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Abstract

Background: An adaptive-network-based fuzzy inference system (ANFIS) was compared with an artificial neural network
(ANN) in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5uC), pH level (5.5 to 7.5), sodium
chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the growth rate of Leuconostoc mesenteroides
under aerobic and anaerobic conditions.

Methods: The ANFIS and ANN models were compared in terms of six statistical indices calculated by comparing their
prediction results with actual data: mean absolute percentage error (MAPE), root mean square error (RMSE), standard error
of prediction percentage (SEP), bias factor (Bf), accuracy factor (Af), and absolute fraction of variance (R2). Graphical plots
were also used for model comparison.

Conclusions: The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four
environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in
predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed
effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in
predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed
the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both
aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four
kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc
mesenteroides under aerobic and anaerobic conditions.
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Introduction

Growth prediction models are now widely used informative

tools for rapid and cost-effective assessment of microbial growth

for product development, risk assessment, and education purposes

[1]. In recent studies of shelf life in food products, microbiologists

have used predictive models to forecast spoilage caused by the

growth of micro-organisms. Despite the major technological

advances in the food industry in recent years, fungal spoilage of

food commodities remains a major cause of economic losses for

food producers and an important health concern for regulatory

agencies. Therefore, improved understanding of fungal growth in

foods, particularly those factors associated with new manufactur-

ing processing and packaging techniques, is urgently needed [2].

Fungi degrade the organoleptic properties of foods by producing

visible mycelium, and fungal contamination is often implicated in

off-flavor food products. In addition to the economic effects of

consumer rejection, the diminished nutritional value and, more

importantly, the production of potentially carcinogenic toxic

metabolites, pose a public health risk [3]. Improvements in food

quality and safety require the development of appropriate fungal

growth prediction tools. For many years, research in predictive

microbiology has focused on food-borne pathogens whereas

models for predicting growth in filamentous fungi have received

relatively less attention [4]. Recently, however, the situation has

changed, and the literature now shows a growing number of

studies of models for this purpose [5–7].

Leuconostoc mesenteroides (LM) is a common spoilage microorgan-

ism in cooked meat products. These bacteria can alter food

products by fermentation of sugars, which forms lactic acid. By

contributing to slime mold formation and CO2 production, they

also degrade the smells and flavors of food products. Because the

resulting sensorial qualities of the product can make it unaccept-
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able for consumption [8], spoilage caused by these microorganisms

is potentially a major cause of economic loss in the food industry.

Therefore, a tool is needed for predicting the growth capacity of

this microorganism to multiply in a food product under conditions

that typically occur while processing, preserving, storing and

distributing foods. An effective tool for predicting shelf life would

help to reduce economic losses from deterioration of food. In an

earlier study of tools for predicting LM growth rates under aerobic

and anaerobic conditions, Zurera-Cosano et al. [9] used response

surface methodology (RSM) to compare the combined effects of

different temperatures, pH levels, sodium chloride levels and

sodium nitrite levels on the accuracy of LM growth rate

predictions under aerobic and anaerobic conditions. The RSM

models showed potential use for estimating shelf life in food

products. However, a subsequent study by Garcia-Gimeno et al.

[10] showed that an artificial neural network (ANN) model was

more accurate than RSM for predicting LM growth given similar

environmental conditions.

A literature review shows that most studies in this line of

research have used ANN models for predicting the growth of

spoilage microorganisms in food products [7] because ANNs can

handle high-level nonlinearities, numerous parameters and miss-

ing information [11–15]. Hajmeer et al. [16] developed an ANN

model of Shigella flexneri growth and reported that it outperformed

regression equations in terms of mean absolute percentage error

(MAPE) and coefficient of determination. Again, however, a noted

limitation of the ANN model was its high complexity. Geeraerd et

al. [17] reported that an ANN model was superior to conventional

Table 1. Average values for observed (OBS) growth rate (Gr,
h21) and average values estimated by ANN [10] and by ANFIS
models of Leuconostoc mesenteroides growth under aerobic
conditions during model development with the training data
set [10].

T(6C) pH NaCl(%)
NaNO2

(ppm)

Gr

(h21)

OBS ANN ANFIS

10.5 6.5 3.25 100 0.141 0.147 0.141

14.0 6.0 1.75 50 0.178 0.175 0.178

14.0 6.0 1.75 150 0.160 0.167 0.160

14.0 6.0 4.75 50 0.147 0.143 0.147

14.0 6.0 4.75 150 0.138 0.143 0.138

14.0 7.0 1.75 50 0.200 0.200 0.200

14.0 7.0 1.75 150 0.183 0.188 0.183

14.0 7.0 4.75 50 0.153 0.145 0.153

14.0 7.0 4.75 150 0.146 0.144 0.146

17.5 5.5 3.25 100 0.114 0.117 0.114

17.5 7.5 3.25 100 0.180 0.180 0.180

17.5 6.5 3.25 0 0.194 0.187 0.191

17.5 6.5 3.25 200 0.165 0.167 0.165

17.5a 6.5 3.25 100 0.177 0.176 0.176

17.5a 6.5 3.25 100 0.178 0.176 0.176

17.5a 6.5 3.25 100 0.176 0.176 0.176

17.5a 6.5 3.25 100 0.176 0.176 0.176

17.5a 6.5 3.25 100 0.176 0.176 0.176

17.5a 6.5 3.25 100 0.177 0.176 0.176

17.5 6.5 6.25 100 0.152 0.171 0.152

17.5 6.5 0.25 100 0.369 0.370 0.370

21.0 6.0 1.75 50 0.347 0.348 0.347

21.0 6.0 1.75 150 0.317 0.318 0.317

21.0 6.0 4.75 50 0.324 0.317 0.324

21.0 6.0 4.75 150 0.294 0.194 0.294

21.0 7.0 1.75 50 0.380 0.387 0.380

21.0 7.0 1.75 150 0.362 0.352 0.362

21.0 7.0 4.75 50 0.328 0.332 0.328

21.0 7.0 4.75 150 0.308 0.309 0.308

24.5 6.5 3.25 100 0.422 0.424 0.416

aCenter point conditions.
doi:10.1371/journal.pone.0064995.t001

Table 2. Average values for observed (OBS) growth rate (Gr,
h21) and average values estimated by ANN [10] and by ANFIS
models of Leuconostoc mesenteroides growth under anaerobic
conditions during model development with the training data
set [10].

