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Purpose: In the tumor microenvironment, the functional differences among various

tumor-associated macrophages (TAM) are not completely clear. Tumor-associated

macrophages are thought to promote the progression of cancer. This article focuses on

exploring M2 macrophage-related factors and behaviors of renal clear cell carcinoma.

Method: We obtained renal clear cell carcinoma data from TCGA-KIRC-FPKM,

GSE8050, GSE12606, GSE14762, and GSE3689. We used the “Cibersort” algorithm

to calculate type M2 macrophage proportions among 22 types of immune cells.

M2 macrophage-related co-expression module genes were selected using weighted

gene co-expression network analysis (WGCNA). A renal clear cell carcinoma prognosis

risk score was built based on M2 macrophage-related factors. The ROC curve and

Kaplan–Meier analysis were performed to evacuate the risk score in various subgroups.

The Pearson test was used to calculate correlations among M2 macrophage-related

genes, clinical phenotype, immune phenotype, and tumor mutation burden (TMB). We

measured differences in co-expression of genes at the protein level in clear renal cell

carcinoma tissues.

Results: There were six M2 macrophage co-expressed genes (F13A1, FUCA1,

SDCBP, VSIG4, HLA-E, TAP2) related to infiltration of M2 macrophages; these were

enriched in neutrophil activation and involved in immune responses, antigen processing,

and presentation of exogenous peptide antigen via MHC class I. M2-related factor

frequencies were robust biomarkers for predicting the renal clear cell carcinoma patient

clinical phenotype and immune microenvironment. The Cox regression model, built

based on M2 macrophage-related factors, showed a close prognostic correlation

(AUC = 0.78). The M2 macrophage-related prognosis model also performed well in

various subgroups. Using western blotting, we found that VSIG4 protein expression levels

were higher in clear renal cell carcinoma tissues than in normal tissues.
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Conclusion: These co-expressed genes were most related to the M2 macrophage

phenotype. They correlated with the immune microenvironment and predicted outcomes

of renal clear cell carcinoma. These co-expressed genes and the biological processes

associated with them might provide the basis for new strategies to intervene via

chemotaxis of M2 macrophages.

Keywords: M2 macrophage, weighted gene co-expression network analysis, tumor-associated macrophage,

immune phenotype, risk model

INTRODUCTION

Renal clear cell carcinoma (RCC) accounts for 80–90% of all
renal cell carcinomas; clear cell carcinoma is not sensitive to
chemotherapy and radiotherapy (Hsieh et al., 2017). For this
reason, radical surgery has become the main treatment method.
In clinical practice, although radical nephrectomy can benefit
mostly patients, 30% of patients experience distant metastases
after surgery (Motzer et al., 2013). Although we have adopted
various treatment strategies for these patients with poor status,
the long-term outcomes are not ideal (Linehan and Ricketts,
2019). With the development of immunotherapy in recent
years, there have been studies showing that immunotherapy
can benefit patients with renal clear cell cancer (Chowdhury
and Drake, 2020; Díaz-Montero et al., 2020; Wang C. et al.,
2020).

Renal clear cell carcinoma is characterized by many new
tumor antigen peptides and high mutation burden; it is relatively
sensitive to immunotherapies such as targeting PD1 and PD-
L1 (Wang C. et al., 2020). Immune regulation plays a crucial
role in the renal clear cell carcinoma microenvironment. This
process includes immune checkpoints [mainly programmed
cell death 1 (PD-1) and programmed cell death 1 ligand 1
(PD-L1)], as well as regulatory T cells, the original source of
suppressor cell tumor-associated macrophages, and type 2 innate
and adaptive lymphocytes (Xu W. et al., 2020). Macrophages
in the primary or secondary tumor tissues are called tumor-
associated macrophages (TAMs); these are the largest number
of macrophages in the tumor stroma (Herberman et al., 1979).
In recent years, clinical and experimental evidence has shown
that macrophages promote the progression and metastasis of
solid tumors, and this is somewhat different from our previous
understanding (Pollard, 2004; Karnevi et al., 2014). Tumor-
associated macrophages are divided into two types, M1 and
M2 (Herberman et al., 1979; DeNardo and Ruffell, 2019). The
biological effects of the two types are exact opposites. As
tumors progress, increasing numbers of M2macrophages appear,
resulting in a weaker antigen presentation effect. For this reason,
targeting macrophages has become a new therapeutic strategy
(DeNardo and Ruffell, 2019). M1 type macrophages, namely,
classically activated macrophages, highly express IL-12 and IL-23
that enhance antitumor effects (Lawrence and Natoli, 2011). By

