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Summary

The cellular mechanisms responsible for aging are poorly understood. Aging is con-

sidered as a degenerative process induced by the accumulation of cellular lesions

leading progressively to organ dysfunction and death. The free radical theory of

aging has long been considered the most relevant to explain the mechanisms of

aging. As the mitochondrion is an important source of reactive oxygen species

(ROS), this organelle is regarded as a key intracellular player in this process and a

large amount of data supports the role of mitochondrial ROS production during

aging. Thus, mitochondrial ROS, oxidative damage, aging, and aging-dependent dis-

eases are strongly connected. However, other features of mitochondrial physiology

and dysfunction have been recently implicated in the development of the aging pro-

cess. Here, we examine the potential role of the mitochondrial permeability transi-

tion pore (mPTP) in normal aging and in aging-associated diseases.
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1 | INTRODUCTION

Aging is a physiological process occurring over life that induces a

general decline of physical and mental capacities. Despite numerous

studies, the mechanisms of aging remain to be established. Aging is

associated with dysfunction of organs and alteration of their perfor-

mance, such as hearing failing or muscle weakness, which can lead

to a loss of independence but also to the development of diseases.

Therefore, a better knowledge of the mechanism of aging would

contribute to improve the quality of life of the elderly. Several theo-

ries have been proposed to explain the mechanisms of aging (Allison

et al., 2014; Park & Yeo, 2013). They include among others genetic

predisposition, programmed senescence, DNA damage, endocrine

dysfunction, or the free radical hypothesis. It is likely that the mech-

anisms described in these theories may participate to those of aging

but none of them can directly explain the causes of aging. Another

theory centered on mitochondrial dysfunction was proposed half a

century ago (Harman, 1972). This theory is closely linked to the free

radical hypothesis of aging but also involves genetic and bioenergetic

alterations. Mitochondria are central organelles in the cell. They are

present in all cells of humans and animals (except red blood cells).

They generate cellular energy, produce reactive oxygen species

(ROS) that regulate physiological processes (Angelova & Abramov,

2016), and are involved in the control of cell death (Galluzzi, Kepp,

Trojel-Hansen, & Kroemer, 2012). Therefore, it is not surprising that

mitochondria could be involved in the normal mammalian aging pro-

cess. One of the unique characteristics of mitochondria is that they

possess their own genetic material in the form of a close circular

DNA molecule. According to this latter theory, aging of cells would

be due to the constant delivery of ROS inside mitochondria through-

out life, damaging mitochondrial DNA which is vulnerable as it is not

protected by protein histones or repairing enzymes such as nuclear

DNA. The damaged mitochondrial DNA leads to deficiency of key

electron transport enzymes and subsequent ROS generation, thus

causing a vicious cycle of ROS resulting in a decrease in energy pro-

duction (Fariss, Chan, Patel, Van Houten, & Orrenius, 2005).
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Although a large amount of data support the role of mitochon-

drial ROS production in aging, other features of mitochondrial physi-

ology and dysfunction, including the mitochondrial permeability

transition, have been more recently implicated in the mechanisms of

aging (Balaban, Nemoto, & Finkel, 2005; Bratic & Larsson, 2013;

Gonzalez-Freire et al., 2015; Payne & Chinnery, 2015).

The mitochondrial permeability transition has been characterized

by the pioneering work of Hunter and Haworth and corresponds to

the sudden increase in the permeability of the inner mitochondrial

membrane to molecules of molecular mass up to 1,500 Da (Haworth

& Hunter, 1979; Hunter & Haworth, 1979a, 1979b). The opening is

due to a nonspecific pore called the mitochondrial permeability tran-

sition pore (mPTP) occurring when mitochondria become overloaded

with calcium. The sensitivity of the mPTP to calcium is enhanced

under oxidative stress conditions, adenine nucleotide depletion, high

phosphate concentrations, or membrane depolarization (Halestrap &

Richardson, 2015). mPTP opening induces swelling of the organelle

matrix, collapse of membrane potential, and uncoupling of oxidative

phosphorylation (Crompton, 1999). This phenomenon plays a critical

role in different types of cell death. Although the conditions leading

to permeability transition are well known, the exact composition of

the pore remains unknown. Many proteins were thought to form the

core of the pore across the mitochondrial membrane but they have

been successively ruled out by genetic modulation. This is the case

for the voltage-dependent anion channel (VDAC) and the transloca-

tor protein (TSPO) in the outer membrane (Baines, Kaiser, Sheiko,

Craigen, & Molkentin, 2007; Kokoszka et al., 2004). Recent data pro-

pose a role for ATP synthase as the major component of a multipro-

teic complex (Bernardi, Rasola, Forte, & Lippe, 2015). Currently, a

common agreement considers that cyclophilin D (CypD), a soluble

protein located within the mitochondrial matrix, is the main partner

of the mPTP (Guti�errez-Aguilar & Baines, 2015) and that mPTP for-

mation is greatly sensitized by CypD which lowers the calcium

threshold required to trigger mPTP opening. The crucial role of

CypD has been shown by deletion of the gene in mice, allowing

mitochondria to sustain high calcium concentrations and thus confer-

ring major desensitization of mPTP (Baines et al., 2005). Two open-

ing states of the pore have been distinguished, a permanent or long-

lasting state which is associated with cell death, and a transient

opening state having a physiological role by providing a pathway to

release ROS and calcium from mitochondria which is also regulated

by CypD (Elrod et al., 2010; Hausenloy, Wynne, Duchen, & Yellon,

2004; Petronilli et al., 1999). The mPTP is now considered to be

central in numerous conditions such as heart, brain, or liver

ischemia–reperfusion (Friberg & Wieloch, 2002; Halestrap, 2010;