T(6C) pH NaCl(%)
NaNO2

(ppm)

Gr

(h21)

OBS ANN ANFIS

10.5 6.5 3.25 100 0.106 0.129 0.106

14.0 6.0 1.75 50 0.161 0.155 0.161

14.0 6.0 1.75 150 0.149 0.148 0.149

14.0 6.0 4.75 50 0.139 0.128 0.139

14.0 6.0 4.75 150 0.120 0.119 0.120

14.0 7.0 1.75 50 0.180 0.174 0.180

14.0 7.0 1.75 150 0.168 0.170 0.168

14.0 7.0 4.75 50 0.142 0.130 0.142

14.0 7.0 4.75 150 0.130 0.128 0.130

17.5 5.5 3.25 100 0.103 0.101 0.103

17.5 7.5 3.25 100 0.169 0.173 0.169

17.5 6.5 3.25 0 0.191 0.187 0.188

17.5 6.5 3.25 200 0.157 0.158 0.157

17.5a 6.5 3.25 100 0.172 0.171 0.172

17.5a 6.5 3.25 100 0.172 0.171 0.172

17.5a 6.5 3.25 100 0.170 0.171 0.172

17.5a 6.5 3.25 100 0.176 0.171 0.172

17.5a 6.5 3.25 100 0.178 0.171 0.172

17.5a 6.5 3.25 100 0.167 0.171 0.172

17.5 6.5 6.25 100 0.141 0.163 0.141

17.5 6.5 0.25 100 0.363 0.364 0.363

21.0 6.0 1.75 50 0.336 0.346 0.336

21.0 6.0 1.75 150 0.312 0.309 0.312

21.0 6.0 4.75 50 0.323 0.311 0.323

21.0 6.0 4.75 150 0.269 0.267 0.269

21.0 7.0 1.75 50 0.363 0.363 0.363

21.0 7.0 1.75 150 0.337 0.335 0.337

21.0 7.0 4.75 50 0.313 0.313 0.313

21.0 7.0 4.75 150 0.296 0.287 0.296

24.5 6.5 3.25 100 0.409 0.410 0.408

aCenter point conditions.
doi:10.1371/journal.pone.0064995.t002
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microbiological models in terms of accuracy in predicting the

effects of temperature, pH and NaCl on microbial activity.

Jeyamkondan et al. [18] reported that, for predicting growth in

Aeromonas hydrophila, S. flexneri and Brochothrix thermosphacta, ANN

models were superior to statistical models in terms of root mean

square error (RMSE), mean relative percentage error (MRPE) and

MAPE. Lou and Nakai [19] applied response surface methodol-

ogy, a Cerf model and an ANN model in a study of the effects of

temperature, water activity and pH on the thermal inactivation of

Listeria monocytogenes. Again, the network-based approach proved

superior in terms of RMSE and coefficient of determination. Lou

and Nakai [20] further showed that ANN was more accurate than

response surface methodology in a study of the effects of

temperature, water activity and dissolved CO2 concentration on

the kinetic parameters of Lactobacillus sake. In Garcia-Gimeno et al.

[21], another comparison between ANNs and RSM models for

predicting growth rates in L. plantarum and E. coli showed that,

although the ANN models had higher complexity, they had lower

standard error of prediction percentage (SEP) terms compared to

the statistical models. Panagou and Kodogiannis [7] compared

ANN methods and polynomial methods of modeling the joint

effects of water activity, pH level and temperature to predict the

maximum growth rate of ascomycetous fungus Monascus ruber.

Comparisons of six statistical indices, i.e., coefficient of determi-

nation, RMSE, MRPE, MAPE, SEP, bias factor (Bf), and accuracy

factor (Af), confirmed that, for modeling microbial kinetic

parameters, ANNs are an acceptable alternative to polynomial

methods.

For describing relationships between different combinations of

inputs and outputs such as those that must be determined for

accurately predicting growth in spoilage microorganisms, ANN is

currently the most widely used technique. A recent literature

review shows that the use of adaptive-network-based fuzzy

inference system (ANFIS) [22,23] for such purposes is relatively

rare. Jang [22] implemented ANFIS in an adaptive fuzzy neural

network framework by using a hybrid learning procedure

combining back-propagation gradient descent and least square

methods. Since the membership functions in the resulting fuzzy

inference system were iteratively adjustable according to a given

training set of inputs and outputs, the ANFIS could effectively map

input–output relationships according to both human knowledge

(in the form of fuzzy if–then rules) and stipulated input–output

data pairs [24,25]. In the current study, ANFIS was used to model

the relationship between predicted and actual LM growth rates

under various conditions. Therefore, this study evaluated the

accuracy of ANFIS in predicting LM growth rates under aerobic

and anaerobic conditions. The ANFIS and ANN models were

then compared in terms of their accuracy in predicting LM growth

under varying experimental conditions, including temperature,

pH, salt, nitrite concentrations, and under aerobic and anaerobic

conditions. Tables 1 and 2 define the four parameters used to

Figure 1. Framework of adaptive network-based fuzzy infer-
ence system. Layer 1: fuzzification layer; Layer 2: production layer;
Layer 3: normalization layer; Layer 4: de-fuzzification layer; Layer 5: total
output layer.
doi:10.1371/journal.pone.0064995.g001

Figure 2. Flowchart of ANFIS for predicting the growth rate of
Leuconostoc mesenteroides. In the training process, the number of
membership functions is set for each input parameter until prediction
performance is satisfactory. After the training procedure obtains the
training results, the testing data are input into the trained ANFIS model
to obtain the testing results.
doi:10.1371/journal.pone.0064995.g002
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compare the ANFIS and ANN models [10] for predicting LM

growth under aerobic and anaerobic conditions. The ANFIS

model was trained using Gaussian membership functions. Some

experimental results obtained by ANFIS method were also

compared with those obtained by ANN methods in an earlier

study by Garcia-Gimeno et al. [10]. Finally, sensitivity analyses

were performed to identify the environmental factors that had the

largest effects on the accuracy of the predictions of LM growth rate

under aerobic and anaerobic conditions.

Materials and Methods

ANFIS architecture
The ANFIS multilayer feed-forward network of nodes and

directional links combines the learning capabilities of an ANN

with the reasoning capabilities of fuzzy logic. The ANNs and fuzzy

inference systems (FISs) are complementary technologies in the

design of adaptive intelligent systems. The ANNs, which learn

from scratch by adjusting the interconnections among neurons, are

noted for their generalization capability. That is, a properly

trained ANN can correctly match a set of new input data to output

data. The FIS is a popular computing framework based on fuzzy

set theory, fuzzy if–then rules, and fuzzy reasoning. For a given set

of if-then rules, an FIS can perform nonlinear mapping from its

input space to its output space [22–25].

