that OVCAR-3 cells underwent MET in
contrast to SKOV-3 cells. The absence of cell adhesion
molecules’ expression in ovarian surface epithelial
(OSE) cell line may facilitate a primitive differentiation
state which occurs in OSE cells covering over the ovary
and this feature helps cells becoming highly migratory
to fill the large wounds that are generated during
oocyte release [1]. Agarwal et al. also showed that
claudin-3 and -4 isoforms were not expressed by OSE
cells [25]. Besides cell adhesion molecules and junc-
tional complexes between cell adhesion and cytoskele-
ton proteins, tetraspanins form specialized domains
with several distinct proteins and lipids, and tetraspa-
nin-enriched microdomains (TEM) are crucial for
many cell biological processes, including cell adhesion,
signalling, migration and cell division [9,10]. Houle
et al. (2002) and Schindl et al. (2001) showed CD82
and CD9 downregulation in the ovarian cancer [26,27].
The results of our experiments and other studies
proved the cancer metastasis suppressor role of CD82
and CDY, clinically connected to the progression, inva-
sion, and metastasis of various malignancies [28,29].
Similarly, CD82 expression was frequently downregu-
lated or lost in poorly differentiated cancers or at the
advanced stage of cancers [30,31]. CD9 is important for
microvesicle biogenesis and sorting of the cargo pro-
teins related with cancer progression [32]. In the last
years, tetraspanin8 was identified therapeutic target in
the ovarian cancer [33].

We assumed that the complex between EpCAM,
claudins and tetraspanins, rather than the individual
molecules, might promote tumour progression. The
following observations supported this hypothesis: a)
claudin-4 and -7 coimmunoprecipitated, albeit weakly
with EpCAM in A2780 cells. Instead, in the metastatic
OVCAR-3 and SKOV-3 cells which expressed EpCAM,
claudin-4 and -7 higher than A2780, claudin-4 and -7
strongly coimmunoprecipitated with EpCAM and vice-
versa. b) CD82 immunoprecipitates contained claudin-
4 and claudin-7, higher in OVCAR-3 and SKOV-3
cells. The results showed that CD82, even at low levels
supported the formation of EpCAM-claudins com-
plexes in TEMs. On the other hand, this complex has
been seen in ionic detergent lysates and insoluble phase
of non-ionic detergent lysates, and it demonstrated
TEM-localized EpCAM/claudins/tetraspanins complex
(data not shown). In addition, these complexes were
also stable in the soluble phase of the strong non-ionic
detergent, Triton X-100 lysates. The findings confirmed
that claudin-4 and -7 directly and strongly associated
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with EpCAM and suggested that claudin-4 and -7-
associated EpCAM only, or at least predominantly,
becomes recruited towards CD82. CD82, even at low
levels in OVCAR-3 and SKOV-3 tethered the other
interacted molecules. The colocalization of EpCAM
and claudins with CD82 showed the involvement in
the complex formation. Alternatively, colocalization of
the molecules, even expressed at the low levels, could be
a result of enrichment in the membrane microdomains
that facilitate proximity. Ladwein et al. noted in the
pancreatic adenocarcinoma tumours that CD44v6,
CO0-029, EpCAM, and claudin-7 formed the complexes
in TEMs [34]. Also, the complexes were detected in
colorectal cancer, and expression of the complex inver-
sely correlated with disease-free survival [13]. Okada
et al. suggested the involvement of EpCAM, together
with CD44v6 and claudin-7 as well as ALDHI1 in the
aggressive anaplastic thyroid carcinoma [35]. Besides
ovarian cancer progression, the complex of EpCAM/
claudin-7/CD82 involved in the apoptosis resistance
[13]. Consistent with our results, ovarian cancers with
high levels of EpCAM had significantly much lower
responsive rates after first-line chemotherapy [36].
Also, claudin-7 knockdown cells displayed decreased
tumour growth and impaired migration and motility,
due to the recruitment of EpCAM with claudin-7 [37].
Taken together, ovarian cancer frequently expresses
a complex of EpCAM, claudin-4 or -7 and CD82 that
is located in TEMs. The complex, rather than the indi-
vidual molecules, promoted ovarian progression and
involved in the apoptosis resistance. In addition to the
studied tetraspanins and cell adhesion molecules, the
complex of other tetraspanin CD151 and cell adhesion
molecule a3p1 integrin suppressed ovarian cancer pro-
gression repressing the other signalling pathways [38].