Abbreviations: TCGA, The Cancer Genome Atlas; GEO, Gene Expression

Omnibus; BLCA, Bladder urothelial carcinoma; ROC, Receiver operating

characteristic; AUC, Area under the curve; HR, Hazard ratio; TME, Tumor

microenvironment.

contrast, M2 type macrophages, namely, alternatively activated
macrophages, promote tumor formation and development
(Cervantes-Villagrana et al., 2020). The mechanism of this
polarization of macrophages is not clear. This article focuses
on exploring the M2 macrophage-related genes in renal clear
cell cancer, and constructing co-expression networks of M2
macrophages using the WGCNA method. The results of this
paper revealed the underlying interaction mechanisms of M2
macrophage co-expressing factors and explained the role of
M2 macrophages in the immune microenvironment from the
perspective of bioinformatics.

METHODS

Macrophage M2, Tumor Purity, and Tumor
Mutation Burden Evaluation
We downloaded The Cancer Genome Atlas TCGA—KIRC
FPKM data (http://cancergenome.nih.gov/) containing 539 renal
clear cell cancer tissue samples and 72 normal tissues. GSE8050
(Weinzierl et al., 2008), GSE12606 (Stickel et al., 2009), GSE14762
(Wang et al., 2009), and GSE36895 (Peña-Llopis et al., 2012)
were also downloaded from the GEO (http://www.ncbi.nlm.nih.
gov/geo/) database. The Robust Multi-Array Average (RMA)
algorithm of the “sva” (Leek et al., 2012) package was used to
remove batch effects among the four GEO cohorts. The TCGA
cohort was used to select M2-related genes. Four GEO cohorts
were combined using “sva” packages and to verify the results.
The Cell type Identification By Estimating Relative Subsets Of
RNA Transcripts (CIBERSORT) is a deconvolution algorithm
based on a gene expression profile that characterizes the cell
composition of complex tissues, quantifies immune cells, and
accurately estimates the immune components of tumor samples.
It expands the potential of the genomic database, showing the
pattern of Renal Clear Cell Carcinoma with comprehensive
immune cells. We calculated macrophage M2 cell proportions
based on the LM22 matrix using the CIBERSORT (Chen et al.,
2018) algorithm, Cibersort was used as an obvious method
to evaluate the significance of infiltration of immune cells in
the samples. The assessment results of some samples were
not statistically significant, and we used P < 0.05 to screen
the samples. The Estimation of Stromal and Immune cells in
Malignant Tumor tissues using Expression data (ESTIMATE) is
a method that infers the fraction of stromal and immune cells
using gene expression signatures (Yoshihara et al., 2013). Using
the ESTIMATE package, we calculated tumor purity in each renal
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clear cell cancer sample. TMB (tumor mutation burden) per
megabyte is calculated by dividing the total number of mutations
by the size of the target coding region (Li et al., 2020; Yang et al.,
2020).

Macrophage M2 Co-expression Network
Conduction
Weighted gene co-expression network analysis (WGCNA) is a
system biology approach that converts co-expression correlations

FIGURE 1 | Flowchart of the experimental design. We first calculated immune infiltration to determine the content of M2 macrophages in the immune

microenvironment of RCC. Then, we constructed a co-expression network related to M2 macrophages of RCC and analyzed the enriched pathways in this network.

We then calculated the survival analysis of these co-expressed genes. We constructed a COX regression prognostic model associated with the co-expression genes

of M2 macrophages in RCC and performed a subgroup analysis of this model. We analyzed the relationship between key genes in the model and tumor purity and

CD8+ T cells. Finally, we also verified the feasibility of the model with 4 GEO datasets and conducted western blotting experiments on VSIG4.
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into connection weights or topology overlap values (Langfelder
and Horvath, 2008). We used this method to determine
proportions of co-expressed genes in the M2 macrophage.
The expression patterns are similar for genes with the same
biological process and biological function (Jiang et al., 2017).
We built a scale-free topology network, set the soft threshold
at 5, R square = 0.89, and set the number of genes in the
minimum module at 30. The M2 macrophage cell proportion
was considered for phenotype files in WGCNA. In this manner,
a cluster of M2 macrophage cell proportion-related genes with
similar function were identified in the same module. The factors
with M2 macrophage correlation >0.4 in the most relevant
modules were determined.

