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Gastrointestinal dysfunction plays an important role in the occurrence and development
of Parkinson’s disease (PD). This study investigates the composition of the gut
microbiome using shotgun metagenomic sequencing in PD patients in central China.
Fecal samples from 39 PD patients (PD group) and the corresponding 39 healthy
spouses of the patients (SP) were collected for shotgun metagenomics sequencing.
Results showed a significantly altered microbial composition in the PD patients. Bilophila
wadsworthia enrichment was found in the gut microbiome of PD patients, which has
not been reported in previous studies. The random forest (RF) model, which identifies
differences in microbiomes, reliably discriminated patients with PD from controls; the
area under the receiver operating characteristic curve was 0.803. Further analysis of
the microbiome and clinical symptoms showed that Klebsiella and Parasutterella were
positively correlated with the duration and severity of PD, whereas hydrogen-generating
Prevotella was negatively correlated with disease severity. The Cluster of Orthologous
Groups of protein database, the KEGG Orthology database, and the carbohydrate-
active enzymes of gene-category analysis showed that branched-chain amino acid–
related proteins were significantly increased, and GH43 was significantly reduced in the
PD group. Functional analysis of the metagenome confirmed differences in microbiome
metabolism in the PD group related to short-chain fatty acid precursor metabolism.

Keywords: Parkinson’s disease, gut-brain-axis, shotgun metagenomic sequencing, gastrointestinal dysbiosis,
short-chain fatty acids

INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative disease whose prevalence rate among
central nervous system (CNS) diseases is only second to that of Alzheimer’s disease in the elderly
population. The burden of PD will continue to rise with the increase in population size and
aging (Castillo et al., 2019). Globally, there were 6.2 million PD patients in 2015; of these, 0.117
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million patients died of PD (Mortality, 2016). Most PD
cases are sporadic, and the average age at onset is 60 years
(Cook Shukla et al., 1993). The pathogenesis of PD is
complex, with some of the pathological features being the
loss of dopaminergic neurons in the substantia nigra and
intracytoplasmic inclusions (Lewy bodies) in the remaining intact
nigral neurons (Braak and Braak, 2000).

Dysbiosis of the gut microbiome can affect both the enteric
nervous system and the CNS. Previous studies have revealed the
existence of the brain–gut–microbiome axis whose bidirectional
interaction between the gut microbiome and the human nervous
system can cause CNS disease (Cox and Weiner, 2018). In recent
years, metagenomics studies have further revealed the correlation
between PD and abnormal gut microbiome, which is also an
extension of the gastrointestinal hypothesis in PD (Holmqvist
et al., 2014). Gastrointestinal dysfunction, as well as changes
in microbiome metabolites, can lead to inflammation, impaired
epithelial barrier function, and an increase in the translocation
of lipopolysaccharides and short-chain fatty acids (SCFAs),
thereby causing systemic inflammatory reactions. Inflammatory
cytokines pass through the blood–brain barrier to activate the
microglia and astrocytes, which leads to neuroinflammation,
altered cognition and behaviors, stress, and finally PD (Sampson
et al., 2016; Sun and Shen, 2018). Previous studies have noted
distinct alterations in the gut microbiome of PD patients,
specifically SCFAs and other metabolites (Sampson et al., 2016;
Unger et al., 2016; Hill-Burns et al., 2017; Sun et al., 2018).

Currently, the majority of studies use 16S rRNA amplicon
sequencing technology to analyze gut microbiome diversity.
However, the 16S rRNA primers used for different regions
may lead to inconsistent results, because not only does the
corresponding flanking conservative region have obvious binding
affinity, but also the resolution of each variable region in the
taxonomic group is also different (Soergel et al., 2012). Although
shotgun metagenomics is expensive, it provides higher resolution
and better strain identification potential, which enhances specific
classification of the taxon and function (Norman et al., 2015).
Only one study, conducted in Germany, has reported the use of
this method in PD to date. This study produced results that could
not be obtained by the use of 16S rRNA amplicon sequencing
technology and revealed the differences in microbiome and
microbiome metabolic pathways between L-DOPA–naive PD
patients and the control group. Moreover, the study further
analyzed the abundances of prophages, plasmids, and total virus

Abbreviations: AUC, area under the curve; BCAA, branched-chain amino acid;
BMI, body mass index; CAZymes, carbohydrate-active enzymes; CH, Calinski–
Harabasz; CNS, central nervous system; COG, Cluster of Orthologous Groups;
FDR, false discovery rate; HUMAnN2, HMP unified metabolic analysis network
2; IBD, inflammatory bowel disease; IBS, irritable bowel syndrome; IBS-C,
irritable bowel syndrome with constipation predominance; IBS-D, irritable bowel
syndrome with diarrhea predominance; IQR, interquartile range; JSD, Jensen–
Shannon divergence; KO, KEGG Orthology; LEfSe, linear discriminant analysis
effect size; LOOCV, leave one out cross validation; LPS, lipopolysaccharides;
MetaPhlAn2, metagenomic phylogenetic analysis v2.0; MDA, decreases in
accuracy; PAM, partitioning around medoids; PCoA, principal coordinate analysis;
PD, Parkinson’s disease; PERMANOVA, permutational multivariate analysis of
variance; RF, random forest; ROC, receiver operating characteristic; SCFAs,
short-chain fatty acids; SD, standard deviation; STAMP, statistical analysis of
metagenomic profiles.

(Bedarf et al., 2017). However, shotgun metagenomics has not
been applied in studies of PD patients in Central China.