Kim, He, Qian, & Lemasters, 2003; Morin, Hauet, Spedding, & Tille-

ment, 2001; Rauen & de Groot, 2004), drug-induced liver injury

(Jaeschke, McGill, & Ramachandran, 2012), age-related neurodegen-

erative diseases (Rao, Carlson, & Yan, 2014), and accumulating data

imply the mPTP in organ dysfunction occurring during aging (Hepple,

2016; Rocha-Rodrigues et al., 2013; Toman & Fiskum, 2011). Con-

versely, caloric restriction, which is a proven strategy to delay aging

and age-related disease (Balasubramanian, Howell, & Anderson,

2017), is associated with the inhibition of mPTP opening (Amigo,

Menezes-Filho, Lu�evano-Mart�ınez, Chausse, & Kowaltowski, 2017;

Hofer et al., 2009; Kristal & Yu, 1998; Menezes-Filho et al., 2017).

The aim of this review is to summarize the current data showing

a relationship between mPTP opening and aging. We will analyze

this relationship through the alterations of the cellular stimuli

involved in the two processes, the modification of the proteins that

are considered as components of the pore and finally, we will show

that mPTP opening is involved in the occurrence of different

pathologies during aging.

2 | EXPERIMENTAL EVIDENCE
SUPPORTING THE INVOLVEMENT OF THE
MPTP DURING AGING

Mitochondrial dysfunction is considered as a main feature of aging

(Bratic & Larsson, 2013; L�opez-Ot�ın, Blasco, Partridge, Serrano, &

Kroemer, 2013). When a cell ages, the efficiency of oxidative phos-

phorylation decreases, reducing ATP production. This impairs mito-

chondrial function and results in an aging phenotype, more

particularly in organs requiring a high energy supply such as the

heart, muscles, brain, or liver. The regulation of mPTP opening is also

altered by aging as demonstrated in mitochondria isolated from vari-

ous aged or senescent tissues. This may be related to the similarity

of the stimuli involved in mPTP opening and cellular aging.

An increased sensitivity to calcium overload was observed in mito-

chondria isolated from senescent rat heart (Fernandez-Sanz et al.,

2015; Jahangir, Ozcan, Holmuhamedov, & Terzic, 2001; Ljubicic, Men-

zies, & Hood, 2010; Petrosillo, Moro, Paradies, Ruggiero, & Paradies,

2010). This effect was confirmed in permeabilized cardiomyocytes

(Picard, Wright, Ritchie, Thomas, & Hepple, 2012) but may be

restricted to interfibrillar mitochondria (Fernandez-Sanz et al., 2015;

Hofer et al., 2009). An enhanced susceptibility to mPTP opening was

also found in brain (Krestinina et al., 2015; Marques-Aleixo et al.,

2012; Mather & Rottenberg, 2000) and appeared to depend on the

brain area tested (Brown, Geddes, & Sullivan, 2004; LaFrance, Brus-

tovetsky, Sherburne, Delong, & Dubinsky, 2005), in the liver (Goodell

& Cortopassi, 1998; Mather & Rottenberg, 2000), and in lymphocytes

(Rottenberg & Wu, 1997). More recently, Picard, Ritchie, Thomas,

Wright, and Hepple (2011) described an impaired mPTP function with

aging in fast muscles of the rat that was also observed in aged human

muscles (Gouspillou et al., 2014), showing that this phenomenon is

not restricted to animal models of aging. Sensitization of mPTP open-

ing was also involved in the bone loss occurring in aging mice (Shum

et al., 2016). However, it should be kept in mind that most of these

data were obtained in isolated mitochondria, which may amplify mito-

chondrial functional impairment (Picard et al., 2010).

Other studies also showed that mPTP regulation is dysfunctional

in the aged myocardium. Indeed, pharmacological mPTP inhibitors

failed to produce significant effects in either normal or stressed condi-

tions. For instance, cyclosporin A (CsA) was unable to inhibit carboxya-

tractyloside-induced permeability transition in aged mitochondria
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(Garc�ıa, Zazueta, Mart�ınez-Abundis, Pav�on, & Ch�avez, 2009) and to

prolong the time necessary to induce mPTP opening in isolated mito-

chondria (Duicu et al., 2013) and in cardiomyocytes isolated from old

rats (Liu, Zhu, Brink, Glass, & Rebecchi, 2011). Similarly, the ability of

sevoflurane and isoflurane conditioning (Li et al., 2013; Zhu et al.,

2010) and of the GSK-3b inhibitor SB-216763 (Zhu, Rebecchi, Glass,

Brink, & Liu, 2011) to protect against myocardial ischemia–reperfusion

injury, which is mediated by inhibition of mPTP opening in young rats,

is abrogated in senescent animals. Taken together, these data support

the hypothesis of mPTP activation during aging in rodents. This is con-

sistent with the increased apoptotic susceptibility observed in differ-

ent organs (Chabi et al., 2008; Kwak, Song, & Lawler, 2006), although

mechanisms other than mPTP activation for the induction of apoptosis

have been proposed (Chabi et al., 2008).

3 | REGULATING FACTORS OF MPTP AND
AGING

3.1 | Calcium homeostasis, mPTP, and aging

Elevated matrix calcium was the first factor described to activate

mPTP opening (Haworth & Hunter, 1979). Although calcium overload

is still considered as essential, other factors, such as oxidative stress,

adenine nucleotide depletion, or high phosphate concentrations, are

also involved in the formation and/or in the regulation of the pore.