To identify the directly associated proteins, we used
these strategies that involve (i) covalent cross-linking of
exposed cysteines, (ii) partial inhibition of protein pal-
mitoylation to expose membrane-proximal cysteines,
iii) partial disruption of cholesterol. Using these experi-
ments, we discovered the direct protein-protein inter-
actions between EpCAM, claudin-4 or -7 and CD82.
At the first step, CD82 and claudin-7 immunoprecipi-
tates of membrane-permeable cross-linker DSP-treated
lysates contained EpCAM, which provided pronounc-
edly evidence for the direct complex between EpCAM,
claudin-4 or -7 and CD82. Besides, the complex has
been seen after OVCAR-3 and SKOV-3 cells had been
treated with the membrane-impermeable cross-linker
DTSSP. Thus, the cytoplasmic tails and extracellular
domains of the molecules contribute to EpCAM/clau-

din-4 or —=7/CD82 complex. Surprisingly, in A2780 cells
CD82 interacted with EpCAM via extracellular
domains while needed intracellular domains for the
claudin interactions. Similarly, EpCAM and claudin-7
associated via intracellular cytoplasmic tails in pancrea-
tic adenocarcinoma and colorectal cancer cells [34,39].
LC-MS/MS analysis in CD9 immunoprecipitates of
crosslinker DTME-treated lung cancer cells identified
direct interactions with claudin-1 although other clau-
dins (claudin-2, -3, -4, -5, and -7) associated to
a much lesser extent [17]. At the second step, we
showed palmitoylation could provide stability by con-
tributing to a more ordered state whereas protein-
protein interactions probably determined the specificity
of tetraspanin associations [40]. The treatment with
2-BP of intact A2780, OVCAR-3 and SKOV-3 cells
greatly destroyed the interactions of EpCAM, claudin
and CD82. Claudin-14 underwent palmitoylation [41],
whereas CD9 can associate with claudins and stabilize
them when they are not localized in the tight junctions
[17]. In contrast, some studies indicated that removal of
palmitoylation sites from tetraspanins does not disrupt
primary protein-protein associations, but the loss of
palmitoylation reduced the secondary tetraspanin asso-
ciations which are caused to the impaired cell signalling
and altered cell morphology [42,43].

Cell culture experiments with ovarian cancer cells
which have different characters showed that coexpres-
sion of EpCAM, claudins and tetraspanin was related to
ovarian cancer progression and also cisplatin resistance.
Thus, we asked whether the coexpressions may provide
a diagnostic and/or prognostic factor. In line with our
hypothesis that to mimic metastatic stage in ovarian
cancer patients, we generated xenograft ovarian cancer
mouse model. The immunoprecipitation experiments
of xenograft tumours demonstrated similar results
with cell line experiments. Similarly, the metastasizing
gastrointestinal ~ tumours  frequently  expressed
a complex composed of the tetraspanin D6.1A and
CD44v6, EpCAM, claudin-7 [34,44]. The evaluation of
colorectal cancer and liver metastasis patients showed
that complex formation of the EpCAM, claudin-7, CO-
029, and CD44v6 was correlated with clinical data [13].
The involvement of EpCAM, CD44v6 and claudin-7 in
the thyroid cancer progression has been showed [35].

Collectively, we showed a novel mechanism, respon-
sible for ovarian cancer progression and chemothera-
peutic drug resistance in vitro and in vivo. Our findings
assigned EpCAM-claudin-4/-7-CD82 complex, and
posttranslational modifications and also cysteine resi-
dues had a significant role for assembly of complexes.
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