M2 Macrophage-Related Module Analysis
The genes were selected using |correlation coefficient| > 0.4. The
Database for Annotation, Visualization and Integrated Discovery
(DAVID, v6.8) is an open-source database that performs

function enrichment (Huang et al., 2007). We used the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (https://www.
genome.jp/kegg/) (Kanehisa et al., 2017) and Gene Ontology
(GO) (http://geneontology.org/) analysis (Ashburner et al., 2000)
to identify the biological function in each co-expression module.
In this way, we identified the biological processes associated with
M2-type macrophage proportion.

M2 Macrophage-Related Genes Analysis
To verify the correlation between these factors and the clinical
phenotype, we measured the overall survival from clear cell
carcinoma as the prognostic indicator. Survival analysis was
performed to evaluate the prognostic value of these co-expressed
factors in M2 macrophages. Subsequently, a Cox regression
hazard model was built based on the M2 macrophage-related
genes. Next, we generated a model validation of clinical
subgroups, which was based on age, gender, tumor metastasis,
tumor stage, tumor purity, and degree of tumor mutation

FIGURE 2 | (A) A hierarchical clustering tree was built using the dynamic hybrid cutting method, where each leaf on the tree represents a gene, and each branch

represents a co-expression module; 21 co-expression models were generated. (B) The correlation coefficients between each phenotype and co-expression module of

TCGA. The purple module had the strongest correlation with M2 macrophage cell proportions in the TCGA–KIRC cohort (Cor = −0.45; P = 4e−15) and had the

strongest correlation with CD8+ T cell proportions in the TCGA–KIRC cohort (Cor = 0.73; P = 6e−47). (C) The relationship between the purple module membership

degree and the gene significance of M2 macrophages (cor = 0.54; P = 1.6e−26). (D) The relationship between the purple module membership degree and the gene

significance of CD8+ T Cells (cor = 0.92; P = 1.3e−68). (E) The relationship between the purple module membership degree and the gene significance of M2/M1

ratio (cor = 0.66; P = 4e−22).
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burden. In different subgroups, we evaluated the predictive
abilities of M2 macrophage-related prognostic models. Finally,
we calculated tumor purity in TCGA samples and explored
the correlations between macrophage-related factors and
tumor purity.

HPA
To verify the protein expression levels of candidate genes in
melanoma and normal tissues, the human protein atlas (HPA,
https://www.proteinatlas.org/) database was used to demonstrate
differences in co-expressed genes at the protein level (Uhlén et al.,
2015).

Western Blotting
Thirty clear renal cell carcinoma tissue samples were obtained
from patients who underwent Nephrectomy at the First Affiliated
Hospital of China Medical University. This study was authorized
by the Ethics Committee of the First Affiliated Hospital of
China Medical University. All patients signed informed consent.
Protein exaction and western blotting were conducted as
described previously (Pripp, 2018). An antibody against VSIG4
was purchased from Sigma-Aldrich.

Statistical Methods
Pearson correlation coefficientsmeasure the strength of the linear
relationship between two variables. The correlation coefficients

are −1 to +1, respectively, indicating negative correlation
and positive correlation, respectively, while 0 indicates no
correlation (Wang Y. et al., 2020). The key factors in the
model score, tumor purity, tumor mutation burden, M2
macrophages, and CD8+ T lymphocytes were assessed using
this test.

RESULTS

M2 Macrophages, Tumor Purity, and Tumor
Mutation Burden
The results of our methodology are explained in Figure 1.

We summed up the following clinical data composed by M2
macrophages, tumor mutation burden, and clinical following
survival data. M2, and M1, and M2/M1 macrophages were
inputted as phenotype files toWGCNA. The detailed information
is displayed in Supplementary Table 1.