By storing its essential components in a knowledge base, fuzzy

reasoning enables an FIS to infer an overall output value

according to human expertise. However, no systematic method

of transforming the experience and knowledge of human experts

to an FIS knowledge base has been developed. To build an FIS,

the fuzzy sets, fuzzy operators and knowledge base must be

specified. To construct an ANN for an application, the architec-

ture and learning algorithm must be specified. The homogenous

structure of an ANN complicates the extraction of structured

knowledge from the weights of interconnections between its

Table 3. Average values for observed (OBS) growth rate (Gr,
h21) and average values estimated by ANN [10] and by ANFIS
models of Leuconostoc mesenteroides growth under aerobic
conditions using testing data set [10].

T(6C) pH NaCl(%)
NaNO2

(ppm)

Gr

(h21)

OBS ANN ANFIS

10.5 6.5 0.25 50 0.190 0.359 0.189

10.5 6.5 1.75 0 0.182 0.190 0.182

10.5 6.5 1.75 50 0.172 0.184 0.174

10.5 6.5 1.75 100 0.161 0.179 0.161

10.5 6.5 3.25 0 0.162 0.148 0.162

10.5 6.5 3.25 50 0.151 0.148 0.151

10.5 6.5 3.25 100 0.141 0.147 0.141

14.0 7.0 1.75 0 0.230 0.208 0.230

14.0 7.0 4.75 0 0.161 0.146 0.161

17.5 6.5 0.25 50 0.382 0.392 0.382

17.5 6.5 1.75 50 0.350 0.218 0.350

17.5 6.5 1.75 100 0.341 0.208 0.340

17.5 6.5 3.25 50 0.177 0.181 0.184

17.5 6.0 1.75 50 0.290 0.203 0.290

17.5 6.0 3.25 50 0.172 0.175 0.172

17.5 7.0 3.25 50 0.268 0.183 0.268

21.0 6.0 3.25 50 0.339 0.321 0.339

21.0 7.0 3.25 50 0.352 0.339 0.352

21.0 6.0 0.25 0 0.383 0.522 0.383

21.0 6.0 1.75 0 0.372 0.363 0.372

24.5 6.5 3.25 100 0.409 0.424 0.416

24.5 6.5 3.25 50 0.432 0.426 0.432

24.5 6.5 3.25 150 0.394 0.421 0.394

24.5 6.0 1.75 150 0.473 0.408 0.473

24.5 6.0 4.75 50 0.386 0.388 0.386

24.5 6.0 4.75 150 0.308 0.384 0.308

24.5 7.0 4.75 50 0.350 0.422 0.350

24.5 7.0 4.75 150 0.322 0.418 0.322

doi:10.1371/journal.pone.0064995.t003

Table 4. Average for observed (OBS) growth rate (Gr, h21)
and average values estimated by ANN [10] and by ANFIS
models of Leuconostoc mesenteroides growth under anaerobic
conditions during model development with the testing data
set [10].

T(6C) pH NaCl(%)
NaNO2

(ppm)

Gr

(h21)

OBS ANN ANFIS

10.5 6.5 0.25 50 0.172 0.318 0.172

10.5 6.5 1.75 0 0.161 0.159 0.161

10.5 6.5 1.75 50 0.153 0.158 0.153

10.5 6.5 1.75 100 0.141 0.157 0.141

10.5 6.5 3.25 0 0.128 0.129 0.128

10.5 6.5 3.25 50 0.112 0.129 0.112

10.5 6.5 3.25 100 0.106 0.129 0.106

14.0 7.0 1.75 0 0.214 0.176 0.214

14.0 7.0 4.75 0 0.149 0.131 0.149

17.5 6.5 0.25 50 0.374 0.375 0.374

17.5 6.5 1.75 50 0.305 0.210 0.305

17.5 6.5 1.75 100 0.297 0.202 0.297

17.5 6.5 3.25 50 0.175 0.179 0.181

17.5 6.0 1.75 50 0.274 0.201 0.274

17.5 6.0 3.25 50 0.157 0.176 0.157

17.5 7.0 3.25 50 0.258 0.179 0.258

21.0 6.0 3.25 50 0.332 0.319 0.332

21.0 7.0 3.25 50 0.350 0.322 0.350

21.0 6.0 0.25 0 0.380 0.498 0.380

21.0 6.0 1.75 0 0.369 0.360 0.369

24.5 6.5 3.25 100 0.406 0.410 0.408

24.5 6.5 3.25 50 0.416 0.413 0.416

24.5 6.5 3.25 150 0.389 0.404 0.389

24.5 6.0 1.75 150 0.402 0.406 0.402

24.5 6.0 4.75 50 0.383 0.398 0.383

24.5 6.0 4.75 150 0.334 0.362 0.334

24.5 7.0 4.75 50 0.350 0.408 0.350

24.5 7.0 4.75 150 0.332 0.401 0.332

doi:10.1371/journal.pone.0064995.t004
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neurons. The a priori knowledge of human experts is often needed

to solve practical problems. However, encoding prior knowledge

into an ANN is difficult. The ANFIS combines the advantage of

FIS, i.e., its learning capability, with the advantage of ANN, i.e., its

formation of a linguistic rule base. To obtain an ANFIS that can

share data structures and knowledge representations, ANN and

FIS are typically integrated by using a special ANN architecture to

represent FIS [22–25].

The hybrid network structure of ANFIS can achieve prediction

capabilities superior to those of ANN alone and fuzzy logic

techniques alone. By analyzing mapping relationships between

input and output data, ANFIS optimizes the distribution of

membership functions by using a back-propagation gradient

descent algorithm either alone or combined with a least-squares

method [22]. The ANFIS uses fuzzy if–then rules involving

premise and consequent parts of a Sugeno-type fuzzy inference

system [22]. Figure 1 shows how the description of this system can

be simplified as an inference system of inputs m and n and output f

[22]. The corresponding ANFIS architecture is also shown. The

five-layer system ANFIS architecture includes a fuzzification layer

(Layer 1), a production layer (Layer 2), a normalization layer

(Layer 3), a de-fuzzification layer (Layer 4), and a total output

layer (Layer 5) [22].

In the first layer, which is the fuzzification layer, m and n are the

inputs of nodes A1 and A2 and nodes B1 and B2, respectively.