In China, a total of five institutions, in Beijing (Li
et al., 2017c), Shanghai (Qian et al., 2018), Guangzhou
(Lin et al., 2018), Changchun (Li C. et al., 2019), and
Jinzhou (Li F. et al., 2019), have analyzed gut microbiome
diversity using 16S rRNA amplicon sequencing technology.
However, in consideration of the strong impact that geographic
(Rehman et al., 2016; Kushugulova et al., 2018) and population
(Deschasaux et al., 2018) factors have on the gut microbiome,
shotgun metagenomics was used in this study to analyze the gut
microbiome of PD populations in central China. Studies have
shown that long-term habitual diets can change the structure
of the gut microbiome (David et al., 2014; Krautkramer et al.,
2016). Comparison of people from different families has shown
that couples share a similar gut microbiome (Song et al., 2013).
Therefore, in this study, PD patients’ spouses were recruited
(the SP group) in order to minimize the impact of diet and
living habits. Shotgun metagenomics analysis revealed significant
differences in the gut microbiome composition and function
between the PD patients and their spouses, further demonstrating
the existence of proinflammatory dysbiosis in PD.

MATERIALS AND METHODS

Patient Cohorts
This was a cross-sectional study, and the study subjects were
recruited from the Neurology Department of Xiangyang No.
1 People’s Hospital. The study was approved by the Ethics
Committee of Xiangyang No. 1 People’s Hospital. All subjects
gave their consent to participate in the study in accordance
with the informed consent regulations of the institution where
the research was conducted. In order to reduce the potential
impact of diet, daily schedule, and other related factors, all the
subjects were couples in which one spouse was a PD patient (PD),
whereas the other was healthy for comparison purposes (SP). PD
patients were diagnosed using the PD diagnostic criteria in the
movement disorder society (MDS) 2015 (Li et al., 2017a). The
core standard of diagnosis was to identify if the patient had PD
symptoms. The patient was considered as having PD syndromes
if he/she had bradykinesia in combination with static tremor
and/or muscular rigidity. Upon diagnosis with PD syndrome,
further diagnosis was made based on the inclusion and exclusion
criteria and warning signs to ensure that the patient was a
clinical PD patient. The exclusion criteria for the experimental
group based on previous literature (Keshavarzian et al., 2015)
were as follows: (1) administration or infusion of antibiotics or
probiotics in the recent 3 months; (2) serious disease of the
gastrointestinal tract; (3) severe mental disorder; (4) too low
platelet count (80 × 109/L); (5) prothrombin time > 15 s; (6)
History of hemorrhage in any of the visceral organs. There was
no detailed dietary plan put in place for all the study subjects, and
fecal samples were collected from the first defecation on the day.
General demographic parameters and clinical symptoms of the
study participants are shown in Table 1, while Supplementary
Table 1 shows detailed patient clinical information.
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TABLE 1 | General demographic parameters and clinical manifestations.

PD group SP group

Demographics

No. of participants 39 39

Age (years, mean ± SD) 63.95 ± 6.92 64.82 ± 6.86

Male 21 18

BMI (kg/m2, IQR) 23.15 (20.67–25.39) 24.2 (20.2–26.02)

Clinical data

Age at onset (years, mean ± SD) 60.49 ± 6.54 –

Duration (years)

≥3 years 21 –

>3 ≤ 5 years 11 –

>5 ≤ 10 years 6 –

>10 years 1 –

H&Y stage

1 12 –

1.5 8 –

2 6 –

2.5 6 –

3 3 –

3.5 1 –

4 3 –

UPDRS-III score (mean ± SD) 34.92 ± 20.25 –

DNA Library Construction and
Sequencing Using the BGISEQ-500
Platform
DNA was extracted from the fecal sample as previously
described using the MetaHIT protocol (Qin et al., 2012). Qubit
(Invitrogen) was used to estimate the DNA concentration. After
DNA extraction, genomic libraries were prepared following
the manufacturer’s standard instructions (MGI, China). To
establish a paired-end library with the insertion of 350 bp,
500 ng DNA was used, and sequencing was performed
using a BGISEQ-500 sequencer through PE100 mode (Fang
et al., 2018). The 1,761.8 GB original sequencing data were
deposited in the Sequence Read Archive under the accession
number of PRJNA588035.

Taxonomical Analysis
All shotgun metagenomics data were handled according to the
Microbiome Helper standard operating procedures (Comeau
et al., 2017). FastQC tool1 was used to check the quality of
raw reads of the metagenome. KneadData2 was used to trim
the low-quality sequences (parameter: “SLIDINGWINDOW: 4:
20 MINLEN: 50”) and delete any unwanted human genome
(HG19) reads (parameter: –very-sensitive –dovetail). The default
parameters of MetaPhlAn 2.0 software (Truong et al., 2015)
were used for taxonomic profiling and estimation of the reads’
abundance after processing. This software utilizes unique clade-
specific marker genes to test the taxonomic clade present in
the microbiome sample and estimate their relative abundance.
Thus, relative abundances were multiplied by the number of

1https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
2https://huttenhower.sph.harvard.edu/kneaddata

sequences and rounded (Segata et al., 2011). Shannon and
Chao1 indices were used to estimate α-diversity. β-Diversity
was evaluated based on the Bray–Curtis dissimilarity index.
The abundance of genera in all the samples was subjected to
non-parametric permutational multivariate analysis of variance
(PERMANOVA) to evaluate the sample cluster under various
predictive factors such as disease status, gender, and age. Principal
coordinate analysis (PCoA) was used to visualize the data. For
PERMANOVA analysis, we used the “adonis” procedure in
the vegan 2.5–4 package. Linear discriminant analysis (LDA)
effect size (LEfSe) was used to identify biomarkers in the two
groups. Only the taxa with p < 0.05 (Kruskal–Wallis test)
and LDA score > 2 were considered to show statistically
significant enrichment.