These factors enhance the sensitivity of the mPTP to calcium that

possesses binding sites in the mitochondrial inner membrane facing

the matrix (Halestrap & Richardson, 2015). Therefore, the level of cel-

lular calcium can influence mPTP occurrence. Aging alters cytosolic

calcium handling. This has been clearly demonstrated in the heart

where aging impairs the myocardial calcium transport system, calcium

storage capacities, and contractile function (Besse et al., 1994; Feri-

dooni, Dibb, & Howlett, 2015; Frolkis et al., 1988; Kaplan et al.,

2007). This was recently confirmed in myocytes isolated from human

right atria (Herraiz-Mart�ınez et al., 2015) and suggests a progressive

decline in right atrial contractile function with age.

The enhancement of basal calcium levels can promote the activa-

tion of calcium-dependent enzymes such as phospholipases, proteases,

and nucleases and can alter oxidative phosphorylation (Jahangir et al.,

2001). This may predispose mitochondria to calcium overload and

therefore to mPTP opening. This phenomenon is reinforced under

stress such as ischemia–reperfusion (Jahangir, Sagar, & Terzic, 2007).

Aging also impairs calcium communication between sarcoplasmic retic-

ulum and mitochondria which are tightly interconnected in cardiac cells

(Szalai, Csord�as, Hantash, Thomas, & Hajn�oczky, 2000). This defective

communication alters calcium transfer and contributes to a deficiency

in energy production and to an increase in oxidative stress in the aged

heart (Fernandez-Sanz et al., 2014). A similar mechanism was observed

in heart failure and may be involved in the initiation and progression of

the disease (Kohlhaas & Maack, 2013).

Disturbances in calcium regulation and mitochondrial homeosta-

sis may also contribute to the decline of muscle performance in

aging (for review, see Del Campo, Jaimovich, & Tevy, 2016). Indeed,

Pietrangelo et al. (2015) described an age-related structural uncou-

pling between calcium release units and mitochondria which could

impair the control of calcium levels in muscle and consequently the

efficiency of ATP synthesis. The dysregulation of neuronal calcium

homeostasis has also been identified as playing an important role in

the process of normal aging in brain. This “calcium hypothesis of

neuronal aging” has evolved over time, and the concomitant pertur-

bations of cellular calcium, mitochondrial function, and oxidative

stress are now considered to participate to the neuron degeneration

occurring during aging (Toescu & Vreugdenhil, 2010). Whether mPTP

opening is involved in this process remains an open question. How-

ever, recent data showed that aging reduced ATP synthesis and

mitochondrial calcium buffering capacities and increased the sensitiv-

ity of mPTP formation in the putamen of aged monkeys. This was

correlated with a reduction in locomotor activity compared with

younger animals (Pandya et al., 2015).

Taken together, these data indicate that the disturbance of calcium

cellular homeostasis may contribute to the aging process, more partic-

ularly in the excitable cells. Increasing evidence suggests that this

alteration can affect mitochondrial energy production and promote

oxidative stress (Figure 1). However, the available information does

not allow to draw definite conclusions on a possible role of calcium

dysregulation in the occurrence of mPTP opening in healthy aging,

although calcium is a major actor in the induction of mPTP opening.

3.2 | ROS generation, mPTP, and aging

It is well known that mitochondria are producers of ROS. The elec-

tron leakage in the electron transport chain during respiration is gen-

erally considered as the main source of mitochondrial ROS but other

mitochondrial enzymatic systems, such as monoamine oxidase and

cytochrome b5 reductase in the outer membranes, cytochromes

P450 enzymes in the inner membranes, or several matrix enzymes

such as aconitase, can also produce ROS (Andreyev, Kushnareva,

Murphy, & Starkov, 2015; Andreyev, Kushnareva, & Starkov, 2005).

Although mitochondria are not always considered as the main pro-

ducer of ROS in the cell (NADPH or xantine oxidases being able to

produce high levels of ROS), the respiratory chain produces ROS

continuously. Reactive oxygen species were initially considered to be

toxic molecules but a growing body of evidence suggests that oxida-

tive stress, which is the result of a balance between the formation

of ROS and their scavenging by antioxidant defenses, is regulated

and participates to the maintenance of redox homeostasis and vari-

ous cellular signaling pathways. In normal cells, the cellular and mito-

chondrial levels of ROS are safe and participate to the vital activity

of the cell (Angelova & Abramov, 2016; Bae, Oh, Rhee, & Yoo,

2011; Dr€oge, 2002; Nickel, Kohlhaas, & Maack, 2014). However,

under acute and chronic cellular stress conditions (e.g., acute ische-

mia and neurodegenerative diseases, respectively), the production of

ROS is no longer regulated and becomes detrimental for the cell.

Evidence also suggests that aging involves a change in ROS regula-

tory processes encompassing a decline in mitochondrial function and

an increase in ROS generation (Brand, 2014; Bratic & Larsson, 2013;
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Skulachev & Skulachev, 2014). For instance, monoamine oxidase

activity in 24-month-old rat cardiac mitochondria was much stronger

than that in 1-month-old rats, showing that monoamine oxidase may

be an important source of ROS in the aging heart (Di Lisa, Kaluder-

cic, Carpi, Menabo, & Giorgio, 2009; Maurel et al., 2003). In this

context, an interesting relationship was found between the rate of

ROS production during mitochondrial reverse electron transport

in vitro and lifespan in vertebrate homeotherms (Lambert et al.,

2007). Several reviews have described the mechanisms of ROS pro-

duction in mitochondria and discussed their potential contribution in

aging (Balaban et al., 2005; Brand, 2010). Here, we will only give a

brief summary and we will focus on the possible link between ROS

production and mPTP opening during aging.