Each node i in this layer is a square node (adaptive node Ai and

Bi, i~1, 2). The linguistic labels used in fuzzy theory to divide

membership functions are A1 (small), A2 (large), B1 (small) and B2

(large). The Gaussian membership relationship between the output

and input functions of this layer can be expressed as

O1,i~mAi
mð Þ~exp {

m{cAi

� �2

a2
Ai

" #
, i~1, 2, ð1aÞ

and

O1,j~mBj
nð Þ~exp {

n{cBj

� �2

a2
Bj

2
64

3
75, j~1, 2, ð1bÞ

where O1,i and O1,j denote the output functions, mAi
mð Þ and

mBj
nð Þ denote the Gaussian membership functions; parameters cAi

and cBj
(the center) and parameters aAi

and aBj
are represented by

aAi
, aBj

, cAi
, cBj

n o
(i~1, 2 and j~1, 2,) and denote the

nonlinear parameters of the premise part, which are the width

of the Gaussian membership function of the ith implication of

input variables m and n, respectively.

The second layer, which is the production layer, consists of two

circular nodes labeled P, which multiply the incoming signals.

The resulting product is used to represent the firing strength of a

rule. In this layer, the product operator that performs a

generalized AND can be used as the node function. Outputs W1

and W2 are the weight functions of the next layer. The output of

this layer is the product of the input signal, which is defined as

follows:

O2,i~Wi~mAi
mð ÞmBi

nð Þ, i~1, 2, ð2Þ

where O2,i denotes the output of Layer 2.

The third layer is the normalization layer. Each node in this

layer is a circular node labeled N. The ith node calculates the ratio

of the firing strength of the ith rule to the sum of the firing

strengths of all rules. Its function is to normalize the weight

function by applying the following process:

O3,i~ �WWi~
Wi

W1zW2
, i~1, 2, ð3Þ

where O3,i denotes the Layer 3 output.

Table 5. Comparison of performance indices between ANN
and ANFIS models under aerobic conditions.

Statistical index Model Data set

Training Testing

Mean absolute percentage error (%)
(MAPE)

ANN 3.06 15.69

ANFIS 0.18 0.27

Root mean square error (RMSE) ANN 0.019 0.067

ANFIS 0.001 0.002

Standard error of prediction
percentage (%) (SEP)

ANN 8.45 23.27

ANFIS 0.58 0.67

Bias factor (Bf) ANN 0.99 0.99

ANFIS 1.00 1.00

Accuracy factor (Af) ANN 1.03 1.17

ANFIS 1.00 1.00

Absolute fraction of variance (R2) ANN 0.9937 0.9539

ANFIS 1.0000 1.0000

doi:10.1371/journal.pone.0064995.t005

Table 6. Comparison of performance indices between ANN
and ANFIS models under anaerobic conditions.

Statistical index Model Data set

Training Testing

Mean absolute percentage error (%)
(MAPE)

ANN 3.18 14.46

ANFIS 0.39 0.14

Root mean square error (RMSE) ANN 0.008 0.053

ANFIS 0.002 0.001

Standard error of prediction
percentage (%) (SEP)

ANN 3.66 19.46

ANFIS 0.81 0.44

Bias factor (Bf) ANN 1.00 1.00

ANFIS 1.00 1.00

Accuracy factor (Af) ANN 1.03 1.15

ANFIS 1.00 1.00

Absolute fraction of variance (R2) ANN 0.9989 0.9686

ANFIS 0.9999 1.0000

doi:10.1371/journal.pone.0064995.t006
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The fourth layer is the de-fuzzification layer. Each node i in this

layer is a square node (adaptive node, i~1, 2). The output

equation is �WWi pimzqinzrið Þ, where �WWi is the output of Layer 3

and where pi, qi, and ri represented by pi, qi, rif g (i~1, 2) denote

the linear parameters or the so-called consequent parameters of

the node. The de-fuzzification relationship between the input and

output of this layer can be expressed as the output of the ith rule as

follows:

O4,i~ �WWifi~ �WWi pimzqinzrið Þ, i~1,2, ð4Þ

where O4,i denotes the Layer 4 output.

The fifth layer is the total output layer. The single node in this

layer is a circular node labeled S, which computes the overall

output by summing all incoming signals. The output of this layer is

the total of the input signals, which represents the predicted

growth rate of LM. The results can be written as

O5,i~
X

i

�WW ifi~

P
i

WifiP
i

Wi

, i~1,2, ð5Þ

where O5,i denotes the Layer 5 output.

Figure 1 further shows the typical if-then rules in a first-order

Sugeno fuzzy model [24,25]:

Rule 1 : If(m is A1) and (n is B1), then f1~p1mzq1nzr1, ð6aÞ

and

Rule 2 : If (m is A2) and (n is B2), then f2~p2mzq2nzr2:ð6bÞ

In the ANFIS architecture, the nonlinear parameters

aAi
, aBj

, cAi
, cBj

� �
of the premise part and the linear parameters

pi, qi, rif g of the consequent part can be trained by using a hybrid

learning procedure combining back-propagation gradient descent

with least square methods. Figure 2 is a flowchart showing the

growth rates predicted by ANFIS. The training data are used to

train the nonlinear parameters aAi
, aBj

, cAi
, cBj

� �
of the premise

part and the linear parameters pi, qi, rif g of the consequent part.

The number of membership functions is set for each input

parameter until prediction performance is satisfactory. After the

training results are obtained by this process, the testing data are

input into the trained ANFIS model to obtain the testing results.

The following sections present the details of the input-output

relationships in each ANFIS layer.

Note that the system output is the weighted sum of the results of

the rules. The number of fuzzy sets depends on the number of

Layer 1 nodes. However, the number of Layer 4 dimensions

determines the number of fuzzy rules used in the ANFIS

architecture. Therefore, the number of Layer 4 dimensions

indicates the complexity and flexibility of the ANFIS architecture.

The number of fuzzy rules in an ANFIS is analogous to the

number of neurons in an ANN [25].

Like ANNs, an ANFIS network can be trained by supervised

learning by using a specified output to provide a target output.

The forward pass of the hybrid algorithm of the ANFIS moves the

node outputs forward to Layer 4. The consequent linear

parameters pi, qi, rif g are then obtained by least-squares method

[22,25]. In the backward pass, the error signals propagate

Table 7. Five bootstrap data sets derived from the original data set under aerobic conditions.

Data sets T(6C) pH NaCl (%) NaNO2 (ppm) Gr (h21)

Mean
Standard
deviation Mean

Standard
deviation Mean

Standard
deviation Mean

Standard
deviation Mean

Standard
deviation

30 17.4028 0.6159 6.4772 0.0629 3.2917 0.2166 99.7222 6.8381 0.2199 0.0165

60 17.3950 0.5513 6.5000 0.0699 3.2533 0.2215 99.5000 6.5261 0.2218 0.0143

90 17.4144 0.5555 6.5048 0.0785 3.2522 0.2252 99.0370 6.4862 0.2231 0.0142

120 17.4008 0.5507 6.5022 0.0800 3.2342 0.2322 99.4722 6.8769 0.2232 0.0144

150 17.3833 0.5479 6.4982 0.0778 3.2333 0.2282 99.5778 6.8900 0.2228 0.0150

doi:10.1371/journal.pone.0064995.t007

Table 8. Five bootstrap data sets derived from original data set under anaerobic conditions.