SeqKit software was used to convert fastq format to fasta
format in order to evaluate the number of phages and plasmids
(Bedarf et al., 2017). Further, the sensitive mode of Diamond
software was used to map the reads to the ACLAME database
(Leplae et al., 2010) after kneadData processing. Among them,
the mapping reads with an e value < 1e-7 were considered to
be valid hits. The reads’ quantity of each sample mapped to the
plasmid and phage database was divided by clean reads to ensure
standardization. The Mann–Whitney U test was used to test for
the differences between groups in the R environment.

Enterotype Analysis
An enterotype is the objective aggregation effect of gut
microbiome, which is presented in the high-dimensional feature
space and is another general measure of the gut microbiome
(Arumugam et al., 2011; Ding and Schloss, 2014). Jensen–
Shannon divergence (JSD) distances and Partitioning Around
Medoids (PAM) clustering algorithm were used for cluster
analysis of all the samples based on the relative abundance
of genera. The Calinski–Harabasz (CH) index was used to
evaluate the optimal cluster number. The χ2 test was used to
explore whether the distribution of enterotypes was influenced
by disease status.

Gut Microbiome–Clinical Manifestation
Correlation Analysis
Spearman correlation between the relative abundance of genera
and clinical manifestation with more than 40% distribution
among all patients was tested to evaluate the relationship between
the gut microbiome and clinical manifestation. Only the genus
with a clinical manifestation correlation parameter of p < 0.1
and ρ > 0.25 was used for visualization. This step was realized in
the R environment, and the packages used included ggstatsplot
(0.0.10), data.table (1.12.2), dplyr (0.8.0.1), tidyr (0.8.3), and
ggplot2 (3.1.1).

Establishment of the Disease
Classification Model
The RF model was established based on the relative abundance
of genera of the gut microbiome in all subjects in order to
confirm the features of fecal bacteria for disease classification
of the metagenome samples. Leave-one-out cross-validation was
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used to verify the accuracy of the model (Bedarf et al., 2017; Wang
et al., 2019). The number of decision trees in the RF was set
to be 5,000 (ntree = 5,000), whereas the number of preselected
features at each tree node was determined as the square root
of the number of features minus one, and the seed was set
to be 2,019,613. The variable with the strongest classification
capacity was determined based on the mean decrease accuracy
(MDA), and the RF model was established. Receiver operating
characteristic (ROC) curve was developed, and the areas under
the curve (AUCs) of ROC were calculated to evaluate the
accuracy of the new criteria for disease prediction. The work was
completed in R (4.6-14, RF package).

Gene Catalog Construction and
Differential Gene Analysis
The assembly software MEGAHIT (v1.2.9) (Li et al., 2015) based
on the principle of De Bruijn graphs was used to assemble
the quality-filtered metagenomic sequences of each sample,
and the obtained contigs were evaluated by QUAST (v5.0.2)
(Gurevich et al., 2013). The prediction of protein-coding genes
was performed using Prokka (v1.13) software (Seemann, 2014)
with the “—metagenome –kingdom Archaea, Bacteria, Viruses”
option. The open reading frame (ORF) of each sample was
clustered using CD-HIT tool (v4.8.1) (Li et al., 2001) with
parameters “-aS 0.9 -c 0.95 -G 0 -M 0 -T 9 -g 1” in order to
obtain an initial non-redundant gene catalog (nrGC) with 95%
sequence identity and 90% coverage. Unigene annotation was
performed by running Diamond against the eggNOG database
(Huerta-Cepas et al., 2019) and dbCAN2 database (Zhang et al.,
2018). Salmon (v1.3.0) (Patro et al., 2017) was used to determine
the relative abundances of genes in each sample successfully
mapped to the initial nrGC. Protein abundances were quantified
as counts per million, calculated by the raw valid counts (number
of valid alignments) divided by the library sizes and multiplied by
one million. Statistical analyses were performed using Statistical
Analysis of Metagenomic Profiles (STAMP) (Parks et al., 2014).

Pathway Analysis
Compared with taxology analysis, functional analysis aims
to quantify metabolic pathways contributed by known and
characterless microbiome members (Franzosa et al., 2015). HMP
Unified Metabolic Analysis Network (HUMAnN2) (Franzosa
et al., 2018) directly determines the gene family abundance,
metabolic pathway abundance, and metabolic pathway coverage
of each sample from the read after preliminary treatment. In this
study, emphasis was placed on analysis in the output of metabolic
pathway abundance. STAMP software was used to identify the
pathways for which statistical differences existed between groups
(Parks et al., 2014). Welch t test was used to compare cases versus
controls with a Storey FDR < 0.1 as a cutoff for significance.

RESULTS

Quality Metrics of Metagenomics Data
The gut microbiome of the two groups was analyzed and
compared by shotgun metagenomics. After trimming and

filtration using kneadData software, more than 4.05 × 109 100-
bp high-quality paired-end reads were obtained, among which
the total number of human reads was 4.52 × 107, accounting
for 1.12%. After elimination of host contamination, the average
number of reads per PD patient was 5.31 × 107

± 1.58 × 107,
and that for the SP group was 4.95 × 107

± 2.26 × 107

(Mann–Whitney U test, p = 0.24) (Supplementary Table 2).
The average number of host reads in the PD patients was
6.07 × 105

± 1.01 × 106, and that of the SP group was
5.53 × 105

± 1.71 × 106 (Mann–Whitney U test, p = 0.03)
(Supplementary Table 2). Significant increases in host reads in
PD patients may reflect alterations in intestinal permeability and
pathological status.

The relative abundances in the gut microbiome were
measured for each sample by MetaPhlan2. The complete
information for the taxonomic levels is provided in
Supplementary Table 3. The majority of the reads of the tested
sample of the PD group and SP group were 98.61% ± 5.45%
and 99.87% ± 0.41% (Mann–Whitney U test, p = 0.67),
respectively, which were all mapped to the kingdom Bacteria.
The ratio corresponding to the kingdom Virus was less than
that for the kingdom Bacteria: 1.36% ± 5.42% in the PD group
and 0.13% ± 0.41% in the SP group (Mann–Whitney U test,
p = 0.89), whereas the kingdoms Archaea and Eukaryota were
almost non-existent in the samples (Supplementary Table 3).