M2 Macrophages Co-expression Network
Conduction
We performed WGCNA analysis with TCGA–KIRC. A
hierarchical clustering tree was built using the dynamic hybrid
cuttingmethod, where each leaf on the tree represents a gene, and
each branch represents a co-expressionmodule; 21 co-expression
models were generated (Figure 2A). The correlation coefficients

TABLE 1 | The Module and gene significance for M2 macrophage-related genes in the purple module.

ID moduleColor GS.MacrophagesM2 p.GS.M2 GS.CD8.T p.GS.CD8.

CD27 purple −0.497 1.32E-18 0.774 2.91E-56

PSMB9 purple −0.493 2.94E-18 0.715 1.65E-44

CTSW purple −0.488 7.07E-18 0.787 2.57E-59

CD3E purple −0.483 1.57E-17 0.734 6.70E-48

CST7 purple −0.482 1.77E-17 0.799 2.39E-62

CD3D purple −0.480 2.90E-17 0.755 5.32E-52

SIT1 purple −0.479 3.05E-17 0.753 1.02E-51

HLA-F purple −0.476 5.88E-17 0.689 3.94E-40

IL2RG purple −0.475 6.28E-17 0.649 2.22E-34

GZMA purple −0.468 2.22E-16 0.7789 2.89E-57

NKG7 purple −0.468 2.22E-16 0.762 1.28E-53

CD8B purple −0.467 2.28E-16 0.832 6.65E-72

PRF1 purple −0.466 2.80E-16 0.744 9.06E-50

CD8A purple −0.466 2.93E-16 0.830 3.40E-71

LCK purple −0.465 4.62E-16 0.694 2.54E-42

APOBEC3G purple −0.461 6.88E-16 0.715 2.18E-44

HLA-B purple −0.459 9.61E-16 0.682 4.66E-39

CXCR3 purple −0.458 1.03E-15 0.684 2.29E-39

IRF1 purple −0.457 1.30E-15 0.671 2.24E-37

CD2 purple −0.449 4.11E-15 0.729 6.85E-47

DUSP2 purple −0.449 4.43E-15 0.763 1.13E-53

CCL5 purple −0.447 5.76E-15 0.588 4.94E-27

HLA-E purple −0.423 1.08E-14 0.688 1.58E-35

PSME2 purple −0.409 1.98E-14 0.525 1.11E-43

GS, Gene significance.
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between each phenotype and co-expression module of TCGA are
shown in Figure 2B. The results showed that the purple module
had the strongest negatively correlation with M2 macrophage
cell proportion in the TCGA–KIRC cohort (Cor = −0.45;
P = 4e−15) and had the strongest correlation with CD8+ T cell
proportion in the TCGA–KIRC cohort (Cor = 0.73; P = 6e−47)

(Figure 2B). Based on these findings, we have supplemented the
scatter plots of the correlation between the factors in the purple
module (Figures 2C–E). The horizontal axis is the correlation
between the gene and the module, which is used to measure the
relationship between the gene and the co-expression module,
and the vertical axis is the correlation between the gene and the

FIGURE 3 | (A) Pathway analysis of 24 negatively correlated co-expressed genes in M2 macrophages in the purple module. These genes were most significantly

enriched in the antigen processing and presentation of exogenous peptide antigen via MHC class I, which suggested a declining effect on tumor antigen peptide

process. (B) Pathway analysis of 16 negatively correlated co-expressed genes in M2 macrophages in the brown module. These genes were most significantly

enriched in neutrophil activation involved in immune responses.
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macrophage. By drawing the scatter diagram above, we screened
out genes that are related to both M2 macrophages and the
co-expression module.

M2 Related Genes Function Analysis
Twenty-four M2 macrophage negatively co-expressing genes
were identified with coefficient <-0.4 in the TCGA–KIRC purple
module. The gene significance for M2 macrophage-related genes
in the purplemodule is shown inTable 1. Top 20M2macrophage
cell proportion positively co-expressing genes were identified
in the TCGA–KIRC pink module. The 24 M2 macrophage
negatively co-expressing genes were most significantly enriched
in the antigen processing and presentation of exogenous peptide
antigen via MHC class I, which suggested a declining effect
on the tumor antigen peptide process (Figure 3A). The 20
M2 macrophage negatively co-expressing genes were most
significantly enriched in neutrophil activation involved in
immune responses (Figure 3B).