Data sets T(6C) pH NaCl (%) NaNO2 (ppm) Gr (h21)

Mean
Standard
deviation Mean

Standard
deviation Mean

Standard
deviation Mean

Standard
deviation Mean

Standard
deviation

30 17.4654 0.4578 6.4922 0.0695 3.2140 0.1937 97.4530 7.6915 0.2153 0.0113

60 17.4767 0.5578 6.5055 0.0624 3.2418 0.2008 99.3013 7.9161 0.2148 0.0149

90 17.4647 0.5417 6.5005 0.0686 3.2583 0.2202 99.3499 7.7815 0.2145 0.0144

120 17.5037 0.5303 6.5000 0.0674 3.2494 0.2073 98.6586 7.7382 0.2153 0.0136

150 17.4742 0.5134 6.4983 0.0684 3.2465 0.2092 98.8759 7.4808 0.2147 0.0129

doi:10.1371/journal.pone.0064995.t008
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backwards, and the premise nonlinear parameters

aAi
, aBj

, cAi
, cBj

� �
(the centre and the width of the Gaussian

membership function) are updated by gradient descent [22,25].

That is, the premise nonlinear parameters aAi
, aBj

, cAi
, cBj

� �
and

the consequent linear parameters pi, qi, rif g are trained in the

ANFIS.

Evaluation criteria
As described in the literature, the criteria used to compare

fitting and prediction accuracy between the ANFIS model and the

ANN model were MAPE, RMSE, SEP, Bf, Af, and the absolute

fraction of variance (R2). The MAPE indicates the relative absolute

percentage deviation in experimental values where a lower value

implies a better correlation. The equation for calculating MAPE is

MAPE %ð Þ~ 1

~NN

X~NN

i~1

100 yi{ŷyið Þ
yi

����
����, ð7Þ

where ~NN is the number of the points in the data set, yi is the

observed value, and ŷyi is the prediction value. The RMSE is given

by

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

~NN

X~NN

i~1

yi{ŷyið Þ2
vuut : ð8Þ

Although unlikely, an RMSE of 0 indicates the best possible fit

between predicted and actual values. The SEP(%) is the relative

typical deviation in mean prediction values. The advantage of

SEP(%) compared to other error measures is that SEP(%) is

calculated independently of the magnitude of the measurements.

The equation for calculating SEP(%) is

SEP(%)~
100

�yy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

~NN

X~NN

i~1

yi{ŷyið Þ2
vuut , ð9Þ

where �yy is the mean of observed values. To evaluate the predictive

capacity of the proposed model, the following formulas were used

to calculate RMSE and SEP(%)together with Bf and Af [26] :

Bf~10

P~NN
i~1

log
ŷyi
yi

� �
~NN

0
BB@

1
CCA

, ð10Þ

and

Af~10

P~NN
i~1

log
ŷyi
yi

� ���� ���
~NN

0
BB@

1
CCA
: ð11Þ

The equation for R2 is

Figure 3. Fuzzy rule architecture of the Gaussian membership
function. The four input (temperature, pH, NaCl, NaNO2) and one
output (growth rate) parameters for the adaptive network-based fuzzy
inference system model were used to the predict growth rate of
Leuconostoc mesenteroides under aerobic and anaerobic conditions.
Each input parameter divides three Gaussian membership functions (i.e.
small, medium and large areas). The number of fuzzy rules is 81.
doi:10.1371/journal.pone.0064995.g003

Table 9. Comparison of original data set and five bootstrap data sets in terms of mean values for four inputs and one output
under aerobic conditions (ANOVA test).

Variables 30-bootstrap data set 60-bootstrap data set 90-bootstrap data set 120-bootstrap data set 150-bootstrap data set

P value P value P value P value P value

Temperature 0.693 0.684 0.723 0.659 0.590

pH 0.519 0.624 0.563 0.571 0.643

NaCl 0.689 0.971 0.979 0.847 0.836

NaNO2 0.934 0.862 0.718 0.838 0.871

Growth rate 0.421 0.542 0.681 0.692 0.617

doi:10.1371/journal.pone.0064995.t009
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R2~1{

P~NN
i~1

yi{ŷyið Þ2

P~NN
i~1

ŷy2
i

: ð12Þ

An R2 value of 1 indicates a very good fit whereas a value

approaching 0 indicates a poor fit.

Sensitivity analysis of ANFIS output
Sensitivity analysis was performed with ANFIS learning

disabled so that network weights would not be affected [27].

The first input varies between its mean plus or minus a user-

Figure 4. Final Gaussian membership functions of the four input parameters derived by training under aerobic and anaerobic
conditions. The adaptive network-based fuzzy inference system was trained using 30 sets of experimental data in 100 learning cycles under aerobic
and anaerobic conditions. The final Gaussian membership functions were obtained for the four inputs under aerobic conditions (A) temperature, (B)
pH, (C) NaCl and (D) NaNO2 and under anaerobic conditions (E) temperature, (F) pH, (G) NaCl and (H) NaNO2. Each input divides three Gaussian
membership functions (i.e., small, medium and large areas).
doi:10.1371/journal.pone.0064995.g004

Table 10. Comparison of original data set and five bootstrap data sets in terms of mean values for four inputs and one output
under anaerobic conditions (ANOVA test).

Variables 30-bootsrap data set 60-bootstrap data set 90-bootsrap data set 120-bootstrap data set 150-bootstrap data set

P value P value P value P value P value

Temperature 0.886 0.902 0.852 0.990 0.879

pH 0.821 0.839 0.977 0.993 0.980

NaCl 0.724 0.926 0.920 0.994 0.965

NaNO2 0.465 0.817 0.819 0.627 0.677

Growth rate 0.819 0.852 0.890 0.766 0.853

doi:10.1371/journal.pone.0064995.t010
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Figure 5. Comparison of actual growth rates for Leuconostoc mesenteroides and growth rates predicted by ANFIS model and by ANN
model under aerobic conditions. Under aerobic conditions, all specific growth rates predicted by the ANFIS models when using the (A) training
data set and the (B) testing data set were closer to the 45u line compared to the rates predicted by the ANN models, which confirmed the superior
prediction accuracy of the ANFIS models.
doi:10.1371/journal.pone.0064995.g005

Table 11. Comparison of performance indices between ANN and ANFIS models using 30-bootstrap data set with 10-fold cross-
validation under aerobic conditions.