Differences in the Gut Microbiome
In this study, the microbiome Shannon and Chao1 indices
were all analyzed at the genus and species levels, respectively.
The genus Shannon (Mann–Whitney U test, p = 0.0002287)
and Chao1 (Mann–Whitney U test, p = 0.007892) indices of
the PD group were significantly higher than those for the SP
group (Figures 1A,B). At the species level, the Shannon (Mann–
Whitney U test, p = 0.02734) and Chao1 (Mann–Whitney U test,
p = 0.0245) indices also showed similar trends (Figures 1C,D).
The results revealed that the diversity of the gut microbiome in
the PD patients was significantly higher than in the healthy group.
Therefore, a higher gut microbiome Shannon and Chao1 indices
may not be indicative of a healthy gut microbiome, but rather of
an overgrowth of pathogenic bacteria in PD patients.

β-Diversity was analyzed at the genus level based on the
disease, age, and gender status in order to estimate community
diversity between the samples, using PERMANOVA. Further,
the relationship between the factors and gut microbiome
composition was analyzed. Between-group differences were
visualized in the PCoA using the Bray–Curtis dissimilarity. The
results showed that the disease status was related to the change
in the between-group gut microbiome. PCoA further revealed
the separation between the healthy SP group and PD group. The
resolution of the top two principal coordinates was 41.40 and
13.83%, respectively (Figure 1E). However, the effects of age and
gender were independent (Supplementary Table 4). This implied
that the gut microbiome dysbiosis in PD patients was mainly
caused by the disease itself and was not related to age and gender.

All the clean reads were mapped to the ACLAME database
and standardized to estimate the known mobile elements in the
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FIGURE 1 | Diversity analysis and quantity of phages and plasmids. (A,B) Shannon and Chao1 indices of the two cohorts at the genus level. (C,D) Shannon and
Chao1 indices of the two cohorts at the species level. (E) PCoA analysis of Bray–Curtis dissimilarity index between samples at the genus level. The percentage of
diversity explained by each axis is indicated on the figure. (F,G) Relative abundance of phages and plasmids between two groups. Asterisk represents statistical
significance (*p < 0.05, ***p < 0.01).

metagenome. There were no significant differences in plasmid
abundance between the PD and SP groups (0.083 ± 0.052 vs.
0.073 ± 0.050, Mann–Whitney U test, p = 0.8223, Figure 1F).
However, phage abundance in the PD patients was higher
(0.029 ± 0.025 vs. 0.020 ± 0.014, Mann–Whitney U test,
p = 0.01579, Figure 1G).

Taxonomic Changes in the Gut
Microbiome
The gut microbiome was found to be mainly composed of
three phyla, namely, Bacteroidetes (PD was 54.79% ± 16.42%,
SP was 61.49% ± 12.88%, Mann–Whitney U test, p = 0.09),
Firmicutes (PD was 28.90% ± 14.76%, SP was 30.34% ± 13.17%,
Mann–Whitney U test, p = 0.47), and Proteobacteria (PD was
12.34% ± 17.36%, SP was 7.04% ± 6.82%, Mann–Whitney U
test, p = 0.43) (Supplementary Figure 1). Two phyla that were
present in small proportions, namely, Actinobacteria (PD was
1.54% ± 2.11%, SP was 0.56% ± 0.77%, Mann–Whitney U test,
p = 0.01) and Synergistetes (PD was 2.52% ± 7.26%, SP was
0.33% ± 1.12%, Mann–Whitney U test, p = 0.01), exhibited
significant differences, and the abundance in the PD group was
significantly increased. These results showed that there were
differences in the gut microbiome of the PD and SP groups
at a high taxonomic level and that at a lower taxonomic level,
corresponding changes could also be observed.

A total of 71 taxa were identified to have notable differences
between groups. The LEfSe algorithm revealed differences in 1
phylum, 2 classes, 3 orders, 7 families, 14 genera, and 44 species;
details are provided in Supplementary Table 5. The enrichment
at the genus and species level is shown in Figures 2A,B,
respectively. In the PD group, phylum Actinobacteria, class
Actinobacteria, order Bifidobacteriales, family Bifidobacteriaceae,
and genus Scardovia were enriched at different taxonomic
levels in the same clade. In addition, class Deltaproteobacteria,
order Desulfovibrionales, family Desulfovibrionaceae, genus
Desulfovibrio, and genus Bilophila also showed consistent
enrichment in the PD group (Figure 2C). In the SP group, family
Bacteroidaceae and genus Bacteroides shared the same clade and
showed a similar trend of enrichment (Figure 2C).

Enterotype Analysis
The classification of microbiome structures based on enterotypes
has potential clinical significance. The existence of discrete
enterotypes widely impacts on the study of microbiome-related
human diseases. To date, studies have reported a phenotypic
correlation between enterotypes (or major drive species) and
human diseases (Qureshi and Mehler, 2013; Li et al., 2017b;
Castano-Rodriguez et al., 2018; Cheng and Ning, 2019). Based on
the microbiome, individualized diagnosis and treatment can be
easily provided if patients are grouped according to enterotypes.
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FIGURE 2 | The stool microbiota profile in PD and SP groups. Differential abundance of genera (A) and species (B) between PD and SP groups identified by LEfSe.
(C) Cladogram of the gut microbial taxa associated with PD and SP; PD-enriched taxa are in red, and SP-enriched taxa are in green.