M2 Related Genes Prognosis Analysis
To analyze their influence on overall survival, we performed
survival analysis. F13A1, FCGR2A, HLA.DOB, ILR2GHLA,
DUSP2, PSME2, CD27, IFI35, LIMD2, NFKB2, IL2RB, CCL5,

VSIG4, APOBEC3G, GZMA, and PSMB10 were prognosis risk

factors for clear renal cell carcinoma. HLA-E, MRC1, GPR34,

KCTD12, LIPA, PSAP, MFSD1, EHD1, FUCA1, and CPVL

TABLE 2 | The Module and gene significance for M2 macrophage-related genes

in the pink module.

ID moduleColor GS.MacrophagesM2 p.GS.M2

GPR34 pink 0.467 2.31E-16

MS4A4A pink 0.452 2.93E-15

MFSD1 pink 0.446 6.88E-15

FUCA1 pink 0.435 3.55E-14

CD163 pink 0.428 1.07E-13

FOLR2 pink 0.427 1.13E-13

LIPA pink 0.424 1.78E-13

SLCO2B1 pink 0.418 4.43E-13

PSAP pink 0.415 6.44E-13

SDCBP pink 0.404 3.17E-12

C3AR1 pink 0.395 9.95E-12

F13A1 pink 0.391 1.60E-11

KCTD12 pink 0.386 3.14E-11

MSR1 pink 0.384 4.12E-11

CPVL pink 0.365 4.15E-10

FCGR2A pink 0.362 5.48E-10

FPR3 pink 0.358 9.40E-10

GM2A pink 0.353 1.68E-09

VSIG4 pink 0.347 3.12E-09

MRC1 pink 0.337 9.28E-09

GS, Gene significance.

FIGURE 4 | Survival analysis of selected co-expressed genes in purple and pink modules.
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were prognosis-protective factors for clear renal cell carcinoma
(Figure 4).

M2 Macrophage-Related Prognosis
Signature
We then generated a multi-Cox regression risk score model
based on M2 macrophage-related genes (Tables 1, 2). Risk

score = 0.025 ∗ F13A1 – 0.008 ∗ FUCA1 + 0.034 ∗ FCGR2A
– 0.016 ∗ KCTD12 – 0.08 ∗ MFSD1 – 0.003 ∗ HLA-E + 0.012
∗ SDCBP – 0.071 ∗ MRC1 – 0.086 ∗ LCK + 0.02 ∗ PSME2 +

0.016 ∗ VSIG4 + 0.215 ∗ TAP2. Detailed information of the
prognosis model is displayed in Supplementary Table 2. The
patients in high-risk groups for renal clear cell cancer (TCGA:
P < 0.001; HR = 5.31) (Figure 5) showed survival risk vs. low

FIGURE 5 | Validation of the prognostic model in clinical subgroups. The patients in high-risk groups for renal clear cell cancer (TCGA: P < 0.001; HR = 5.31) showed

survival risk against low expression groups, with the area under curve (AUC) = 0.780. The risk score was evaluated in clinical subgroups, including age, gender, stage,

metastasis, tumor purity, and tumor mutation burden. P-values of all subgroups validations were <0.05, indicating that this model has good predictive ability.
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expression groups, with the area under the curve (AUC) = 0.780
(Figure 5). The risk score was evaluated in various subgroups,
including age, gender, stage, metastasis, tumor purity, and tumor
mutation burden. The results were significant in these subgroups
(Figure 5).

Immune Environment Correlation
Significant associations between M2 frequency and the genes
involved in the risk signature are indicated in Figure 6, and
the highest correlation of MFSD1 was 0.49 (Figure 6A); the
correlation of LCK was the lowest at −0.47 (Figure 6B).
TAP2, PSME2, HLA-E, and LCK were negatively related to M2
macrophage proportions. We then analyzed the correlations with
CD8+ T cell and tumor mutation burden of these four genes.
TAP2 (P < 0.001; Cor = 0.60), PSME2 (P < 0.001; Cor = 0.52),
HLA - E (P < 0.001; Cor = 0.69), and LCK (P < 0.001;
Cor = 0.69) (Figure 7A) positively related to CD8+ T cell
and negatively correlated with tumor purity (Figure 7B). This

result suggested that M2 macrophages were negatively related to
antigen processing.