Statistical index Model Average
Standard
deviation 95% C.I.

Mean absolute percentage error (%) (MAPE) ANN 11.041 2.576 12.983–9.099

ANFIS 0.347 0.117 0.435–0.259

Root mean square error (RMSE) ANN 0.035 0.008 0.041–0.029

ANFIS 0.0016 0.0007 0.0021–0.0011

Standard error of prediction percentage (%) (SEP) ANN 13.948 3.605 16.666–11.23

ANFIS 0.564 0.214 0.725–0.403

Bias factor (Bf) ANN 0.889 0.026 0.909–0.869

ANFIS 0.99960 0.00182 1.00097–0.99823

Accuracy factor (Af) ANN 1.126 0.033 1.151–1.101

ANFIS 1.00348 0.00118 1.00437–1.00259

Absolute fraction of variance (R2) ANN 0.978 0.010 0.986–0.97

ANFIS 0.99996 0.00003 0.99998–0.99994

doi:10.1371/journal.pone.0064995.t011
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defined number of standard deviations whereas all other inputs are

fixed at their respective means. The ANFIS output is computed

and recorded as the percent change above and below the mean

channel output. This process is repeated for each input variable

[28].

In this so-called ‘sensitivity’ analysis to determine the relative

importance of input variables for determining output, 0 indicates a

Figure 6. Comparison of residual values (predicted–observed growth rate) of Leuconostoc mesenteroides obtained by ANFIS model
and by ANN model under aerobic conditions. The spread of residual values was narrower for the ANFIS models for (A) the training data set and
for (B) the testing data set, which indicated their better prediction performance under aerobic conditions.
doi:10.1371/journal.pone.0064995.g006

Table 12. Comparison of performance indices between ANN and ANFIS models using 30-bootstrap data set with 10-fold cross-
validation under anaerobic conditions.

Statistical index Model Average
Standard
deviation 95% C.I.

Mean absolute percentage error (%) (MAPE) ANN 12.325 1.925 13.776–10.874

ANFIS 0.382 0.216 0.545–0.219

Root mean square error (RMSE) ANN 0.036 0.006 0.041–0.031

ANFIS 0.0016 0.0009 0.0023–0.0009

Standard error of prediction percentage (%) (SEP) ANN 14.935 2.821 17.062–12.808

ANFIS 0.569 0.315 0.807–0.331

Bias factor (Bf) ANN 0.876 0.019 0.891–0.861

ANFIS 0.99962 0.00071 1.00015–0.99909

Accuracy factor (Af) ANN 1.142 0.025 1.161–1.123

ANFIS 1.00383 0.00218 1.00547–1.00219

Absolute fraction of variance (R2) ANN 0.976 0.008 0.982–0.970

ANFIS 0.99995 0.00005 0.99999–0.99991

doi:10.1371/journal.pone.0064995.t012
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variable that does not affect prediction, and 1.0 indicates a field

that completely dominates the prediction [28].

Data description
Tables 1, 2, 3 and 4 show the Central Composite Design used to

obtain temperature (10.5, 14, 17.5, 21 and 24.5uC), pH (5.5, 6,

6.5, 7 and 7.5), NaCl (0.25%, 1.75%, 3.25%, 4.75% and 6.25%)

and NaNO2 (0, 50, 100, 150, and 200 ppm), respectively, under

aerobic and anaerobic conditions [10]. Each of the 25 different

factor combinations thus obtained was replicated seven times, and

six center point replications were performed to estimate experi-

mental variance. For comparison, Tables 1, 2, 3 and 4 show the

growth rate estimations obtained by Garcia-Gimeno et al. [10].

Tables 1 and 2 show the 30 data sets used to train the ANFIS

model [10]. Tables 3 and 4 show the 28 testing data sets [10]. The

six evaluation criteria are applied to compare fitting and

prediction accuracy between the ANFIS model and the ANN

model (Table 5 and 6).

To compare the robustness of the ANFIS and ANN models,

bootstrap method [29] was used to minimize problems resulting

from insufficient data. Five bootstrap data sets derived from the

original data set with different numbers of bootstrap samples (30,

60, 90, 120 and 150) were prepared under both aerobic and

anaerobic conditions. At this step, the goal was to determine the

appropriated number of bootstrap samples needed for model

evaluation. Tables 7 and 8 show the means and standard

deviations in each variable for five sets of bootstrap data.

Bootstrap resampling has been widely used in applied statistics

in the past three decades [30] since the bootstrap method was first

introduced by Efron in 1979 [29]. Boostrapping is a Monte Carlo-

type data augmentation method of resampling with replacement

that can be used with observed data. While Monte Carlo

techniques usually generate fictitious data, bootstrap resamples

in which the originally observed values are replaced can be used to

generate multiple bootstrap samples for use as a proxy for the

actual independent sample. Each bootstrap sample is a random

sub-sample (of a size equal to that of the original sample) in which

the actually observed values are replaced. The original sample is

considered a ‘‘virtual population’’, and the sample is repeatedly

duplicated. The procedure can be repeated as needed [30].

Results

First, the ANFIS was trained using 30 data sets (Tables 1 and 2)

selected from the 58 data sets obtained in the experiments. After

training was completed, another 28 data sets were then used to

verify its accuracy in predicting growth rates (Tables 3 and 4). The

prediction results are further analyzed and discussed below.

Figure 3 shows the fuzzy rule architecture of an ANFIS with

Gaussian membership function. The four inputs (temperature, pH,

NaCl, and NaNO2) and one output (growth rate) of the ANFIS

Figure 7. Actual values for growth rate of Leuconostoc mesenteroides compared with values predicted by ANFIS model and by ANN
model under anaerobic conditions. Under anaerobic conditions, the growth rates predicted by ANFIS models in (A) the training data set and in
(B) the testing data set were closer to the 45u line compared to those predicted by the ANN models. In other words, the predictive accuracy of the
ANFIS models was higher than that of ANN models under anaerobic conditions.
doi:10.1371/journal.pone.0064995.g007
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model were designed using MATLAB Fuzzy Logic Toolbox [31].

Each input divides three Gaussian membership functions.

Therefore, the architecture in Figure 3 includes 81 fuzzy rules.

The ANFIS was trained using 30 sets of experimental data in 100

learning cycles. For each input in the architecture, the Gaussian

membership function can be divided into small, medium and large

areas. Figure 4 shows the final Gaussian membership functions of

the four inputs derived by training under aerobic and anaerobic

conditions, respectively.