FIGURE 3 | Difference in community types and taxonomic biomarkers for judging health status between PD and SP. (A) CH index indicates optimal classification into
two community types. (B) Plot for PCoA of enterotypes. (C) Distribution of the healthy control and PD patient samples in the two enterotypes. (D) Relative
abundances of Bacteroides and Prevotella in each enterotype. (E) Top 20 MDA genera were identified by applying RF classifier. (F) The ROC curve for predicting the
occurrence of PD in 78 samples. The genus abundance profile can be used to identify microbiota samples extracted from PD patients. The dotted line represents
the performance of the probabilistic model, the yellow line represents the performance of top 20 MDA variables model, the blue line represents the performance of
the top 10 MDA variables model, and the orange line represents the performance of all variables. Asterisk represents statistical significance (***p < 0.01).
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FIGURE 4 | Assessment of the correlation between gut microbiota and clinical phenotype in the PD group. (A) Correlation analysis between PD duration and the
relative abundance of genera. (B) Correlation analysis between H&Y stage and the relative abundance of genera. (C) Correlation analysis between the UPDRS III
score and the relative abundance of genera. The size of node represents the degree of correlation; the gradient ramp from purple to green represents the p value
from larger to small values.

In this study, all samples were divided into two clusters using the
PAM clustering method (Figure 3A), and each cluster comprised
PD patients and the control group (Figure 3B). The differences
in enterotype discreteness between the patient and control were
not statistically significant (Figure 3C, χ2 test, p = 0.1872).
Enterotype 1 was dominated by genus Bacteroides, whereas
enterotype 2 was dominated by the genus Prevotella (Figure 3D).
Therefore, the enterotypes studied in PD should be further
investigated in a larger patient population.

Parkinson’s Disease Differentiation
Based on the Composition of the Gut
Microbiome
The RF algorithm was used to classify samples and establish a
diagnostic model. One of the advantages of the RF model is that it
can estimate the importance of each feature and the identification
of the most important features in the classification process. Based
on the measurement of the MDA, the five most important genera
in the RF model were Bilophila, Scardovia, Bacteroides, Alistipes,
and a novel unclassified genus of the family Ruminococcaceae.
To improve the RF classifier results, the top 10 and 20 MDA
variables were used as features to establish the model (Figure 3E).
ROC curve and AUC were used to evaluate the performance of
the binary classifier. We were able to distinguish the PD from
the SP with AUC of 0.677 using all genera, whereas the AUC
were 0.795 and 0.803 using the top 10 and 20 MDA variables,
respectively, which improved diagnostic accuracy (Figure 3F).
Therefore, based on these findings, differences in microbiome
compositions can enable PD classification; furthermore, these can
serve as biomarkers in PD diagnosis, prognosis, and therapeutic
evaluation in central China.

Correlation Between the Relative
Abundance of Genera and Clinical
Manifestation
Parkinson’s disease clinical manifestations including PD duration
and disease severity (UPDRS III and H&Y stage) were quantified
in correlation analysis with gut microbiome composition. Based
on the Spearman correlation matrix, the correlation between
clinical manifestation and relative abundance in 57 genera in

which the distribution of the tested samples was greater than
40% was validated. PD duration was positively correlated to
Klebsiella (R2 = 0.573, p = 0.0001); a novel unclassified genus of
the family Burkholderiales (R2 = 0.351, p = 0.028), Parasutterella
(R2 = 0.327, p = 0.042), and Eubacterium (R2 = 0.321, p = 0.047);
and a novel unclassified genus of the family Peptostreptococcaceae
(R2 = 0.294, p = 0.069) and Coprobacillus (R2 = 0.279, p = 0.086)
(Figure 4A). Hoehn and Yahr (H&Y) stage showed a positive
correlation with Parasutterella (R2 = 0.430, p = 0.006), Klebsiella
(R2 = 0.349, p = 0.030), Flavonifractor (R2 = 0.341, p = 0.034),
Coprobacillus (R2 = 0.327, p = 0.042), Rothia (R2 = 0.314,
p = 0.052), and Holdemania (R2 = 0.287, p = 0.076); a novel
unclassified genus of the family Lachnospiraceae (R2 = 0.273,
p = 0.093); and a negative correlation with Dialister (R2 = -0.291,
p = 0.073) and Prevotella (R2 = -0.273, p = 0.093) (Figure 4B).
UPDRS III score showed a positive correlation with a novel
unclassified genus of the family Peptostreptococcaceae (R2 = 0.392,
p = 0.013), Klebsiella (R2 = 0.362, p = 0.023), Holdemania
(R2 = 0.361, p = 0.024), Ruminococcus (R2 = 0.300, p = 0.064), and
Parasutterella (R2 = 0.296, p = 0.067) and a negative correlation
with a novel unclassified genus of the family Ruminococcaceae
(R2 = -0.315, p = 0.0515) and Prevotella (R2 = -0.298, p = 0.065)
(Figure 4C). Based on these findings, Klebsiella and Parasutterella
showed a positive correlation with PD duration and disease
severity, whereas Prevotella showed a negative correlation with
disease severity.

Significant Difference in Protein
Abundance Between the Two Groups
This study aims to bridge the gap between previous 16S
rRNA sequencing studies and functional studies by using
high-resolution shotgun metagenomic sequencing to identify
gut microbiome taxonomic and functional profiles. Given the
high diversity between individuals, we performed de novo
assembly on each sample independently. The data show that
the total contig length is 14.24 Gb. The N50 of the PD
group was 4,604 ± 1,596 bp, and the N50 of the SP
group was 4,723 ± 1,782 bp (Supplementary Table 6). There
was no statistical difference in the assembly results between
the two groups (Mann–Whitney U test, p = 0.9761). The
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FIGURE 5 | Differentially abundant proteins and functional alterations between PD and SP. (A) Differences in relative abundances of COG functional categories.
(B) Differences in relative abundances of KO functional categories. Only q values (false discovery rate–adjusted p value) of <0.03 are shown. (C) Differences in
relative abundances of CAZyme functional categories. (D) Metagenomic profile comparisons of differentially abundant pathways between PD and SP group samples;
features with q < 0.1 were considered significant and were thus retained. A positive difference between proportions denotes higher abundance in PD (red), whereas
a negative difference between proportions shows higher abundance in SP (blue).