Mitochondrial ROS are primarily the result of the inefficient

transfer of electrons through the electron transfer chain, and this

effect was reported to increase with age. This was assigned to the

decline in the electron transfer chain capacity, the dysfunction of

respiratory complexes, the decrease in ROS scavenging enzymes,

and the induction of mutations of mitochondrial DNA, which is sus-

ceptible to oxidative damage because it lacks protection from ROS

and because of its proximity to them (Balaban et al., 2005; Genova

& Lenaz, 2015; Hoppel, Lesnefsky, Chen, & Tandler, 2017; Kwon,

Choi, Cho, & Lee, 2015). It was suggested that the accumulation of

these mutations in turn deteriorates electron transfer chain function

and further increases ROS production, leading to a deleterious

vicious cycle. These data are the basis of the mitochondrial free radi-

cal theory of aging. Numerous data argue in favor of the central role

of ROS in aging, and a progressive mitochondrial dysfunction with

increased levels of oxidized lipids and proteins is always considered

a hallmark of aging (Skulachev & Skulachev, 2014). The beneficial

effects of mitochondria-targeted drugs such as plastoquinone deriva-

tives (Anisimov et al., 2008, 2011) or MitoTEMPO (Miura et al.,

2017; Owada et al., 2017) and of endogenous indoleamine mela-

tonine (Escames et al., 2010; Paradies, Paradies, Ruggiero, & Pet-

rosillo, 2017) reinforce this theory. Similarly, mice deleted for the

gene of the p66shc adaptor protein have reduced ROS generation

and delayed aging (Migliaccio et al., 1999; Napoli et al., 2003). How-

ever, new recent data challenged this hypothesis as they show that

ROS can be beneficial and extend lifespan at least in lower organ-

isms such as flies and worms (Sanz, 2016; Sena & Chandel, 2012).

Accumulating evidence suggests that other aspects of mitochondrial

physiology must be considered to explain the contribution of mito-

chondria to aging (Gonzalez-Freire et al., 2015; Payne & Chinnery,

2015).

Reactive oxygen species decrease the calcium concentration

needed for mPTP opening and thus sensitize mPTP opening (Fig-

ure 1). The increased formation of ROS and the oxidation of mito-

chondrial membrane lipids and proteins associated with mPTP are

thus likely to promote mPTP opening during aging. This is what was

observed with cardiolipin, a phospholipid that is specific of mito-

chondria and plays a major role in the molecular organization and

the function of the inner mitochondrial membrane, interacting with

many proteins (Klingenberg, 2009; Schlame & Greenberg, 2017). As

cardiolipin is located close to the sources of ROS production and

contains high level of unsaturated fatty acids, it is susceptible to lipid

peroxidation. Oxidized cardiolipin was shown to sensitize heart mito-

chondria to mPTP opening (Petrosillo, Casanova, Matera, Ruggiero, &

Paradies, 2006). The level of cardiolipin diminishes with age and that

of oxidized cardiolipin increases. This has been suggested to be one

of the mechanisms responsible for the alteration of the biochemical

function of mitochondrial membranes (Paradies, Paradies, Ruggiero,

& Petrosillo, 2014). A relevant hypothesis is that the oxidation of

cardiolipin might sensitize mPTP opening to calcium during aging. In

accordance with this hypothesis, Petrosillo et al. (2010)

F IGURE 1 Reactive oxygen species (ROS), calcium, membrane potential, and mPTP opening during aging. In mitochondria from young
animals, mPTP opening is prevented by the high membrane potential (ΔΨ), the regulation of the matrix calcium concentration, and ROS
detoxification Aging is characterized by loss of cristae structure due to disassembly of ATP synthase dimers, increased calcium content, and
ROS production as well as decline in membrane potential. Alteration in calcium handling results in elevated matrix calcium which is the primary
trigger for mPTP opening. Mitochondrial respiratory chain is the main producer and target of ROS. ROS have multiple targets including
respiratory chain complexes, leading to defective complexes producing more ROS and lowering membrane potential in a vicious circle. ROS
production also promotes cardiolipin (CL) peroxidation (CLOOH) which sensitizes mPTP to calcium overload. Translocator protein (TSPO) and
adenine nucleotide translocase (ANT) might also play a role in mPTP opening during aging. ER, endoplasmic reticulum; SOD, superoxide
dismutase; GPX, glutathione peroxidase; ┴, inhibition; (+)?, stimulation
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demonstrated that the ability of mitochondria to retain calcium, a

marker of mPTP sensitivity, is altered during aging. The mechanism

may involve the adenine nucleotide translocase (ANT). Indeed, cardi-

olipin interacts with and plays a key role for the transport of adenine

nucleotides by ANT (Hoffmann, St€ockl, Schlame, Beyer, & Klingen-

berg, 1994), which has long been considered as a structural compo-

nent of the mPTP. Although deletion experiments have challenged

this hypothesis (Kokoszka et al., 2004), additional data demonstrate

a role of ANT in facilitating mPTP opening (Halestrap & Richardson,

2015). The oxidation of cardiolipine, which is tightly bound to ANT,

could modify its conformation and facilitate mPTP opening.