HPA
The prognostic value and immune phenotype correlation
were determined for these M2 macrophage-related genes. We
compared the various expression levels of these genes between
normal and tumor tissues. HPA001804 is an antibody against
F13A1, which showed higher intensity in tumor tissue than
in normal tissue. HPA056371 is an antibody against FUCA1,
which showed higher intensity in the normal tissue than
in tumor tissue. CAB012245 is an antibody against SDCBP,
which showed a higher intensity in tumor tissue than in
normal tissue. HPA003903 is an antibody against VSIG4, which
showed higher intensity in tumor tissue than in normal tissue.
HPA031454 is an antibody against HLA-E, which showed lower
intensity in tumor tissue than in normal tissue. HPA001312
is an antibody against TAP2, which showed lower intensity
in tumor tissue than in normal tissue. The protein levels

FIGURE 6 | (A) Co-expressed genes with a significant positive correlation with M2 macrophages. The correlation coefficients are as follows: F13A1 – M2: Cor = 0.39;

FCGR2A – M2: Cor = 0.37; FUCA1 – M2: Cor = 0.45; KCTD12 – M2: Cor = 0.47; MFSD1 – M2: Cor = 0.49; MRC1 – M2: Cor = 0.34; SDCBP – M2: Cor = 0.44;

VSIG4 – M2: Cor = 0.36. (B) Co-expressed genes with a significant negative correlation with M2 macrophages. The correlation coefficients are as follows: HLA-E –

M2: Cor = −0.42; LCK – M2: Cor = −0.47; PSME2 – M2: Cor = −0.40; TAP2 – M2: Cor = −0.42.
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FIGURE 7 | (A) The correlation between co-expressed gene of M2 macrophage and CD8+ T cell, with significantly positive relations as TAP2 (P < 0.001; Cor = 0.60),

PSME2 (P < 0.001; Cor = 0.52), HLA – E (P < 0.001; Cor = 0.69), and LCK (P < 0.001; Cor = 0.69). (B) The correlation between co-expressed genes of M2

macrophage and tumor purity, with significantly negative relations as TAP2 (P < 0.001; Cor = −0.52), PSME2 (P < 0.001; Cor = −0.32), LCK (P < 0.001;

Cor = −0.67), and HLA-E (P < 0.001; Cor = −0.49).

of these M2 macrophage genes were similar to the results
of prognosis analysis at the transcription level (Figure 8).
Subsequently, the M2 correlations for VSIG4, FUCA1, F13A1,
SDCBP, HLA-E, and TAP2 were verified in the four GEO datasets
(Supplementary Figure 1).

VSIG4
VSIG4 is thought to positively correlate with M2 macrophages;
therefore, we conducted a combined analysis of VSIG4 and M2-
type macrophages. Combining VSIG4 elevated the predictive
accuracy of M2 macrophages even more than either of them
alone; the hazard of the “high VSIG4 expression + high M2
macrophage” group showed more survival risk than the other
group (Kaplan–Meier analysis, low VSIG4 expression + low
M2 macrophage; HR = 1.458; Figure 9A). Subsequently, we
compared VSIG4 protein expression levels between normal
renal tissues and clear renal cell carcinoma and found that
VSIG4 protein expression levels in tumors were higher than
the normal tissues (Figure 9B). Then, various tumor infiltration

deconvolution methods were applied; we found that VSIG4
was one of the most commonly associated M2 macrophage
biomarkers (Figure 9C).

DISCUSSION

In the tumor microenvironment, the chemotactic effects of the
functional differences between the types of tumor-associated
macrophages are not completely clear. The biological cytological
role of M2/M1 macrophages in tumor tissues still needs to
be explored. The present study is based on a bioinformatics
algorithm to determine some of the M2 macrophage co-
expression networks. Through the analysis of various modules,
we tried to explain the biological function of co-expressed genes
with M2 macrophages and related pathway changes from the
perspective of bioinformatics. Our data processing and analysis
processes are shown in the flowchart (Figure 1).