final non-redundant gut gene set in this study contained
3,365,331 ORFs, among which more than 100 amino acids
accounted for 72.79%. All unigenes were aligned to the EggNOG
Database and dbCAN2 to classify the functions of the predicted
unigenes. Among them, 2,101,873(62.46%), 1,364,199(40.54%),
and 301,563(8.96%) unigenes were annotated according to the
Cluster of Orthologous Groups (COG) of protein database,
KEGG Orthology (KO) database, and dbCAN2 database,
respectively. STAMP was used to evaluate the relative enrichment
of COG, KO, and carbohydrate-active enzymes (CAZymes)
gene categories between the PD and control metagenomes.
Enrichment analysis of COG-annotated proteins shows that
transcription and secondary metabolite biosynthesis, transport,
and catabolism were significantly higher in the PD patient
group (Figure 5A). Based on the findings for the KO annotated
proteins, 86 proteins were found to be significantly different
between PD patients and controls (Figure 5B). In regard to
CAZymes, the study found that GH43 was significantly reduced,
whereas GH19 and CBM51 were significantly higher in PD
patients (Figure 5C). The complete information is provided in
Supplementary Table 7.

Pathway Analysis
A total of 474 biologically specific pathways (Supplementary
Table 7) were identified in the two sample sets using the
MetaCyc database in order to determine the differences in
metabolic potential of the gut microbiome between PD patients
and controls. The majority of the pathways were related to
bacteria, and this was similar to the taxon results in MetaPhlAn2.
PERMANOVA analysis based on the Bray–Curtis dissimilarity
index showed that when the health status was used as the
grouping variable, the difference in abundance of metabolic
pathways distinguished the PD group from the SP group

(P = 0.063, R2 = 0.039). In STAMP, 13 metabolic pathways were
identified to have significant differences between the PD and SP
groups (Welch t test, storey FDR q < 0.1) (Figure 5D). The L-
rhamnose degradation I (RHAMCAT-PWY) and superpathway
of thiamin diphosphate biosynthesis III (THISYNARA-PWY)
were found to be enriched in the gut microbiome in the SP group,
whereas gluconeogenesis I (GLUCONEO-PWY); L-histidine
degradation I (HISDEG-PWY); superpathway of L-lysine, L-
threonine, and L-methionine biosynthesis I (P4-PWY); acetyl-
CoA fermentation to butanoate II (PWY-5676); superpathway
of guanosine nucleotides degradation (PWY-6595); inosine-
5′-phosphate biosynthesis III (PWY-7234); anaerobic energy
metabolism (PWY-7383); superpathway of sulfur amino acid
biosynthesis (PWY-821); aspartate superpathway (PWY0-781);
gluconeogenesis III (PWY66-399); and adenosine nucleotides
degradation II (SALVADEHYPOX-PWY) were found to be
enriched in the PD group. These results show that there were
significant differences in the generation of precursor metabolites
and energies between the two groups and also in the biological
synthesis of amino acids.

DISCUSSION

Main Findings
The gut microbiome is a vast and complex miniecosystem
established in the human intestinal tract. It generates various
metabolites that significantly affect the physiology, steady
state of energy, inflammatory processes, and immunologic
functions of the host, playing an important role in maintaining
host health (de Clercq et al., 2016; Clavel et al., 2017;
Espinoza and Minami, 2018). The advent of high-throughput
sequencing technology has completely changed the
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understanding of the relationship between the gut microbiome
and human health. In this study, the shotgun metagenomic
sequencing method is used for the first time to analyze the
gut microbiome in PD patients and their healthy spouses in
central China. The findings reveal significant differences in the
composition and function of the gut microbiome between the
PD patients and their spouses. β-Diversity analysis identifies
significant differences between the PD and SP groups, revealing
that the differences in the gut microbiome are caused by disease
status. Moreover, the bacteriophage abundance in the PD group
is significantly higher than in the SP group. Therefore, the
gut microbiome compositions in the PD and SP groups show
significant differences at all taxonomic levels except at the
kingdom level. Enterotype analysis, as one of the methods for
the classification of microbial community structure, is likely to
be used as an index for the evaluation of health status in the
future (Hildebrand et al., 2013; Costea et al., 2018). However,
no significant dispersion trend was observed between the two
groups. At the genus level, the RF model, after selection of
features, distinguished between the PD patients and the SP
group with very high accuracy (AUC = 0.803). Correlation
analysis of clinical manifestation and microbiome composition
has significant value in the study of disease progression. In
addition, our findings reveal differences in gene categories and
microbiome metabolism, for example, branched-chain amino
acid (BCAA) transport system–related proteins, GH43, and the
acetyl-CoA fermentation to butanoate II pathway, which are
related to the generation of precursor metabolites of SCFAs.