Oxidation–reduction of critical protein residues could also influ-

ence mPTP opening (Chernyak & Bernardi, 1996). More particularly,

the oxidation of thiol functions and cysteine residues, which is an

important mechanism regulating protein structure, was reported on

proteins described to be involved in the formation of the pore or in

the regulation of its opening, such as ANT (Costantini et al., 2000;

Halestrap, Woodfield, & Connern, 1997), CypD (Nguyen et al.,

2011), ATP synthase (Wang, Murray, Chung, & Van Eyk, 2013), or

complex I of the respiratory chain (Chouchani et al., 2013). As both

glutathione and cysteine systems become oxidized during aging (Go

& Jones, 2017), this can contribute to mPTP opening. For instance,

ANT contains three redox-sensitive cysteines that are particularly

prone to oxidation during aging (Yan & Sohal, 1998).

3.3 | Membrane potential, mPTP, and aging

Several studies have shown that the mitochondrial membrane poten-

tial is lower in aged cells (Sastre et al., 1996; Sugrue & Tatton,

2001). This may have consequences on mPTP opening as mPTP is a

voltage-dependent channel which tends to open upon depolarization

(Figure 1). In vitro, depolarization induces mPTP opening when mito-

chondria have been suitably loaded with calcium (Scorrano, Petronilli,

& Bernardi, 1997). The reason for this decrease in mitochondrial

membrane potential during aging is unknown but the enhancement

of ROS formation, which is likely to modify mitochondrial membrane

components and to promote mitochondrial uncoupling, is probably

involved. Indeed, oxidative stress was shown to alter the fluidity and

the permeability of membranes (Knobloch, Nelson, K€oper, James, &

McGillivray, 2015; Runas & Malmstadt, 2015). Whether the decrease

in membrane potential is the cause or the result of the activation of

mPTP opening is not clearly established. However, data from Rotten-

berg and Wu (1997) demonstrating that CsA restores mitochondrial

potential in aging lymphocytes support the first hypothesis. Aging

can also lower the threshold of potential necessary to mPTP opening

and thus activate its opening and cell death.

Conversely, a mild decrease in mitochondrial potential caused by

protonophores was shown to increase lifespan in yeast (Barros,

Bandy, Tahara, & Kowaltowski, 2004), flies (Padalko, 2005) and mice

(Caldeira da Silva, Cerqueira, Barbosa, Medeiros, & Kowaltowski,

2008). This is in accordance with data from Delaney et al. (2013)

showing in yeast that cells with the lowest mitochondrial membrane

potential have the longest subsequent replicative lifespan, but also

with the demonstration that mild uncoupling protects mitochondrial

function and contributes to the longevity of the most active human

muscle fibers (Amara et al., 2007). A possible reason for this protec-

tive effect is the prevention of ROS production which is a well-

known consequence of a mild drop in membrane potential (Sku-

lachev, 1998). Another explanation is the initiation of a mitochon-

drial retrograde response. The decline in potential activates

beneficial changes in transcription resulting in increased lifespan

(Miceli, Jiang, Tiwari, Rodriguez-Qui~nones, & Jazwinski, 2012). It

must be mentioned that the reduction in membrane potential must

be mild to avoid reaching the critical value for mPTP opening.

3.4 | Nicotinamide adenine nucleotides, mPTP, and
aging

Several data suggest that aging reduces cellular nicotinamide adenine

dinucleotide (NAD+). This was observed in several organs in mice and

in Caenorhabditis elegans. There is also evidence of NAD+ reduction in

aged human tissues (Fang et al., 2014; Massudi et al., 2012; Mills

et al., 2016; Mouchiroud et al., 2013; Zhang et al., 2016; Zhu, Lu, Lee,

Ugurbil, & Chen, 2015). Conversely, supplementation with NAD+ pre-

cursors or overexpression of a NAD+ synthetic enzyme nicotinamidase

have been reported to extend lifespan and to improve healthspan in

different species (for review, see Fang et al., 2017). Conversion of

NAD+ to NADH plays a key role in mitochondrial metabolism. NAD+ is

reduced in NADH by four steps of the tricarboxylic acid cycle and dur-

ing the oxidation of fatty and amino acids. NADH provides electrons

to complex I of the respiratory chain to establish a protonmotive force

which is responsible for ATP synthesis. A drop in NAD+ cellular levels

can therefore limit NADH generation and consequently decrease

mitochondrial membrane potential and oxidative phosphorylation. As

previously mentioned, a drop in mitochondrial potential favors the fre-

quency and the duration of mPTP opening which in turn can induce

the release of NAD+ from mitochondria and thus contribute directly to

its mitochondrial depletion during aging. In addition, the electron

transport chain via NADH produces NAD+ and the decrease in mito-

chondrial NADH will contribute to the decline in mitochondrial NAD+.

This decrease in NADH can also participate to mPTP opening as evi-

dence shows that mitochondria are more susceptible to mPTP when

the antioxidant power is exhausted (Kowaltowski, de Souza-Pinto,

Castilho, & Vercesi, 2009).

Another important consequence of mitochondrial NAD+ deple-

tion is the inhibition of mitochondrial sirtuin (SIRT) activity, especially

SIRT3. Sirtuins are NAD+-dependent deacetylases that have been

linked to lifespan prolongation in humans (Bellizzi et al., 2005) and

involved in the response to nutritional and environmental perturba-

tions such as DNA damage and oxidative stress (Sack & Finkel,

2012; Satoh, Stein, & Imai, 2011). SIRT3 plays a critical role in the

protection of mitochondria and has received much attention for its

role in aging (Ansari et al., 2017; Sadoshima, 2011). More particu-

larly, SIRT3 was shown to deacetylate CypD, a component of the

mPTP, and to inhibit mPTP opening, thereby reducing oxidative

stress and slowing down cardiac aging (Hafner et al., 2010). There is
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therefore a discrepancy with the concomitant observations showing

that chronic inhibition of mPTP opening in CypD�/� mice is not

associated with a decrease but rather to an enhancement of cardiac

hypertrophy during aging (Elrod et al., 2010). A possible link

between both studies was provided by Nguyen et al. (2013) who

demonstrated using CypD�/� mice that CypD could modulate mito-

chondrial protein acetylation and thus mitochondrial metabolic

changes in addition to its mPTP regulating properties.