Tables 5 and 6 show the prediction results obtained by the

ANFIS models under aerobic and anaerobic conditions, respec-

tively, and Figures 5, 6, 7 and 8 show the training and testing data

sets. The MAPEs obtained under aerobic conditions are 0.18 for

the training data set and 0.27 for the testing data set, and those

obtained under aerobic conditions are 0.39 for the training data

set and 0.14 for the testing data set. The RMSEs obtained under

aerobic conditions are 0.001 for the training data set and 0.002 for

the testing data set, and those obtained under anaerobic conditions

are 0.002 for the training data set and 0.001 for the testing data

set. The SEPs obtained under aerobic conditions are 0.58 for the

training data set and 0.67 for the testing data set, and those

obtained under anaerobic conditions are 0.81 for the training data

set and 0.44 for the testing data set.

Comparisons of performance indices for predictions of the 30

patterns on which the models were trained showed that the ANFIS

was more accurate than the ANN. Specifically, the ANFIS models

were superior in terms of MAPE, RMSE and SEP (Tables 5 and

6). For the 28 testing data sets, comparisons of model performance

again confirmed the superior performance of the ANFIS models,

considering the biological variability associated with the experi-

ment. Additionally, measurements of bias and accuracy in the

ANFIS models approached unity in all experiments, which

indicated good agreement between observations and predictions.

The performance difference between the two examined models

Figure 8. Comparison of residual values (predicted–observed growth rate) of Leuconostoc mesenteroides obtained by ANFIS model
and by ANN model under anaerobic conditions. The better prediction performance of the ANFIS models under anaerobic conditions was
confirmed by their narrower spread of residual values for (A) the training data set and for (B) the testing data set.
doi:10.1371/journal.pone.0064995.g008

Figure 9. Three-layer feedforward ANN. The input layer includes
nodes for four inputs (temperature, pH, NaCl, and NaNO2). In the hidden
layer, three nodes transfer data to the output layer via a separate
weighted logistic transfer function. In the output layer, one node
(growth rate) transfers data via a separate weighted identity transfer
function to obtain the predictive output.
doi:10.1371/journal.pone.0064995.g009
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was also graphically depicted in plots of bias (observed vs.

predicted growth rate) and residual bias for all data sets. Generally,

the predictions derived by ANFIS models were closer to the line of

equity compared to the ANN models (Figures 5 and 7), which

indicated the better fit of the ANFIS models. In both the ANFIS

and ANN models, residuals were also symmetrically distributed

Figure 10. Sensitivity analysis of four input variables under aerobic conditions using ANFIS model. Under aerobic conditions, the
sensitivity values for temperature, NaCl, pH and NaCO2 were 0.88, 0.13, 0.07 and 0.04, respectively. The most influential (sensitive) parameter affecting
the growth rate of Leuconostoc mesenteroides under aerobic conditions was temperature and, to a lesser extent, NaCl.
doi:10.1371/journal.pone.0064995.g010

Figure 11. Sensitivity analysis of four input variables under anaerobic conditions using ANFIS model. Under anaerobic conditions, the
sensitivity values for temperature, NaCl, NaCO2 and pH were 0.46, 0.32, 0.25 and 0.19. The most influential (sensitive) parameters affecting the growth
rate of Leuconostoc mesenteroides under anaerobic conditions were temperature and, to a lesser extent, NaCl.
doi:10.1371/journal.pone.0064995.g011
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Figure 12. Sensitivity analysis of four input variables under aerobic conditions using ANN model. Under aerobic conditions, the
sensitivity values for temperature, NaCl, pH and NaCO2 were 0.20, 0.06, 0.04 and 0.02, respectively. The most influential (sensitive) parameter affecting
the growth rate of Leuconostoc mesenteroides under aerobic conditions was temperature and, to a lesser extent, NaCl.
doi:10.1371/journal.pone.0064995.g012

Figure 13. Sensitivity analysis of four input variables under anaerobic conditions using ANN model. Under anaerobic conditions, the
sensitivity values for temperature, NaCl, NaCO2 and pH were 0.52, 0.16, 0.09 and 0.16. The most influential (sensitive) parameters affecting the growth
rate of Leuconostoc mesenteroides under anaerobic conditions were temperature and, to a lesser extent, NaCl.
doi:10.1371/journal.pone.0064995.g013
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around 0 with no systematic tendency to appear on the positive or

negative sides of the graph (Figures 6 and 8). The narrower spread

of residual values obtained by the ANFIS models in all data sets

also indicated their superior prediction performance.

To compare model robustness, five bootstrap data sets under

aerobic and anaerobic conditions were applied and compared.

Tables 7 and 8 show the means and standard deviations of each

variable for the five bootstrap data sets containing 30, 60, 90, 120

and 150 samples. Tables 9 and 10 show that, in all five bootstrap

data sets, characteristics represented by mean values of four inputs

and one output did not significantly differ from those in the

original data set (analysis of variance (ANOVA) test using SPSS

14.0, P.0.05) under aerobic and anaerobic conditions, respec-

tively, which confirmed the reliability of the data selection.

Therefore, the 30-bootstrap data set was selected to construct the

ANN model and the ANFIS model with 10-fold cross-validation.

Figure 9 shows the three-layer feedforward ANN used for

comparison. Both the ANN model and the ANFIS model had a

four-input (temperature, pH, NaCl, and NaNO2) node layer. A

weighted logistic transfer function was used to transfer these inputs

to a three-node hidden layer. A separate weighted identity transfer

function was then used to transfer data from the hidden layer to

the one-node (growth rate) output layer. The ANN model was

constructed with STATISTICA 10.0 software (StatSoft, Tulsa,

OK). The prediction results are further analyzed and discussed

below.

Tables 11 and 12 show the prediction results. Under aerobic

conditions, the averages and standard deviations of the MAPEs

were 0.347 and 0.117 in the ANFIS models and 11.041 and 2.576

in the ANN models, respectively. Under anaerobic conditions, the

averages and standard deviations of the MAPEs were 0.382 and

0.216 in the ANFIS models and 12.325 and 1.925 in the ANN

models, respectively. Under aerobic conditions, the averages and

standard deviations of the RMSEs were 0.0016 and 0.0007 in the

ANFIS models and 0.035 and 0.008 in the ANN models,

respectively. Under anaerobic conditions, the averages and

standard deviations of the RMSEs were 0.0016 and 0.0009 in

the ANFIS models and 0.036 and 0.006 in the ANN models,

respectively. Under aerobic conditions, the averages and standard

deviations of the SEPs were 0.564 and 0.214 in the ANFIS models

and 0.889 and 0.026 in the ANN models, respectively. Under

anaerobic conditions, the averages and standard deviations of the

SEPs were 0.569 and 0.315 in the ANFIS models and 14.935 and

2.821 in the ANN models, respectively.