Analysis of the Microbiome
Previous studies comparing the gut microbiome between
PD patients and the SP group have been mainly carried
out at the level of genus and above because of limitations
in research methods (Li et al., 2017c; Qian et al., 2018).
In this study, significant differences were identified between
the composition of the gut microbiome of the PD and
the SP groups at all taxonomic levels except the kingdom
level. Thus, our results further strengthen the “gastrointestinal
hypothesis” of PD. In the following section, we focus on
the differences between the two groups at family, genus, and
species levels. At the family level, the PD group showed
Bifidobacteriaceae enrichment. This is consistent with recent
studies (Scheperjans et al., 2015; Hill-Burns et al., 2017;
Hopfner et al., 2017; Lin et al., 2018). No study has reported
a high abundance of Oxalobacteraceae, Desulfovibrionaceae,
Rikenellaceae, and Clostridiales_Family_XI_Incertae_Sedis and a
novel unclassified family of the order Clostridiales in PD. The
genera enriched in PD showed evolutionary relationships with
family levels to some extent; these genera were Desulfovibrio,
Alistipes, Oxalobacter, Bilophila, and Scardovia. In a recent
study, fecal analysis of regressive infantile autism patients by
pyrosequencing technology showed that Desulfovibrio was more
common among infantile autism patients relative to the control
group (Finegold, 2011). Such bacteria can generate important
virulence factors that can account for several pathologic
features of infantile autism. Interestingly, PD patients also suffer
from depression, cognitive disorders, and other non-motor

symptoms (Chen et al., 2013). The genera enriched in PD that
showed no evolutionary relationship included Butyricimonas,
Butyrivibrio, Subdoligranulum, and Anaerotruncus. A previous
study has shown that PD patients exhibit Ruminococcaceae family
enrichment (Li F. et al., 2019); however, this was not the case
in this study. Our results show that a novel unclassified genus
of the family Ruminococcaceae was enriched in the SP group. In
addition, we found that Bacteroides were enriched in the control
group. Study has shown that Bacteroides can actively improve
the intestinal environment, for example, by reducing intracellular
oxygen levels, thereby allowing the growth of strict anaerobes
(Wexler and Goodman, 2017). Of interest is that inflammation
is a central component of PD pathology. Recently, there has
emerged a clear understanding that several species of Bacteroides
express an integrase that can rapidly recruit white blood cells to
kill the immune cells that cause inflammatory bowel disease and
prevent the occurrence of IBD (Hebbandi Nanjundappa et al.,
2017). This study further identified PD microbial markers and
established a diagnostic model from the 20 MDA biomarkers with
high diagnostic accuracy. Therefore, gut microbiome analysis
represents a tool for the development of targeted non-invasive
biomarkers for PD diagnosis.

Key Species
It is still necessary to identify the key species in the gut
microbiome that correlate with specific metabolites or disease
phenotypes in order to understand the ecological interactions
among them and between them and their hosts (Zhang and Zhao,
2016). We further identified enrichment of a species that has
never been mentioned previously in the intestinal microbiota
of PD patients, that is, Bilophila wadsworthia. This bacterium
erodes the mucus layer of the colon, allowing bacterial entry into
the lining cells (Ribaldone et al., 2018). A previous study has
shown that the glycyl radical enzyme enhances the production
of H2S by B. wadsworthia (Peck et al., 2019). H2S is highly
toxicogenomic and causes ulcerative colitis and colorectal cancer
(Attene-Ramos et al., 2010). This metabolite can also reduce the
disulfide bond in the mucous layer of the enteric epithelium,
thereby damaging the intestinal barrier (Ijssennagger et al., 2016).
During aging, the increase in the permeability of the intestinal
epithelium may aggravate damage to the integrity of the intestinal
barrier (Camilleri et al., 2012), which could lead to PD under the
combined action of several factors. Studies show that hydrogen
may provide energy required for the growth of B. wadsworthia
(da Silva et al., 2008). Thus, overgrowth of such bacteria may
accelerate consumption of hydrogen in the intestinal tract.
Notably, hydrogen gas selectively neutralizes toxic hydroxyl
radicals, downregulates the expression of proinflammatory
factors, and maintains cerebrovascular reactivity (Ostojic, 2018).
Therefore, the changes in PD microbiome composition impact
antioxidant processes in the gut.

Phage Analysis
Our study shows that phages were significantly enriched in the
PD group. Currently, it is not known how phages affect the
structure and function of the gut microbiome in the healthy
human (Manrique et al., 2016). However, some evidence indicates
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that phages may reflect the health status of an individual (De
Sordi et al., 2019; Hsu et al., 2019). A study found that the number
of phages in the intestinal tract was significantly increased
in type 2 diabetes patients, and many of these phages were
of an unknown type (Ma et al., 2018). Intestinal-tract phages
may have various possible roles in the pathogenic mechanism
underlying PD, which provides potential novel ways to elucidate
the mechanisms of the gut microbiome in PD patients.

Correlation of the Intestinal Microbiota
With Clinical Manifestations of
Parkinson’s Disease
In this study, some genera were related to clinical manifestations
of PD, including disease duration and severity. Notably,
Klebsiella and Parasutterella were positively correlated with
clinical manifestations in PD, and Prevotella was negatively
correlated with disease severity. Currently, there is no evidence
supporting the relationship between hydrogen produced in the
intestinal tract and PD. Some studies indicate that changes in
the hydrogen-generating microbiome in PD may cause serious
damage, compromising motor functions (Keshavarzian et al.,
2015; Scheperjans et al., 2015). Our results also suggest that
the abundance of hydrogen-generating Prevotella is negatively
correlated with two clinical manifestations that reflect disease
severity, namely, UPDRS III and H&Y stage. H2 is produced
by intestinal microorganisms that may play a role in the
pathogenesis of PD as a mediator of the brain–gut–microbiome
axis (Ostojic, 2018). Although the data show that the correlation
is not particularly strong, we believe that a trend exists. The above
results may be due to the small number of participants, resulting
in a certain degree of randomness. Larger population data are
therefore needed for further research. In addition, this is a cross-
sectional study, and a time-series study is required for further
verification of the findings.