In summary, the decrease in mitochondrial NAD+ levels during

aging inactivates SIRT3 and further stimulates mPTP opening, thus

reinforcing mitochondrial dysfunction (Figure 2).

4 | PUTATIVE MOLECULAR COMPONENTS
OF MPTP AND AGING

Although mPTP activation is critical during the progression of aging,

an important question is whether the putative structural components

of the mPTP are concomitantly altered with age. The mPTP is a mul-

tiprotein complex whose molecular composition has evolved over

time. As previously stated, genetic experiments have excluded some

proteins such as VDAC, ANT, or TSPO from the main core of the

pore and these proteins are now considered to rather have a regula-

tory role. Among the numerous components that have been pro-

posed, only CypD is recognized as a real regulator of mPTP but it is

not a structural pore component. Recent data propose ATP synthase

as being the major component of the pore (Bernardi et al., 2015).

This hypothesis is a priori counterintuitive as it seems opposite to

the primary function of the enzyme, which is to produce energy, and

furthermore requires a strict impermeability of the mitochondrial

inner membrane. However, solid arguments support this hypothesis.

The synthase could form a pore either by dimerization or by the

detachment of the c ring subunit in association with the ANT, the

phosphate carrier, and the CypD which binds to the oligomycin sen-

sitivity conferral protein subunit of the enzyme (Bonora et al., 2017;

Gerle, 2016; Giorgio et al., 2013).

4.1 | ATP synthase and aging

Aging was shown to alter some properties of ATP synthase (Frenzel,

Rommelspacher, Sugawa, & Dencher, 2010). Aging could decrease

the maximal ATP synthase activity and impact the available ATP

concentration in vivo but can also contribute to mPTP activation. An

increased number of oxidized cysteine residues and a nitration of

specific tyrosines was found in the ATP synthase of aged mouse

hearts (Fernandez-Sanz et al., 2015) and in the liver of aging rats

(Haynes, Traaseth, Elfering, Fujisawa, & Giulivi, 2010), respectively.

Aging is also associated with post-translationally modified iso-

forms of the enzyme which were found in three different model spe-

cies of aging. Interestingly, a post-translational modification of the

oligomycin sensitivity conferral protein, which is considered as the

ATP synthase binding target of CypD, has been identified in Podos-

pora anserina (Groebe et al., 2007). This is in accordance with the

progressive age-dependent reorganization of the inner mitochondrial

membrane observed in Podospora anserine, including disassembly of

ATP synthase dimers and formation of contact sites between the

inner and the outer membranes (Daum, Walter, Horst, Osiewacz, &

K€uhlbrandt, 2013; Figure 1). Importantly, the dissociation of ATP

synthase dimers may involve CypD, suggesting a role for mPTP in

this mitochondrial membrane reorganization.

4.2 | CypD and aging

Besides ATP synthase, proteins regulating mPTP opening are modi-

fied by aging. CypD is enhanced in the brain mitochondria of old

mice (Gauba, Guo, & Du, 2017) along with its interaction with its

ATP synthase binding partner, the oligomycin sensitivity conferral

protein, and this can mediate mPTP activation during aging. In con-

trast, partial deletion of CypD increases lifespan in mice (Vereczki

et al., 2017)m emphasizing the role of the enzyme in aging. Post-

translational modifications of CypD have been suggested to play a

role in aging. Oxidative stress observed in aged animals can alter the

redox state of CypD, which is controlled by the thioredoxine system

F IGURE 2 Age-related alteration in
cyclophilin D (CypD) regulation promotes
mPTP opening. In mitochondria from
young animals, CypD, the main regulator
of mPTP, is inhibited by the Hsp90-related
mitochondrial matrix protein Trap1 and
sirtuin 3 (SIRT3). CypD is no longer
inhibited by association with Trap1 and
deacetylation by sirtuin 3. The drop in
NAD+ pool inhibits SIRT3 deacetylase
activity, and translocation of p53 activates
CypD by displacing it from Trap1, favoring
the translocation of the protein to the
mPTP complex. ANT, adenine nucleotide
translocase; TSPO, translocator protein; Ac,
acetyl; ┴, inhibition; (+)?, stimulation
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(Folda et al., 2016), and may lead to a more oxidized form of a criti-

cal site of CypD that may be responsible for mPTP activation

(Nguyen et al., 2011). As discussed above, the inhibition of the

deacetylation of CypD by SIRT3, resulting from the decrease in both

NAD+ and SIRT3 levels in old animals, can also contribute to the

enhancement of CypD activity and thus to mPTP opening (Hafner

et al., 2010; Kwon, Kim, Lee, & Kim, 2015). In addition, SIRT3 regu-

lates ROS-mediated signaling as well as the detoxification of damag-

ing ROS (Van de Ven, Santos, & Haigis, 2017). The decrease in

SIRT3 can therefore indirectly amplify oxidative stress and CypD

activity during aging (Figure 2).

CypD has also been shown to interact with p53 which is

involved in the alteration of the cellular response occurring during

aging. In response to oxidative stress, p53 accumulates in the mito-

chondrial matrix where it forms a complex with CypD and triggers

mPTP opening (Vaseva et al., 2012). Recently, Lebedev et al. (2016)

suggested a model in which p53 activates CypD by displacing it from

Trap1, an Hsp90-related mitochondrial matrix protein that complexes

CypD, and maintains it inactive. This process may occur during aging

and favors mPTP opening (Figure 2).