F13A1, FCUA1, HLA-E, VSIG4, SDCBP, and TAP2 were the
most common co-expressed genes in M2 macrophages. In terms
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FIGURE 8 | From the HPA database to verify protein expression-level differences of these candidate genes. Of these, F13A1, SDCBP, and VSIG4, and corresponding

immunohistochemical samples, the degree of renal clear cell carcinoma tissue staining is higher than in normal kidney tissue. In FUCA1, HLA – E, and TAP2, and

corresponding immunohistochemical samples, the degree renal clear cell carcinoma tissue staining is lower than in normal kidney tissue. These M2 macrophage gene

protein levels at the transcription level were similar to those of the prognostic analysis.

of function enrichment, the 24 negatively co-expressed genes in
M2 macrophages were most significantly enriched in antigen
processing and presentation of exogenous peptide antigen via
MHC class I. The 16 negatively co-expressing genes in M2
macrophages were most significantly enriched in neutrophil
activation involved in immune response. M1 macrophages tend
to adopt a Th1 response gene expression pattern and can
secrete various cytokines that present MHC II and B7 molecules
so as to present antigen efficiently (Herberman et al., 1979).
This mechanism resists pathogen invasion, monitors tumor
pathological changes, and generates Th1 immune responses in
macrophages. By contrast, M2 macrophages have poor tumor
antigen processing ability.

F13A1 encodes the coagulation factor XIII A subunit
which has a catalytic function. In a human stem cell
study, mRNA transcription expressed by F13A1 increased
as myeloid progenitors differentiated into macrophages
and erythroblasts (De Paoli et al., 2015). The protein
encoded by FCUA1 is a lysosomal enzyme involved in the
degradation of fucose-containing glycoproteins and glycolipids.
Downregulation of FUCA1 enhances autophagy and inhibits
macrophage infiltration so as to inhibit tumor growth (Xu
L. et al., 2020). VSIG4 is a transmembrane receptor of the

immunoglobulin superfamily that is specifically expressed
in macrophages and mature dendritic cells. It is a newly
discovered B7 family-related macrophage protein that inhibits
T cell activation and has a potential role in cancer (Kim et al.,
2016). VSIG4 negatively regulates macrophage activation by
reprogramming mitochondrial pyruvate metabolism (Li et al.,
2017). HLA-E belongs to the HLA class I heavy chain paralogs.
This class I molecule is a heterodimer consisting of a heavy
chain and a light chain (beta-2 microglobulin). The heavy
chain is anchored in the membrane. HLA-E binds a restricted
subset of peptides derived from the leader peptides of other
class I molecules. HlA-E is a non-classical HLA-I molecule
that is best known for its role in protecting natural killer cells.
Camilli et al. found that HLA-E was significantly increased
during the differentiation of monocytes and macrophages
(Camilli et al., 2016). The expression of HLA-E is related
to the poor clinical results of anti-PD-1 immunotherapy.
From the surface of M2 tumor-associated macrophages
(TAMs), HLA-E antigen binds to the receptor CD94/NKG2A,
which inhibits the expression of NK cell subpopulations and
activated cytotoxic T lymphocytes, protecting cells from being
destroyed (Marchesi et al., 2013). Epithelial-derived cancer
cells, tumor macrophages, and CD141+ traditional dendritic
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FIGURE 9 | (A) Combining high VSIG4 and high M2 macrophage showed more survival risk than the other group. (B) The VSIG4 protein expression levels were

higher in clear renal cell carcinoma tissues than in normal tissues according to western blotting. (C) Pan-cancer analysis of VSIG4 in TCGA.

cells promote the enrichment of HLA-E in carcinomas. CD8+

tumor-infiltrating T lymphocytes with high PD-1 content are
prevented from surviving in the tumor microenvironment by
the interaction of enriched HLA-E and CD94/NKG2A inhibition
(Abd Hamid et al., 2019).

This study has some limitations, including lack of
cross-validation of multicenter data. There is also lack of
experimental verification of M2 macrophage biomarkers
in renal clear cell cancer. We found that using the co-
expression method of network-building, we can explicitly
identify biomarkers, demonstrating the correctness of the logic
based on bioinformatics.

In conclusion, we found that F13A1, FCUA1, HLA-E, VSIG4,
SDCBP, and TAP2 were biomarkers of M2-type macrophages
using a co-expression network of infiltrated immune cells,
and we proposed six candidate-related factors. The biomarkers
and related processes of M2 macrophages in the tumor
microenvironment were explained from the perspective of
bioinformatics, providing a strategy to explore the polarization
of macrophages.
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