Gene Enrichment Analysis
The human body carries more than 10 times the number of
microbes than human cells and 100 times more microbial genes
than its own (Zhu et al., 2010; Thursby and Juge, 2017). It
is the gene products of these microbiota that interact with
the intestinal microecosystem, and their potential functions can
provide some insights into the occurrence and development
of diseases. From the results of the study, it can be observed
that the function class “secondary metabolites biosynthesis,
transport, and catabolism” was found to be slightly enriched in
PD. It is worth noting that in KO-based annotations, BCAA
transport system–related proteins increased significantly in the
PD group, namely, BCAA transport system ATP-binding protein,
BCAA transport system permease protein, and BCAA transport
system substrate-binding protein. Valine, leucine, and isoleucine
are considered essential amino acids because they cannot be
synthesized de novo and must be obtained from the diet. They
participate indirectly and directly in a variety of biochemical
functions in the peripheral nervous system and CNS (Fernstrom,
2005; Brosnan and Brosnan, 2006; Sperringer et al., 2017). In
addition, BCAAs are considered key nitrogen donors involved

in interorgan and intracellular nitrogen shuttling. Although
vital for normal physiological function, excessive amounts of
BCAAs are considered toxic and can cause severe tissue damage,
especially to the CNS, as evidenced from the neuropathology
associated with maple syrup urine disease, an autosomal recessive
metabolic disorder that is caused by excessive BCAA levels
(Menkes et al., 1954). Studies have shown that amino acids
can be used by intestinal bacteria for the production of
SCFAs and BCAAs (Elsden and Hilton, 1978). Pathway analysis
results showed that the amino acid synthesis pathway was
enriched in the PD group. A limitation of our study is that
it is observational, limiting our ability to establish a causal
relationship between BCAAs and PD. If a causal relationship
between BCAAs and PD can be found, PD can be prevented in
the future by modulating the dietary intake and metabolism of
these amino acids.

In this study, we also found that GH43 was significantly
reduced in PD patients. Studies of the human gut microbiome
have identified GH43 enzymes to be among the most abundant
CAZymes present (El Kaoutari et al., 2013; Wu et al., 2015). It
is well known that diet is a key determinant of the structure
and function of intestinal communities. Phytochemicals that
enter the circulatory system may be beneficial to health through
the induction of stress resistance mechanisms (autophagy, DNA
repair, mitochondrial biogenesis, and expression of detoxification
and antioxidant enzymes) (Martel et al., 2020). The GH43
family has emerged as important in biomass deconstruction
efforts, because studies have found this family in a number of
plant cell wall–degrading microorganisms (Kohler et al., 2015).
Generally, the carbohydrate composition in the intestine has
a profound impact on and may be one of the main driving
forces shaping the composition of the intestinal microbiota. The
CAZyme profile reflects the adaptability of the gut microbial
communities. Therefore, we evaluated the differences in the
CAZyme profiles between the two groups to further clarify
the possible effects of differences in protein function on
physiological functions.

Pathways in Parkinson’s Disease
To explore dysbiosis of the microbiome according to taxonomic
composition, we further analyzed metabolic pathways. Although
13 pathways differed between the two groups, this study
focused more on SCFA production–related pathways. SCFAs,
such as acetate, propionate, and butyrate, are products of dietary
fiber fermentation by the gut microbiome and are thought
to mediate microbiota–gut–brain communication (Dalile et al.,
2019). They promote health by increasing the integrity of the
enteric epithelium, specific antibody reactions, and the number
of regulatory T cells in the colon (Arpaia et al., 2013; Smith
et al., 2013). Of note is that a previous study found SCFAs
to be sufficient for inducing α-syn pathology and microglial
activation in α-syn–overexpressing mice (Sampson et al., 2016).
Consistent with this, this study shows, for the first time, that the
pathway by which acetyl coenzyme A is fermented to butyric
acid II was enriched in PD patients. These results imply that at
physiological concentrations in the intestinal tract, SCFAs may
suppress inflammatory reactions.
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Integration of Research in China’s
Mainland
Integrating research data on PD and the microbiome in five
cities of China, namely, Beijing (Li et al., 2017c), Shanghai (Qian
et al., 2018), Guangzhou (Lin et al., 2018), Changchun (Li C.
et al., 2019), and Jinzhou (Li F. et al., 2019) (Supplementary
Table 8), revealed low microbiome overlap among regions and
even contradictory results. Geographical factors exert a strong
effect on the human intestinal microbiota, and this partly
explains the inconsistent dysbiosis patterns reported in small-
scale studies in some Chinese mainland cities. However, it is
important to identify microbiota associated with cross-regional
consensus risk, because consistent signals can be valuable for
future research in large populations. The results of the study
were consistent with those of previous studies to a certain
extent. This study and the Guangzhou study (Lin et al.,
2018) found that, at the family level, Desulfovibrionaceae and
Bifidobacteriaceae are elevated in PD patients; at the genus
level, findings for Alistipes in the Changchun study (Li C.
et al., 2019) and Anaerotruncus in the Shanghai study (Qian
et al., 2018) are consistent with this study and have been
confirmed to be elevated in PD patients. Bacteroides has been
shown to be decreased in PD patients in both the Jinzhou
study (Li F. et al., 2019) and this study. Except for the
impact of geographic location, this result is not surprising,
given that the human microbiome is highly heterogeneous at
the genomic level and varies among individuals. Several other
factors may account for the different conclusions, such as the
physiological state of host, selection of study subjects, sample
type, experimental method, and bioinformatics analysis. In
addition, none of the studies provide information on antibiotic
use in early life or previous Clostridium difficile infections,
which are known to have profound and long-lasting effects
on gut microbiota.

CONCLUSION AND FUTURE
PERSPECTIVES

In summary, in this study, we performed shotgun metagenomics
analysis of the gut microbiome of PD patients in central China.
To our knowledge, this is the first analysis of the PD gut
microbiome in central China at the level of lower taxa. This study
explains the changes in microbial composition, gene categories,
and metabolic pathways based on analysis of fecal samples
from PD patients. The principal objective of this study was
to determine whether there is evidence for proinflammatory
dysbiosis in PD. Further research is necessary to develop
effective preventive and therapeutic strategies for PD based on
microbiome manipulation.
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