4.3 | ANT and aging

CypD was also shown to interact with ANT which was reported to

regulate mPTP opening (Crompton, Barksby, Johnson, & Capano,

2002; Woodfield, R€uck, Brdiczka, & Halestrap, 1998). An increase in

the ratio between CypD and ANT with aging was observed. This may

contribute to higher susceptibility to mPTP opening (Marzetti et al.,

2008) and to the reduction in affinity of ANT for CypD. An increased

phospho-GSK-3b binding to ANT was suggested to be responsible

for the inhibition of mPTP opening (Miura & Tanno, 2010; Nishihara

et al., 2007). This mechanism would contribute to the cardioprotec-

tive effect of several drugs such as formononetin or resveratrol and

of ischemic preconditioning (Cheng, Xia, Han, & Rong, 2016; Xi,

Wang, Mueller, Norfleet, & Xu, 2009; Zhu, Rebecchi, Glass, Brink, &

Liu, 2013; Zhu, Rebecchi, Wang, et al., 2013). In the aging heart, fail-

ure to reduce ANT/CypD interactions or decreased pGSK-3b respon-

siveness of ANT could be responsible for the attenuation of

cardioprotection afforded by ischemic preconditioning (Zhu, Rebec-

chi, Glass, et al., 2013; Zhu, Rebecchi, Wang, et al., 2013).

5 | EVIDENCE FOR THE INVOLVEMENT OF
MPTP OPENING IN AGE-ASSOCIATED
DISEASES

The incidence of pathology increases with age, and this is particu-

larly marked for organs requiring a high and constant energy supply

such as the heart, the brain, and the skeletal muscle but also the

liver and the kidney. As mitochondria are the provider of energy of

the cell, it is not surprising that mitochondrial dysfunction is consid-

ered as an important feature of aging (Tocchi, Quarles, Basisty,

Gitari, & Rabinovitch, 2015). In this context, mPTP opening is

believed to be involved in numerous age-related disorders which are

associated with a proapoptotic cellular environment (Ljubicic et al.,

2010).

The incidence of myocardial infarction and heart failure increases

with age. The aging heart is more susceptible to the damage induced

by myocardial infarction, and most of the studies suggest that car-

dioprotection with ischemic or pharmacological conditioning

becomes less effective (Boengler, Schulz, & Heusch, 2009; Fenton,

Dickson, Meyer, & Dobson, 2000; Przyklenk, Maynard, Darling, &

Whittaker, 2008; Schulman, Latchman, & Yellon, 2001). mPTP is

thought to be a key factor in these processes, and the mechanism

responsible for this loss of effectiveness may result from an activa-

tion of mPTP. Indeed, mPTP opening and cell death are increased in

reperfused aged cardiomyocytes (Fernandez-Sanz et al., 2015). This

may be the consequence of the oxidative stress due to the increase

in ROS production coupled with a decline in antioxidant defenses

(Ferrara et al., 2008; Judge, Jang, Smith, & Hagen, 2005; Meng,

Wong, Chen, & Ruan, 2007) prevailing in the aging heart. The obser-

vations that a mitochondria-targeted ROS scavenger improved

postischemic recovery of cardiac function (Escobales et al., 2014)

and that the ROS scavenger Tempol restored pharmacological condi-

tioning in aged rats (Zhu, Rebecchi, Glass, et al., 2013; Zhu, Rebec-

chi, Wang, et al., 2013) while preventing mPTP opening support this

hypothesis.

mPTP opening also plays a role in the neuronal injury relevant to

neurodegenerative diseases increasing in aging populations such as

Alzheimer’s, Parkinson’s, and amyloid lateral sclerosis diseases (Ange-

lova & Abramov, 2017; Du et al., 2008; Gandhi et al., 2009; Martin

et al., 2009). This is particularly true for Alzheimer’s disease which is

characterized by the presence of extracellular senile plaques, mainly

composed of amyloid-b (Ab) peptide and intracellular neurofibrillary

tangles made up of hyperphosphorylated tau protein (Selkoe, 2004).

Several studies demonstrate that the Ab peptide accumulates pro-

gressively into mitochondria (Hansson Petersen et al., 2008; Man-

czak et al., 2006) where it inhibits the activities of the respiratory

chain complex and thus oxidative phosphorylation (Hernandez-Zim-

bron et al., 2012; Lahmy, Long, Morin, Villard, & Maurice, 2015;

Tillement, Lecanu, & Papadopoulos, 2011; Tsukada et al., 2014). The

Ab peptide can also potentially cause mPTP opening in vivo as it

induces mitochondrial swelling, decreases mitochondrial membrane

potential, and potentiates the effect of mPTP inducers in isolated

brain mitochondria (Du et al., 2008; Moreira, Santos, Moreno, & Oli-

veira, 2001; Shevtzova, Kireeva, & Bachurin, 2001).This can be due

to an indirect effect on the pore as the Ab peptide has the ability to

enhance intracellular calcium (Abramov, Canevari, & Duchen, 2004;

Chin, Tse, Harris, & Jhamandas, 2006) and to induce oxidative stress

(Lustbader et al., 2004; Reddy & Beal, 2008), which is increasingly

recognized as a key factor in neurodegenerative disorders. These

effects are possible mechanisms contributing to mPTP opening.