The performance comparisons confirmed that the ANFIS

models were superior in terms of MAPE, RMSE and SEP

(Tables 11 and 12), considering the biological variability associated

with the experiment. That is, the results shown in Tables 11 and

12 are consistent with those shown in Tables 5 and 6, respectively,

which again confirms the superior accuracy of the ANFIS for

predicting LM growth rates under aerobic and anaerobic

conditions.

Figures 10, 11 12 and 13 show the results of sensitivity analyses

of 30-boothstrap data set under both aerobic and anaerobic

conditions. In the ANFIS model, the sensitivity values for

temperature, NaCl, pH and NaCO2 were 0.88, 0.13, 0.07 and

0.04 under aerobic conditions and 0.46, 0.32, 0.19 and 0.25 under

anaerobic conditions, respectively. In the ANN model, the

sensitivity values for temperature, NaCl, pH and NaCO2 were

0.2, 0.06, 0.04 and 0.02 under aerobic conditions and 0.52, 0.16,

0.09 and 0.16 under anaerobic conditions, respectively. That is,

the ANFIS and ANN models showed similar results in sensitivity

analyses. In terms of effect on the growth rate of LM under aerobic

and anaerobic conditions, the most influential (sensitive) param-

eters in both the training and testing data sets were temperature

and, to a lesser extent, NaCl.

Discussion

Tables 5 and 6 compare the statistical data for the two models

with the original data set, and Figures 5, 6 7 and 8 compare

graphical plots of the data. Compared to the ANN model, the

ANFIS model showed better agreement with the experimental

observations in both the training and testing data sets. The better

data fit obtained by the ANFIS-based model in the comparisons

with experimental data was confirmed by its R2 value of 1.0000

(versus 0.9539–0.9937 in the ANN model) under aerobic

conditions and by its R2 values of 0.9999–1.0000 (versus

0.9686–0.9989 in the ANN model) under anaerobic conditions.

Notably, although R2 is a common criterion for comparing

statistical models [32], it assumes a normally distributed error that

is independent of the mean value. However, since error

distributions are unknown when predicting microbial growth, this

term must be used cautiously, particularly in nonlinear regression

models [33]. Hence, RMSE values were used for further

comparisons of model performance. Under aerobic conditions,

the ANFIS model showed better RMSE values (0.001 for the

training data set and 0.002 for the testing data set) compared to

the ANN model (0.019 for training data set and 0.067 for the

testing data set) (Table 5). Under anaerobic conditions, the ANFIS

model also showed better RMSE values (0.002 for the training

data set and 0.001 for the testing data set) compared to the ANN

model (0.008 for training data set and 0.053 for the testing data

set) (Table 6). The RMSE, which is calculated by comparing

desired and actual output values, which are then averaged across

all data, index provides an estimate of goodness of fit in statistical

models and indicates the long-term consistency of a model [33].

The lower RMSE values in the ANFIS model in comparison with

the ANN model confirmed its superior accuracy in predictions

made without previous training.

Like Af, MAPE indicates the average deviation from the

observed value [26]. In this study, the MAPE results were in good

agreement with the Af values estimated for all data sets. In the

training data set under aerobic conditions, for instance, the Af

values obtained by the ANN and ANFIS models were 1.03 and

1.00, respectively (Table 5), and their average deviations in

predicted and actual growth rates were 3% and 0%, respectively.

These values were highly consistent with the MAPE values of

3.06% and 0.18% obtained by the ANN and ANFIS models,

respectively, in the training data set. Under aerobic conditions, the

ANN and ANFIS models obtained Af values of 1.17 and 1.00,

respectively (Table 5), and their average deviations in predicted

and actual growth rates were 17% and 0%, respectively. Again,

these values were closely approximated the MAPE values of

15.69% and 0.27% obtained by the ANN and ANFIS models,

respectively, in the testing data set. The relevant figures again

confirmed the better performance of the ANFIS models.

The accuracy factor is similar to the Bf statistic, which was also

introduced by Ross [26]. In this case, a Bf value greater than 1

indicates that the model overestimates growth rate and is thus a

‘fail-dangerous’ model whereas a value less than 1 indicates that

the model underestimates growth rate and is thus a ‘fail-safe’

model. For example, the accuracy of the growth rate estimates was

confirmed by Bf values of 1.00 and 1.00 under aerobic and

anaerobic conditions, respectively, in the ANFIS model and by Bf

values of 0.99 and 1.00 under aerobic and anaerobic conditions,

respectively, in the ANN models (Tables 5 and 6). These data

indicate that the ANFIS model provides a relatively more accurate
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estimate of growth rate compared to the ANN model, which tends

to underestimate growth rate.

The SEP index indicates the relative deviation in mean

prediction values. A notable advantage of the index is that its

calculation is independent of the magnitude of the measurements

[10]. For both training and testing data sets (Tables 5 and 6), the

SEP indices were again better in the ANFIS models (range, 0.44–

0.81) than in the ANN models (range, 3.66–23.27).

Tables 11 and 12 show the evaluation criteria for ANFIS and

ANN models with 10-fold cross-validation of the 30-bootstrap data

set. The tables also show that the ANFIS models were better than

the ANN models in predicting the four kinetic parameters.

The ANFIS and ANN models offer an interesting option for

defining the sensitivity and relative importance of inputs

(Figures 10, 11, 12 and 13). The sensitivity analysis in this

experiment revealed the important effects of temperature on LM

growth rates under aerobic and anaerobic conditions. In earlier

works, Zurera-Cosano et al. [9] obtained similar results in RSM

models of LM growth whereas Panagou and Kodogiannis [7]

reported similar results in an ANN model of Monascus ruber growth.

In conclusion, this study confirmed that, compared to ANN

models, ANFIS architectures provide better accuracy in predicting

the growth rate of LM based on input data for temperature, pH,

NaCl and NaNO2 under both aerobic and anaerobic conditions.

The statistical indices and graphic plots confirmed the superior

performance of the ANFIS models in both training and testing

data sets. Sensitivity analyses of the ANFIS models revealed that

the most influential (sensitive) factors in the growth rate of LM

were temperature and, to a lesser extent, NaCl. As ANFIS is

mainly applied in predictive microbiology, the findings that

ANFIS models are effective for predicting the kinetic parameters

of fungi indicate their good potential use as an alternative to ANNs

in this field. Future studies of differential evolution [34] in the

ANFIS architecture may evaluate the effects of training on

nonlinear parameters of the premise part and on linear parameters

of the consequent part. Hopefully, improving the accuracy of the

model will enhance its potential applications in predictive

microbiology.
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