Among the various enzymatic sources generating ROS, NADPH oxi-

dase is an important contributor of Ab peptide-induced ROS (Abra-

mov et al., 2004) and is considered as a common feature of

neurodegenerative diseases. Whether this is a cause or a
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consequence of the neurodegenerative process remains questionable

(Sorce et al., 2017).

Recent studies also implicate CypD in Ab-mediated mPTP. CypD

binds to the Ab peptide, and Ab peptide–CypD complexes were iso-

lated from patients with Alzheimer’s disease and transgenic mice

(Du, Guo, Zhang, Rydzewska, & Yan, 2011; Du et al., 2008). These

complexes potentiate mitochondrial, neuronal, and synaptic stress,

and genetic deletion of CypD protects the brain from Ab-induced

neuronal degeneration (Du et al., 2008, 2014; Guo et al., 2013).

Pharmacological inhibition of CypD by CsA was also shown to allevi-

ate the deleterious effect of Ab accumulation in isolated brain mito-

chondria (Moreira et al., 2001). Unfortunately, CsA and CsA

derivatives lack clinical significance in Alzheimer’s disease because of

their side effects and of their poor blood–brain barrier permeability.

However, neuronal CypD represents a promising therapeutic target

for Alzheimer’s disease and the development of nonpeptidic small

molecule inhibitors of CypD is a promising approach (Ahmed-Belka-

cem et al., 2016; Park et al., 2017).

Another promising drug target is the translocator protein

(TSPO). Translocator protein is an outer mitochondrial membrane

which has long been considered as a component of the mPTP and

which regulates mitochondria-mediated apoptotic cell death (Gatliff

& Campanella, 2012; Morin, Musman, Pons, Berdeaux, & Ghaleh,

2016). Translocator protein expression is increased in elderly people

and in patients with Alzheimer’s disease (Kumar et al., 2012;

Yasuno et al., 2008). Interestingly, inhibition of TSPO in drosophila

inhibited apoptosis, extended fly lifespan, and inhibited Ab peptide-

induced neurodegeneration (Lin et al., 2014). In addition, Elka-

mhawy et al. (2017) developed a novel class of TSPO ligands able

to modulate Ab peptide-induced mPTP opening in hippocampal

neuronal cell line.

mPTP opening might also be involved in other neurodegenerative

diseases appearing with age. Indeed, CypD deletion studies show

benefit in mouse models of amyloid lateral sclerosis and Parkinson’s

diseases as genetic ablation of CypD delayed the onset of disease

and extended lifespan (Martin, Semenkow, Hanaford, & Wong, 2014;

Martin et al., 2009), strengthening the role of the mPTP in the

mechanisms of both diseases. The beneficial effect observed with a

novel small mPTP inhibitor in a mouse model of amyloid lateral scle-

rosis confirmed that the mPTP could represent an interesting target

for drug development in amyloid lateral sclerosis (Martin, Fancelli,

et al., 2014). This is in line with the data of Keep, Elm�er, Fong, and

Csiszar (2001) who observed an improvement by CsA of the motion

disorders in an amyloid lateral sclerosis mouse model.

A role of mPTP was also suggested in Huntington’s disease

(Short review: Quintanilla, Tapia, & P�erez, 2017). Indeed, expression

of mutant huntingtin protein alters mitochondrial and cell viability

through mPTP opening in striatal cells and cortical neurons (Quin-

tanilla, Jin, von Bernhardi, & Johnson, 2013) and CsA showed pro-

tecting effects in a Huntington’s disease mouse model (Kumar &

Kumar, 2009). This idea was reinforced by the fact that CypD is

upregulated in Huntington’s patients and that this upregulation

increased as Huntington’s disease progressed (Shirendeb et al.,

2011). However, other reports did not find such significant contribu-

tion of mPTP to mitochondrial injury in Huntington’s disease,

demonstrating that genetic inactivation of CypD does not modify

the onset and the progression of the disease in mice (Brustovetsky

et al., 2005; Pellman, Hamilton, Brustovetsky, & Brustovetsky, 2015;

Perry et al., 2010).

Finally, it should be noted that the involvement of mPTP opening

is not restricted to heart or brain age-associated diseases. For

instance, it was recently demonstrated that mitochondria are

impaired in aging bone and that a CypD-mPTP mechanism may be

involved in aging-related bone loss (Shum et al., 2016).

6 | CONCLUSION

Life expectancy has greatly increased during the last 50 years, and

logically, the number of elderly suffering from age-related diseases

has progressed concomitantly. It is therefore essential to understand

the cellular mechanism of aging to improve the quality of life of the

elderly and to apply strategies to fight against the pathologies

appearing during aging. Several lines of evidence suggest that the

mitochondrion, due to its multiple cellular functions, plays a critical

role in aging and age-related diseases. Mitochondrial bioenergetic

dysfunction and its generation of damaging ROS were closely associ-

ated to aging and age-related diseases. Recently, a large number of

studies demonstrated that the mPTP, which is not definitely charac-

terized at the molecular level, is more sensitive to opening in aged

animals and in aging-associated diseases and that its inhibition can

enhance lifespan. This appears logical as the cellular modifications

occurring during aging, that is, impaired calcium homeostasis,

increased oxidative stress, oxidative modifications of proteins,

enhancement of CypD level, and apoptosis, are factors contributing

to and modulated by mPTP opening. However, doubts persist about

the involvement of mPTP in the progression of aging and definitive

experimental proofs of mPTP involvement have to be provided to

demonstrate whether it is a cause or a consequence of aging. A bet-

ter knowledge of the structural composition and of the regulation of

the pore will probably help to elucidate the role of mPTP in longev-

ity and healthspan.
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